Refine
Year of publication
Document Type
- Article (19)
- Contribution to a Periodical (4)
- Conference Proceeding (1)
- Report (1)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Institute
- Medizin (16)
- Präsidium (7)
- Biochemie und Chemie (6)
- Biowissenschaften (1)
- Fachübergreifend (1)
- Pharmazie (1)
Background: Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and down-regulation of its major intracellular receptor, the alpha/beta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of sGC's heme and responsiveness to NO.
Results: sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here we show that oxidation-induced down-regulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand, BAY 58-2667, prevented sGC ubiquitination and stabilized both alpha and beta subunits.
Conclusion: Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC.
Poster presentation: NO-sensitive guanylyl cyclases (GC) are the principal receptors for nitric oxide (NO) and convert GTP into the second messenger cGMP. We showed that GC is prone to tyrosine phosphorylation in COS1 cells overexpressing the human holoenzyme. Similar results were obtained in PC12 cells and in rat aortic tissue slices. The major phosphorylation site was mapped to position 192 in the regulatory domain of the beta1 subunit. Tyrosine phosphorylation of GC was reduced in the presence of the inhibitors PP1 and PP2 indicating that Src-like kinases are critically involved in phosphorylation. Moreover, co-immunoprecipitation experiments revealed an interaction between Src and GC. To further analyse the relevance of this posttranslational modification we generated a phospho-specific antibody raised against pTyr192. This antibody clearly distinguishes between phosphorylated and non-phosphorylated GC and may be a powerful tool to analyse the subcellular localisation of the phosphorylated enzyme.
Poster presentation: NO-sensitive guanylyl cyclases (sGCs) are cytosolic receptors for nitric oxide (NO) catalyzing the conversion of GTP to cGMP. sGCs are obligate heterodimers composed of one alpha and beta subunit each. The allosteric mechanism of sGC activation via NO is well understood, however, our knowledge about alternative mechanisms such as protein-protein interactions regulating activity, availability, translocation and expression of sGC is rather limited. In a search by the yeast two-hybrid system using the catalytic domain of the alpha1 subunit as the bait, we have identified two structurally related proteins AGAP1 [1] and MRIP2 as novel sGC interacting proteins. MRIP2 is a multi-domain protein of 75 kDa comprising a single PH and ArfGAP domain each and two ankyrin repeats. Co-immunoprecipitation experiments using COS1 cells overexpressing both proteins demonstrated the interaction of MRIP2 with both subunits of the sGC alpha1beta1. Confocal microscopical analysis showed a prominent plasma membrane staining of MRIP2. This membrane association is mediated through an N-terminal myristoylation site and through binding of its PH domain to phospholipids such as phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2). We hypothesize that MRIP2 may represent an acceptor protein for sGC that mediates recruitment of cytosolic sGC to the plasma membrane or other subcellular compartments.
Poster presentation NO-sensitive guanylyl cyclases (soluble guanylyl cyclase, sGC) are among the key regulators of intracellular cGMP concentration. The mechanisms underlying NO-mediated activation of sGC are quite well understood, however, little is known about the fine-tuning of sGC activity through alternative mechanisms such as protein phosphorylation. Several reports have demonstrated the reversible phosphorylation of sGC on serine/threonine residues, and it has been speculated, though not experimentally proven, that sGC might also be phosphorylated on tyrosine residues. Using broad-spectrum phosphatase inhibitors we were able to demonstrate tyrosine phosphorylation at Tyr192 of the beta 1 subunit of human sGC in COS1 cells. This residue forms part of a sequence segment (YEDL) representing a preferential binding site for SH2 domains of Src-like kinases. Pull-down assays and co-immunoprecipitation experiments showed that Src can indeed bind via its SH2 domain to pTyr192 of beta 1 indicating that tyrosine phosphorylation of sGC may be followed by recruitment of Src-like kinases to the phosphorylated beta 1 subunit. In support of this hypothesis, immunofluorescence studies showed a colocalization of overexpressed sGC and Src at the plasma membrane of COS1 and Hela cells. Together, our results point to an unexpected crosstalk between tyrosine kinase pathway(s) and the NO/cGMP signalling cascade which may result in translocation of the predominantly cytosolic sGC to the cytosolic face of the plasma membrane.
