Refine
Year of publication
Document Type
- Article (34)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Language
- English (36)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Keywords
- Attitude (3)
- Knowledge (3)
- Malaria (3)
- Zika virus (3)
- Dengue (2)
- Healthcare worker (2)
- Mountain (2)
- Nepal (2)
- climate change (2)
- public health (2)
Snake bite is one of the most neglected public health issues in poor rural communities living in the tropics. Because of serious misreporting, the true worldwide burden of snake bite is not known. South Asia is the world's most heavily affected region, due to its high population density, widespread agricultural activities, numerous venomous snake species and lack of functional snake bite control programs. Despite increasing knowledge of snake venoms' composition and mode of action, good understanding of clinical features of envenoming and sufficient production of antivenom by Indian manufacturers, snake bite management remains unsatisfactory in this region. Field diagnostic tests for snake species identification do not exist and treatment mainly relies on the administration of antivenoms that do not cover all of the important venomous snakes of the region. Care-givers need better training and supervision, and national guidelines should be fed by evidence-based data generated by well-designed research studies. Poorly informed rural populations often apply inappropriate first-aid measures and vital time is lost before the victim is transported to a treatment centre, where cost of treatment can constitute an additional hurdle. The deficiency of snake bite management in South Asia is multi-causal and requires joint collaborative efforts from researchers, antivenom manufacturers, policy makers, public health authorities and international funders.
The Asian bush mosquito (Aedes japonicus japonicus, Theobald 1901) is an invasive culicid species which originates in Asia but is nowadays present in northern America and Europe. It is a competent vector for several human disease pathogens. In addition to the public health threat, this invasive species may also be an ecological threat for native container-breeding mosquitoes which share a similar larval habitat. Therefore, it is of importance to gain knowledge on ecological and eco-toxicological features of the Asian bush mosquito. However, optimal laboratory feeding conditions have not yet been established. Standardized feeding methods will be needed in assessing the impact of insecticides or competitional strength of this species. To fill this gap, we performed experiments on food quality and quantity for Ae. j. japonicus larvae. We found out that the commercial fish food TetraMin (Tetra, Melle, Germany) in a dose of 10 mg per larva is the most suitable food tested. We also suggest a protocol with a feeding sequence of seven portions for all larval stages of this species.
Background: The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal.
Methodology/Principal findings: We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance.
Conclusions/Significance: We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to protect the health of local people and tourists travelling in the central Himalayas.
Background: Malaria is still a priority public health problem of Nepal where about 84% of the population are at risk. The aim of this paper is to highlight the past and present malaria situation in this country and its challenges for long-term malaria elimination strategies.
Methods: Malariometric indicator data of Nepal recorded through routine surveillance of health facilities for the years between 1963 and 2012 were compiled. Trends and differences in malaria indicator data were analysed.
Results: The trend of confirmed malaria cases in Nepal between 1963 and 2012 shows fluctuation, with a peak in 1985 when the number exceeded 42,321, representing the highest malaria case-load ever recorded in Nepal. This was followed by a steep declining trend of malaria with some major outbreaks. Nepal has made significant progress in controlling malaria transmission over the past decade: total confirmed malaria cases declined by 84% (12,750 in 2002 vs 2,092 in 2012), and there was only one reported death in 2012. Based on the evaluation of the National Malaria Control Programme in 2010, Nepal recently adopted a long-term malaria elimination strategy for the years 2011–2026 with the ambitious vision of a malaria-free Nepal by 2026. However, there has been an increasing trend of Plasmodium falciparum and imported malaria proportions in the last decade. Furthermore, the analysis of malariometric indicators of 31 malaria-risk districts between 2004 and 2012 shows a statistically significant reduction in the incidence of confirmed malaria and of Plasmodium vivax, but not in the incidence of P. falciparum and clinically suspected malaria.
Conclusions: Based on the achievements the country has made over the last decade, Nepal is preparing to move towards malaria elimination by 2026. However, considerable challenges lie ahead. These include especially, the need to improve access to diagnostic facilities to confirm clinically suspected cases and their treatment, the development of resistance in parasites and vectors, climate change, and increasing numbers of imported cases from a porous border with India. Therefore, caution is needed before the country embarks towards malaria elimination.
