Refine
Year of publication
Language
- English (803)
Has Fulltext
- yes (803)
Is part of the Bibliography
- no (803)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (10)
- Quarkonium (7)
- Charm Physics (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (693)
- Frankfurt Institute for Advanced Studies (FIAS) (160)
- Informatik (53)
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
Production of the doubly charged Δ baryon in e⁺e⁻ annihilation at energies from 2.3094 to 2.6464 GeV
(2023)
The processes e+e−→Δ++Δ¯−− and e+e−→Δ++p¯π−+c.c. are studied for the first time with 179 pb−1 of e+e− annihilation data collected with the BESIII detector at center-of-mass energies from 2.3094 GeV to 2.6464 GeV. No significant signal for the e+e−→Δ++Δ¯−− process is observed and the upper limit of the Born cross section is estimated at each energy point. For the process e+e−→Δ++p¯π−+c.c., a significant signal is observed at center-of-mass energies near 2.6454 GeV and the corresponding Born cross section is reported.
By using 6.32 fb−1 of data collected with the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, we perform an amplitude analysis of the decay D+s ! K0S + 0 and determine the relative fractions and phase differences of different intermediate processes, which include K0S (770)+, K0S (1450)+, K (892)0 +, K (892)+ 0, and K (1410)0 +. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+s ! K0S + 0) = (5.43 ± 0.30stat ± 0.15syst) × 10−3.
Based on (10087±44)×106 J/ψ events collected with the BESIII detector, the process J/ψ→γπ+π−η′ is studied using two dominant decay channels of the η′ meson, η′→γπ+π− and η′→ηπ+π−,η→γγ. The X(2600) is observed with a statistical significance larger than 20σ in the π+π−η′ invariant mass spectrum, and it has a strong correlation to a structure around 1.5 GeV/{\it c}2 in the π+π− invariant mass spectrum. A simultaneous fit on the π+π−η′ and π+π− invariant mass spectra with the two η′ decay modes indicates that the mass and width of the X(2600) state are 2617.8±2.1+18.2−1.9 MeV/{\it c}2 and 200±8+20−17 MeV, respectively. The corresponding branching fractions are measured to be B(J/ψ→γX(2600))⋅B(X(2600)→f0(1500)η′)⋅B(f0(1500)→π+π−) = (3.39±0.18+0.91−0.66)×10−5 and B(J/ψ→γX(2600))⋅B(X(2600)→f′2(1525)η′)⋅B(f′2(1525)→π+π−) = (2.43±0.13+0.31−1.11)×10−5, where the first uncertainties are statistical, and the second systematic.
The integrated luminosities of data samples collected in the BESIII experiment in 2016–2017 at center-of-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events. The integrated luminosities of old datasets collected in 2010–2014 are updated by considering corrections related to detector performance, offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter, which can haphazardly occur.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
Using a sample of (10.09±0.04)×109 J/ψ events collected with the BESIII detector, a partial wave analysis of J/ψ→γη′η′ is performed.The masses and widths of the observed resonances and their branching fractions are reported. The main contribution is from J/ψ→γf0(2020) with f0(2020)→η′η′, which is found with a significance of greater than 25σ. The product branching fraction B(J/ψ → γf0(2020))⋅B(f0(2020) → η′η′ is measured to be (2.63±0.06(stat.) + 0.31−0.46(syst.))×10−4.
Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.