Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light.
Ionenkanäle bilden therapeutische Schlüsselstellen für viele Erkrankungen und sind daher vor allem für die pharmakologische und medizinische Forschung von herausragender Bedeutung. Der Forschungsbedarf ist enorm und dementsprechend groß auch die Nachfrage nach elektrophysiologischen Systemen, die eine Analyse von Ionenkanälen und/oder Wirkstoffen im Hochdurchsatz erlauben. Derzeitige Hochdurchsatzsysteme basieren zumeist auf modifizierten Patch-Clamp-Verfahren, weisen aber im Vergleich zu manuellen Patch-Clamp-Systemen noch einige Nachteile auf. In der vorliegenden Arbeit wurde daher im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten BioChancePlus-Projektes eine alternative Methode, die Fakir-Methode, entwickelt und ihre Einsatzmöglichkeit in Hochdurchsatzsystemen evaluiert. Bei der Fakir-Methode werden Zellen in einem inhomogenen, elektrischen Wechselfeld mit Hilfe dielektrophoretischer Kräfte zu Metallnanoelektroden hin beschleunigt, aufgrund ihrer Bewegungsenergie von letzteren penetriert und dadurch elektrisch kontaktiert. Dies ermöglicht die anschließende, intrazelluläre Messung in physiologischer Lösung. Im Vergleich zur Patch-Clamp-Methode hat die Fakir-Methode die Vorteile, dass das Zytoplasma der Zelle erhalten bleibt und dass mit einer geringen Zelldichte gearbeitet werden kann. Auf der anderen Seite polarisiert die Elektrode schnell und die genaue, intrazelluläre Zusammensetzung während der Messung ist nicht bekannt. Für die Realisierung der Fakir-Methode im Experiment wurde eine Mikrofluidikkammer mit austauschbaren Metallmikro- und Metallnanoelektroden- Chips entwickelt, die die mikroskopische Beobachtung des Kontaktierungsprozesses ermöglichte. Die Charakterisierung der Elektroden erfolgte sowohl durch Potentialmessungen als auch mit Hilfe von Impedanzspektroskopie. Um die dielektrophoretische Attraktion von Zellen genauer steuern zu können, wurde zudem ein Amplitudenmodulator entwickelt. Zellen konnten sowohl einzeln, als auch in Gruppen kontaktiert werden. Intrazelluläre Potentialmessungen von HEK293-Zellen, die den blaulichtgesteuerten Kationenkanal Channelrhodopsin-2 (ChR2) exprimierten, zeigten, dass mit Hilfe der Fakir-Methode von Membranproteinen verursachte Spannungsänderungen gemessen werden können. Beim Fakir-Modell auftretende Schwierigkeiten wurden analysiert und die Ergebnisse genutzt, um ein Konzept für eine hochreproduzierbare Herstellung von Nanoelektroden-Arrays unter Verwendung der 2-Photonenpolymerisations- Technolgie (2PP) zu entwerfen. Für den Einsatz als Biosensoren sind große Zellen besonders geeignet. Eine effektive Vergrößerung von Zellen kann durch die Multi-cell-Elektrofusion erreicht werden. Diese Art der Herstellung von Riesenzellen ist insbesondere deshalb so interessant, weil die Elektrofusion problemlos in ein automatisiertes Mikrofluidiksystem eingebunden werden kann. Neben HEK293-Zellen konnten nach Entwicklung geeigneter Protokolle für die Herstellung von Protoplasten auch Saccharomyces cerevisiae und Pichia pastoris zu Riesenzellen elektrofusioniert werden. Solche Riesenzellen wurden im Rahmen dieser Arbeit biophysikalisch charakterisiert. Neben Kapazitätsmessungen zeigten sowohl die Expression von YFP in den Membranen als auch die Verwendung von fluoresceinhaltiger Patch-Clamp- Pipettenlösung, dass es sich bei den Riesenzellen um einheitliche Kompartimente handelte und somit die gesamte Membranfläche für elektrophysiologische Experimente zur Verfügung stand. Vergleichende Patch-Clamp-Messungen von ChR2-exprimierenden Ursprungs- und Riesenzellen ergaben nicht nur, dass das überexprimierte Protein auch nach der Elektrofusion noch funktional war, sondern auch, dass die Expressionsdichte unverändert blieb. Damit bilden elektrofusionierte Riesenzellen weit über ihre Einsatzmöglichkeiten in Hochdurchsatzsystemen hinaus ein vielversprechendes Werkzeug, um zum Beispiel elektrogene Membranproteine mit geringer Stromamplitude nachzuweisen oder in der giant-inside-out- Konfiguration elektrophysiologische Messungen durchzuführen. Lipophile Anionen können eingesetzt werden, um die elektrischen Eigenschaften der Membranen zu verändern und die Zellstabiliät während des Elektromanipulationsprozesses zu verbessern. Daher wurde für vier verschiedene lipophile Anionen die Spannungsabhängigkeit der Erhöhung der spezifischen Membrankapazität in Patch- Clamp-Experimenten mit HEK293-Zellen analysiert.