Background: Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change.
Methodology: A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December 2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines.
Principal findings: We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies.
Conclusion: Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant.
Background: Dengue fever (DF) is the most rapidly spreading mosquito-borne viral disease in the world. In this decade it has expanded to new countries and from urban to rural areas. Nepal was regarded DF free until 2004. Since then dengue virus (DENV) has rapidly expanded its range even in mountain regions of Nepal, and major outbreaks occurred in 2006 and 2010. However, no data on the local knowledge, attitude and practice (KAP) of DF in Nepal exist although such information is required for prevention and control measures.
Methods: We conducted a community based cross-sectional survey in five districts of central Nepal between September 2011 and February 2012. We collected information on the socio-demographic characteristics of the participants and their knowledge, attitude and practice regarding DF using a structured questionnaire. We then statistically compared highland and lowland communities to identify possible causes of observed differences.
Principal findings: Out of 589 individuals interviewed, 77% had heard of DF. Only 12% of the sample had good knowledge of DF. Those living in the lowlands were five times more likely to possess good knowledge than highlanders (P<0.001). Despite low knowledge levels, 83% of the people had good attitude and 37% reported good practice. We found a significantly positive correlation among knowledge, attitude and practice (P<0.001). Among the socio-demographic variables, the education level of the participants was an independent predictor of practice level (P<0.05), and education level and interaction between the sex and age group of the participants were independent predictors of attitude level (P<0.05).
Conclusion: Despite the rapid expansion of DENV in Nepal, the knowledge of people about DF was very low. Therefore, massive awareness programmes are urgently required to protect the health of people from DF and to limit its further spread in this country.
Background: Ever since it was discovered that zoophilic vectors can transmit malaria, zooprophylaxis has been used to prevent the disease. However, zoopotentiation has also been observed. Thus, the presence of livestock has been widely accepted as an important variable for the prevalence and risk of malaria, but the effectiveness of zooprophylaxis remained subject to debate. This study aims to critically analyse the effects of the presence of livestock on malaria prevalence using a large dataset from Indonesia.
Methods: This study is based on data from the Indonesia Basic Health Research ("Riskesdas") cross-sectional survey of 2007 organized by the National Institute of Health Research and Development of Indonesia’s Ministry of Health. The subset of data used in the present study included 259,885 research participants who reside in the rural areas of 176 regencies throughout the 15 provinces of Indonesia where the prevalence of malaria is higher than the national average. The variable "existence of livestock" and other independent demographic, social and behavioural variables were tested as potential determinants for malaria prevalence by multivariate logistic regressions.
Results: Raising medium-sized animals in the house was a significant predictor of malaria prevalence (OR = 2.980; 95% CI 2.348–3.782, P < 0.001) when compared to keeping such animals outside of the house (OR = 1.713; 95% CI 1.515–1.937, P < 0.001). After adjusting for gender, age, access to community health facility, sewage canal condition, use of mosquito nets and insecticide-treated bed nets, the participants who raised medium-sized animals inside their homes were 2.8 times more likely to contract malaria than respondents who did not (adjusted odds ratio = 2.809; 95% CI 2.207–3.575; P < 0.001).
Conclusions: The results of this study highlight the importance of livestock for malaria transmission, suggesting that keeping livestock in the house contributes to malaria risk rather than prophylaxis in Indonesia. Livestock-based interventions should therefore play a significant role in the implementation of malaria control programmes, and focus on households with a high proportion of medium-sized animals in rural areas. The implementation of a "One Health" strategy to eliminate malaria in Indonesia by 2030 is strongly recommended.
Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia
(2018)
Background: Malaria, a parasitic infection, is a life-threatening disease in South Sumatra Province, Indonesia. This study aimed to investigate the spatial association between malaria occurrence and environmental risk factors.
Methods: The number of confirmed malaria cases was analysed for the year 2013 from the routine reporting of the Provincial Health Office of South Sumatra. The cases were spread over 436 out of 1613 villages. Six potential ecological predictors of malaria cases were analysed in the different regions using ordinary least square (OLS) and geographically weighted regression (GWR). The global pattern and spatial variability of associations between malaria cases and the selected potential ecological predictors was explored.
Results: The importance of different environmental and geographic parameters for malaria was shown at global and village-level in South Sumatra, Indonesia. The independent variables altitude, distance from forest, and rainfall in global OLS were significantly associated with malaria cases. However, as shown by GWR model and in line with recent reviews, the relationship between malaria and environmental factors in South Sumatra strongly varied spatially in different regions.
Conclusions: A more in-depth understanding of local ecological factors influencing malaria disease as shown in present study may not only be useful for developing sustainable regional malaria control programmes, but can also benefit malaria elimination efforts at village level.
Nepal is highly vulnerable to global climate change, despite its negligible emission of global greenhouse gases. The vulnerable climate-sensitive sectors identified in Nepal's National Adaptation Programme of Action (NAPA) to Climate Change 2010 include agriculture, forestry, water, energy, public health, urbanization and infrastructure, and climate-induced disasters. In addition, analyses carried out as part of the NAPA process have indicated that the impacts of climate change in Nepal are not gender neutral. Vector-borne diseases, diarrhoeal diseases including cholera, malnutrition, cardiorespiratory diseases, psychological stress, and health effects and injuries related to extreme weather are major climate-sensitive health risks in the country. In recent years, research has been done in Nepal in order to understand the changing epidemiology of diseases and generate evidence for decision-making. Based on this evidence, the experience of programme managers, and regular surveillance data, the Government of Nepal has mainstreamed issues related to climate change in development plans, policies and programmes. In particular, the Government of Nepal has addressed climate-sensitive health risks. In addition to the NAPA report, several policy documents have been launched, including the Climate Change Policy 2011; the Nepal Health Sector Programme – Implementation Plan II (NHSP-IP 2) 2010–2015; the National Health Policy 2014; the National Health Sector Strategy 2015–2020 and its implementation plan (2016–2021); and the Health National Adaptation Plan (H-NAP): climate change and health strategy and action plan (2016–2020). However, the translation of these policies and plans of action into tangible action on the ground is still in its infancy in Nepal. Despite this, the health sector's response to addressing the impact of climate change in Nepal may be taken as a good example for other low- and middle-income countries.
Diagnosing and treating acute severe and recurrent antivenom-related anaphylaxis (ARA) is challenging and reported experience is limited. Herein, we describe our experience of severe ARA in patients with neurotoxic snakebite envenoming in Nepal. Patients were enrolled in a randomised, double-blind trial of high vs. low dose antivenom, given by intravenous (IV) push, followed by infusion. Training in ARA management emphasised stopping antivenom and giving intramuscular (IM) adrenaline, IV hydrocortisone, and IV chlorphenamine at the first sign/s of ARA. Later, IV adrenaline infusion (IVAI) was introduced for patients with antecedent ARA requiring additional antivenom infusions. Preantivenom subcutaneous adrenaline (SCAd) was introduced in the second study year (2012). Of 155 envenomed patients who received ≥ 1 antivenom dose, 13 (8.4%), three children (aged 5−11 years) and 10 adults (18−52 years), developed clinical features consistent with severe ARA, including six with overlapping signs of severe envenoming. Four and nine patients received low and high dose antivenom, respectively, and six had received SCAd. Principal signs of severe ARA were dyspnoea alone (n=5 patients), dyspnoea with wheezing (n=3), hypotension (n=3), shock (n=3), restlessness (n=3), respiratory/cardiorespiratory arrest (n=7), and early (n=1) and late laryngeal oedema (n=1); rash was associated with severe ARA in 10 patients. Four patients were given IVAI. Of the 8 (5.1%) deaths, three occurred in transit to hospital. Severe ARA was common and recurrent and had overlapping signs with severe neurotoxic envenoming. Optimising the management of ARA at different healthy system levels needs more research. This trial is registered with NCT01284855.