Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
The title compound, C15H15BrO2, was synthesized by a Brønsted acid-catalysed domino electrocyclization-halogenation reaction. The five-membered ring is essentially planar (r.m.s. deviation 0.006 Å) and forms a dihedral angle of 72.7 (3)° with the attached phenyl ring. The six-membered heterocycle adopts a half-chair conformation. The crystal packing is stabilized by a C—H[cdots, three dots, centered]O contact.
Enantioselective carbon-carbon bond-forming reactions, particularly, using organocatalysts represent one of the most important areas in modern synthetic chemistry. New concepts and methods in organocatalysis are emerging continuously, allowing more selective, economically more appealing and environmentally friendlier transformations. Chiral Brønsted-acid catalysts have recently emerged as a new class of organocatalysts for a number of enantioselective carbon-carbon bond-forming reactions. The first part of this thesis focused on the new development of new Brønsted acid-catalyzed enantioselective Nazarov cyclizations. The Nazarov reaction belongs to the group of electrocyclic reactions and is one of the most versatile methods for the synthesis of five-membered rings, which are the key structural elements of numerous natural products. In general, the Nazarov cyclization can be catalyzed by Brønsted or Lewis acids. However, only a few asymmetric variations have been described, of which most require the use of large amounts of chiral metal complexes. The reactivities of Nazarov cyclizations are also depending on the substituents of the divinyl ketone substrates as described in the first chapter. The substrates to study Brønsted acid-catalyzed enantioselective Nazarov cyclization were prepared following the known procedures. The dihydropyran was treated with tBuLi in THF at –78 oC and then the α,β-unsaturated aldehydes 1 were added to the reaction mixture to afford the corresponding alcohols 2 in moderate to good yields. The alcohols 2 were oxidized to divinyl ketones 3 employing Dess-Martin periodinane/pyridine (DMP/py) in CH2Cl2 at room temperature to obtain the divinyl ketones 3 in moderate to good yields (Scheme 1). Scheme 1. Preparation of substrates in order to study Brønsted acid-catalyzed enantioselective Nazarov cyclization and subsequent transformations. At the starting point, an evaluation of suitable Brønsted acid catalysts for the enantioselective Nazarov cyclization of divinyl ketone 3a was performed. The initial reactions conducted with various BINOL-phosphoric acids 4a-4e in toluene at 60 oC provided the mixture of cis and trans cyclopentenones 5a with enantioselectivities of up to 82% ee (Table 1, entries 1-5). Eventually, improved reactivity could be achieved by using the corresponding N-triflylphosphoramides 4f and 4g, which even at 0 oC gave complete conversion after ten minutes. Additionally, it was shown that the use of these catalysts significantly enhanced both the diastereoselectivity (cis/trans ratio up to 7:1) and the enantioselectivity (up to 96% ee; Table 1, entries 6 and 7). Table 1. Evaluation of Brønsted acids 4a-4g in the enantioselective Nazarov cyclization. The scope of the Brønsted acid-catalyzed enantioselective Nazarov cyclization of various divinyl ketones 3 was explored under an optimized reaction condition (Scheme 2). Treatment of divinyl ketones 3 in CHCl3 in the presence of 2 mol% chiral BINOL-Ntriflylphosphoramide 4g at 0 oC for 1-6 h provided the corresponding cyclopentenone 5 in good yields (45-92%) with excellent enantioselectivities (up to 93% ee) (Scheme 2). Furthermore, the isomerization of cis-cyclopentenone under basic condition led to the corresponding trans-cyclopentenone without loss of enantiomeric purity. This efficient method introduced here was not only the first example of an organocatalytic electrocyclic reaction but also represented the first enantioselective activation of a carbonyl group catalyzed by a chiral BINOL phosphoric acid. Compared to the metal-catalyzed reaction, special features of this new Brønsted acid-catalyzed electrocyclization are the lower catalyst loadings (2 mol%), higher enantioselectivities, accessibility to all possible stereoisomers, as well as the mild conditions. ....