Einleitung: Für angehende Ärztinnen und Ärzte sind gründliche biochemische Kenntnisse von großer Bedeutung für das Verständnis molekularer Mechanismen, physiologischer Abläufe und pathologischer Entwicklungen. Entsprechend nimmt die biochemische Lehre im vorklinischen Abschnitt des Medizinstudiums viel Zeit in Anspruch. Zugleich ist aber die Biochemie bei den Studienanfängern ein ungeliebtes Fach: Die Stofffülle, die Komplexität molekularer Prozesse, das geforderte hohe Abstraktionsniveau und die oft unzureichenden schulischen Vorkenntnisse führen bei vielen Erstsemestern zu tiefer Abneigung gegenüber der molekularen Medizin. Um diesem Problem zu begegnen, bieten wir den Medizinstudierenden der Johann Wolfgang Goethe-Universität als vorklinisches Wahlfach eine neuartige Lehrveranstaltung an, die multimedial-biografische Vorträge mit biochemischem Unterricht kombiniert.
Methodik: Das Institut für Biochemie am FB Medizin führt eine propädeutische Lehrveranstaltung durch, in der Biografien bekannter Persönlichkeiten ebenso wie die korrespondierenden Krankheiten vorgestellt werden. Konzipiert als Wahlpflichtfach bietet diese multimediale Lehrveranstaltung (Titel: "Leben und Leiden berühmter Persönlichkeiten. Eine Einführung in die molekulare Medizin") den 40 teilnehmenden Studierenden in zehn wöchentlichen Doppelsitzungen pro Studienjahr einen breitgefächerten Lernstoff mit drei Lernzielen:
1. Im ersten Teil (45 Min.) jeder Doppelsitzung werden Leben, Leiden und Werk berühmter Persöhnlichkeiten aus Literatur, Musik, Politik, Kunst, Sport und Wissenschaft vorgestellt, die an einer bekannten Krankheit litten bzw. leiden. Unterstützt wird dieser biografische Vortrag in der Regel durch multimediale Einspielungen kurzer Video-Clips oder Musikstücke.
2. Im zweiten Teil (75 Min.) werden die molekularmedizinischen Hintergründe dieser Erkrankungen in einem biochemischen Vortrag vermittelt.
3. Dieser Vortrag wird durch Kurzreferate (jeweils 5 min.) der Studierenden zu grundlegenden biochemischen Strukturen und Prozessen ergänzt.
Unter den regelmäßig angebotenen Doppel-Themen sind: der Rockmusiker Freddy Mercury (AIDS), der Schriftsteller Ernest Hemingway (Alkoholismus), der Rock ´n Roll-Sänger Elvis Presley (Diabetes), der Komponist Ludwig van Beethoven (Morbus Crohn), der Boxer Muhammad Ali (Morbus Parkinson), der Rockmusiker Frank Zappa (Krebs).
Ergebnisse: Die Vortragsreihe wurde seit 2005 zum vierten Mal durchgeführt. Die Evaluation durch die Teilnehmer mittels Fragebogen ergab durchweg eine gute bis sehr gute Gesamtbewertung. Der Lernerfolg für die biochemischen Grundlagen wurde hoch eingeschätzt. Die multimedial präsentierten Biografien wurden als sinnvolle Ergänzung zu den molekularmedizinischen Themen empfunden.
Schlussfolgerung: Das studentische Feed-back bestätigt die Vermutung, dass diese spezifische Kombination die Attraktivität und Akzeptanz von Biochemie und Molekularbiologie bei den Studienanfängern erheblich steigert.
Bei den vorliegenden Zielvereinbarungen zwischen dem HMWK und den zwölf hessischen Hochschulen handelt es sich um Leistungsvereinbarungen, die auf dem Hochschulpakt für die Jahre 2011 bis 2015 (vom 18. Mai 2010) aufbauen. Wurden im Hochschulpakt vornehmlich strategische Regelungen hinsichtlich der Finanzierung der Hochschulen und der hochschulpolitischen Ziele getroffen, werden nunmehr mit den inzwischen zum dritten Male abgeschlossenen Zielvereinbarungen vor allem strategische Schwerpunkte in der Hochschulentwicklung gesetzt. ...
Die Goethe-Universität hat sich als eine der ersten deutschen Universitäten dem Urteil ihrer Studierenden gestellt: Die im Juni veröffentlichte repräsentative Umfrage ist eine der umfassendsten Studien, die es je an einer deutschen Universität gegeben hat. 40.000 Studierende waren an Deutschlands drittgrößter Universität eingeladen, Auskunft zu geben über ihre persönlichen Präferenzen im Studium, aber auch, ihre Alma Mater in Bereichen wie Studien- und Prüfungsorganisation zu bewerten.