Refine
Document Type
- Preprint (23)
- Article (11)
- Part of Periodical (1)
Language
- English (35)
Has Fulltext
- yes (35)
Is part of the Bibliography
- no (35)
Keywords
- B-slope (1)
- Bittacidae (1)
- Charm quark spatial diffusion coefficient (1)
- Coalescence (1)
- Critical point (1)
- Data sharing (1)
- Deuteron production (1)
- Diffraction (1)
- Elastic scattering (1)
- Elliptic flow (1)
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
The elliptic (v2) and triangular (v3) azimuthal anisotropy coefficients in central 3He+Au, d+Au, and p+Au collisions at sNN−−−√ = 200 GeV are measured as a function of transverse momentum (pT) at mid-rapidity (|η|<0.9), via the azimuthal angular correlation between two particles both at |η|<0.9. While the v2(pT) values depend on the colliding systems, the v3(pT) values are system-independent within the uncertainties, suggesting an influence on eccentricity from sub-nucleonic fluctuations in these small-sized systems. These results also provide stringent constraints for the hydrodynamic modeling of these systems.
Bipolar disorder (BD) is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n=158,036 BD cases, 2.8 million controls), combining Clinical, Community, and Self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a 4-fold increase over previous findings3, and identified a novel ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of BD. Genes prioritised through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in BD cases4, highlighting convergence of common and rare variant signals. We report differences in genetic architecture of BD depending on the source of patient ascertainment and on BD-subtype (BDI and BDII). Several analyses implicate specific cell types in BD pathophysiology, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide novel insights into the genetic architecture and biological underpinnings of BD.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1,2,3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.