Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Bird physiology (1)
- Birds (1)
- Flowers (1)
- Invertebrates (1)
- Meteorology (1)
- Rain (1)
- Seasons (1)
- Species diversity (1)
The species composition of local communities varies in space, and its similarity generally decreases with increasing geographic distance between communities, a phenomenon known as distance decay of similarity. It is, however, not known how changes in local species composition affect ecological processes, that is, whether they lead to differences in the local composition of species' functional roles. We studied eight seed‐dispersal networks along the South American Andes and compared them with regard to their species composition and their composition of functional roles. We tested (1) if changes in bird species composition lead to changes in the composition of bird functional roles, and (2) if the similarity in species composition and functional‐role composition decreased with increasing geographic distance between the networks. We also used cluster analysis to (3) identify bird species with similar roles across all networks based on the similarity in the plants they consume, (i) considering only the species identity of the plants and (ii) considering the functional traits of the plants. Despite strong changes in species composition, the networks along the Andes showed similar composition of functional roles. (1) Changes in species composition generally did not lead to changes in the composition of functional roles. (2) Similarity in species composition, but not functional‐role composition, decreased with increasing geographic distance between the networks. (3) The cluster analysis considering the functional traits of plants identified bird species with similar functional roles across all networks. The similarity in functional roles despite the high species turnover suggests that the ecological process of seed dispersal is organized similarly along the Andes, with similar functional roles fulfilled locally by different sets of species. The high species turnover, relative to functional turnover, also indicates that a large number of bird species are needed to maintain the seed‐dispersal process along the Andes.
Understanding global biodiversity patterns is one of the main objectives of ecology. Spatial variation in species richness can be explained by several environmental factors. The relationships between species richness and environmental factors have been associated with latitudinal, longitudinal and elevational gradients. The number of species is determined by birth, death and migration rates of species in a given area. These rates are affected by abiotic and biotic factors acting at local and regional scales. Climatic seasonal variation may also influence biodiversity, directly through physiological limitations and indirectly through biotic interactions, vegetation structure and food availability. Climate and land use change are the main factors for landscape simplification and biotic homogenization. Thus, the study of community patterns across environmental gradients may help to predict the effect of projected environmental change.
I investigated how abiotic and biotic factors influence different facets of bird diversity across an elevational gradient. My study was conducted along an elevational gradient spanning 2000 m within and around Podocarpus National Park and San Francisco reserve on the southeastern slope of the Andes in Ecuador. The climate is humid tropical montane with a bimodal rain regime. The region is characterized by evergreen premontane forest at low elevations, evergreen lower montane forest at mid elevations and upper montane forest at high elevations. The elevational gradient has natural continuous forests within the protected reserves and fragmented forests surrounding the reserves in a matrix of cattle pastures. To monitor bird diversity, I placed nine 20-m radius point counts within 18 one-hectare plots, in continuous and fragmented forest at 1000, 2000 and 3000 m a.s.l. I recorded and identified all birds for 10 minutes within each point count. Bird communities were sampled eight times per plot, in the most humid season and in the least humid season of 2014 and 2015. To estimate flower and fruit availability, I recorded all plants with open flowers and ripe fruits within each point count. To obtain the relative invertebrate availability, I assessed understory invertebrate fresh biomass using a standardized sweep-netting design along 100-metre borders of each plot. Vertical vegetation heterogeneity was estimated at eight layers above the ground within each point count. Temperature for each plot was obtained using an air temperature regionalization tool and precipitation through remote sensing techniques and meteorological data.
In the first chapter of this thesis, I explored the effects of elevation, climate and vegetation structure on overall bird communities as well as on frugivorous and insectivorous birds. I found that elevation was mostly indirectly associated with bird diversity, jointly mediated via temperature, precipitation and vegetation structure. Additionally, elevation was directly and positively associated with both the overall bird community and with insectivores, but not with frugivores. My findings indicate a reduction of bird diversity due to climatic factors and vegetation structure with increasing elevation. However, the direct, positive effect of elevation suggests that bird diversity was higher than expected towards high elevations, probably due to spatial, biotic and evolutionary settings.
In the second chapter, I analysed the influence of climate and resource availability on temporal variation of bird communities. I found a higher bird diversity in the least humid season than in the most humid season. The seasonality of the bird communities was mainly driven by temperature and precipitation. While temperature had a significant positive effect at high elevations, precipitation had a significant negative effect at low elevations. Resource availability had no significant effect. My findings suggest that the temporal fluctuations in bird communities likely occur due to climate
constraints rather than due to resource limitations.
In the third chapter, I studied the effect of forest fragmentation on taxonomic and functional bird diversity. I found that taxonomic diversity was higher in fragmented compared to continuous forests, while functional diversity was negatively affected by fragmentation, but only at low elevations. The increase of taxonomic diversity in disturbed habitats suggests an increase of habitat generalists, which may compensate the loss of forest specialists. My findings suggest that taxonomic diversity can be uncoupled from functional diversity in diverse communities at low elevations.
My results show the effects of environmental factors on the spatio-temporal patterns of bird communities and the potentially uncoupled responses of taxonomic and functional diversity to forest fragmentation. My findings highlight that bird communities respond differently to abiotic and biotic factors across elevational gradients. Overall, my study helps to better understand the mechanisms that drive species communities in response to complex environmental conditions, which could be an essential contribution for the conservation of bird communities in the tropical Andes.
Understanding the spatial and temporal dynamics of species assemblages is a main challenge in ecology. The mechanisms that shape species assemblages and their temporal fluctuations along tropical elevational gradients are particularly poorly understood. Here, we examined the spatio-temporal dynamics of bird assemblages along an elevational gradient in Ecuador. We conducted bird point counts at three elevations (1000, 2000 and 3000 m) on 18 1-ha plots and repeated the sampling eight times over two years (216 hours in total). For each plot, we obtained data of monthly temperatures and precipitation and recorded the overall resource availability (i.e., the sum of flower, fruit, and invertebrate resources). As expected, bird richness decreased from low to high elevations. Moreover, we found a significant decrease in bird abundance and richness and an increase in evenness between the most and least humid season at each of the three elevations. Climatic factors were more closely related to these temporal fluctuations than local resource availability. While temperature had significant positive effects on the abundance of birds at mid and high elevations, precipitation negatively affected bird abundance at low and mid elevations. Our study highlights that bird assemblages along tropical elevational gradients can show pronounced seasonal fluctuations. In particular, low temperatures and high precipitation seem to impose important constraints on birds. We conclude that potential changes in climate, due to global warming, are likely to affect the spatio-temporal dynamics of bird assemblages along tropical elevational gradients.