• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Rashid, Umar Jan (2)
  • Beck, Martin (1)
  • Becker, Thomas (1)
  • Beckmann, Roland (1)
  • Gerovac, Milan (1)
  • Heuer, André (1)
  • Kiosze-Becker, Kristin (1)
  • Nürenberg-Goloub, Elina (1)
  • Ori, Alessandro (1)
  • Tampé, Robert (1)
+ more

Year of publication

  • 2008 (1)
  • 2016 (1)

Document Type

  • Article (1)
  • Doctoral Thesis (1)

Language

  • English (2)

Has Fulltext

  • yes (2)

Is part of the Bibliography

  • no (2)

Keywords

  • Cryoelectron microscopy (1)
  • Mass spectrometry (1)
  • Ribosome (1)

Institute

  • Biochemie und Chemie (2)
  • Sonderforschungsbereiche / Forschungskollegs (1)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Structural and functional studies of argonaute and tomato aspermy virus protein 2B, a suppressor of RNAi (2008)
Rashid, Umar Jan
RNA interference (RNAi) is triggered by recognition of double-stranded RNA (dsRNA), and elicits the silencing of gene(s) complementary to the dsRNA sequence. RNAi is thought to have emerged as a way of safeguarding the genome against mobile genetic elements and viral infection, thus maintaining genomic integrity. dsRNA is first processed into small interfering RNAs (siRNA) by the enzyme Dicer. siRNAs are ~21 to 25 -nt long, and contain a signature 5’ phosphate group and a two nucleotide long 3’ overhang (Bernstein et al., 2001). The siRNA is then loaded into the RNA-induced si-lencing complex (RISC), of which Argonaute is the primary catalytic component (Liu et al., 2004). Energetic asymmetry of the siRNA ends allows for its directional loading into RISC (Khvorova et al., 2003; Schwarz et al., 2003). Argonaute cleaves the passen-ger strand of the siRNA, leaving the guide strand of the siRNA bound to RISC (Gregory et al., 2005; Matranga et al., 2005; Rand et al., 2005). This single-stranded guide strand siRNA bound to Argonaute is able to recognize target mRNA in a sequence-specific manner, and cleaves the mRNA. Argonaute 2 in complex with single-stranded siRNA is sufficient for mRNA recognition and cleavage, thus forming a minimal RISC (Rivas et al., 2005). miRNAs, endogenously expressed small RNA genes which typically contain mismatches and non-Watson-Crick base pairing, are processed by this general pathway, although typically modulate gene expression by translational repression as opposed to cleavage of their target mRNA. The number of Argonaute genes is highly variable between species, ranging from one in S. pombe to twenty-seven in C. elegans. Earlier crystal structures of Argonaute apoen-zymes show the architecture of Argonaute to be a multidomain protein composed of N terminal, PAZ, MID, and PIWI domains (Song et al., 2004; Yuan et al., 2005). These multi-domain proteins are present in both prokaryotic and eukaryotic organisms. The role of Argonaute proteins in prokaryotes is still unknown, but based similarity to eu-karyotic Argonautes, they may also be involved in nucleic acid-directed regulatory pathways. These proteins have served as excellent models for learning about the struc-ture and function of this family of proteins. RNAi has found a widespread application for the simple yet effective knockdown of genes of interest. The catalytic cycle of RISC requires the binding of a number of different nucleotide structures to Argonaute, and we expect Argonaute to undergo a number of conforma-tional changes during the cycle of mRNA recognition by RISC (Filipowicz, 2005; Tom-ari and Zamore, 2005). Nevertheless, it remains unclear how the multi-domain ar-rangement of Argonaute recognizes and distinguishes between single-stranded and dou-ble-stranded oligonucleotides, which correspond to the Dicer-processed siRNA product, guide strand siRNA, and the guide strand / mRNA duplex. The Argonaute protein from Aquifex aeolicus was cloned, expressed, crystallized and solved by molecular replacement. Relative to earlier Argonaute structures, a 24° reorientation of the PAZ domain in this structure opens a basic cleft between the N-terminal and PAZ domains, exposing the guide strand binding pocket of PAZ. A 5.5-ns molecular dynamics simulation of Argonaute showed a strong tendency of the PAZ and N-terminal domains to be mobile. Binding of single-stranded DNA to Argonaute was monitored by total internal reflection fluorescence spectroscopy (TIRFS). The experi-ments showed biphasic kinetics indicative of large conformational changes, and re-vealed a hotspot of binding energy corresponding to the first 9 nucleotides, the so-called “seed region” most crucial for sequence-specific target recognition. As RNAi may have evolved as a way of safeguarding the genome viral infection, it is not surprising that viruses have evolved different strategies to suppress the host RNAi response in the form of viral suppressor protein. (Hock and Meister, 2008; Lecellier and Voinnet, 2004; Rashid et al., 2007; Song et al., 2004; Vastenhouw and Plasterk, 2004). These viral suppressors are widespread, having been identified in a number of different viral families. Not surprisingly, they generally share little sequence homology with one another, although they appear to exist as oligomers built upon a ~ 100-200 amino acid protomer. Tomato aspermy virus, a member of the Cucumoviruses, encodes for protein 2B (TAV 2B, 95 a.a., ~11.3 kDa) that acts as an RNAi suppressor. Intriguingly, a similar genomic arrangement is seen in RNAi suppressors in the Nodaviruses, a family of viruses that can infect both plants and animals, such as Flock house virus b2 (FHV b2). The 2B and b2 proteins are both derived from a frameshifted ORF within the RNA polymerase gene (Chao et al., 2005). In spite of this genomic similarity, the 2B and b2 proteins share little sequence identity, and it is not well understood how the Cucumovirus 2B proteins suppress RNAi. To address how TAV 2B suppresses RNAi, the oligonucleotide-binding properties of TAV 2B were studied. TAV 2B shows a preference for double-stranded RNA oligonucleotides corresponding to siRNAs and miRNAs, and also binds to single-stranded RNA oligonucleotides. A stretch of positively charged residues between amino acids 20-30 are critical for RNA binding. Binding to RNA oligomerizes and induces a conformational change in TAV 2B into a primarily helical structure. These studies sug-gest that suppression of RNAi by TAV 2B may occur by targeting different stages of the RNAi pathway. TAV 2B falls under the category of more general RNAi suppres-sors, with potentially multiple targets for suppression.
Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry (2016)
Kiosze-Becker, Kristin ; Ori, Alessandro ; Gerovac, Milan ; Heuer, André ; Nürenberg-Goloub, Elina ; Rashid, Umar Jan ; Becker, Thomas ; Beckmann, Roland ; Beck, Martin ; Tampé, Robert
Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks