Refine
Language
- English (43)
Has Fulltext
- yes (43)
Is part of the Bibliography
- no (43)
Keywords
- Crossover (2)
- Event-by-event fluctuation (2)
- Higher-order cumulant (2)
- QCD phase diagram (2)
- B-slope (1)
- Cell Adhesion (1)
- Cell adhesion (1)
- Charm quark spatial diffusion coefficient (1)
- Coalescence (1)
- Critical point (1)
Institute
The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at √sNN = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
Bipolar disorder (BD) is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n=158,036 BD cases, 2.8 million controls), combining Clinical, Community, and Self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a 4-fold increase over previous findings3, and identified a novel ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of BD. Genes prioritised through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in BD cases4, highlighting convergence of common and rare variant signals. We report differences in genetic architecture of BD depending on the source of patient ascertainment and on BD-subtype (BDI and BDII). Several analyses implicate specific cell types in BD pathophysiology, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide novel insights into the genetic architecture and biological underpinnings of BD.
Jet-hadron correlations with respect to the event plane in √sNN = 200 GeV Au+Au collisions in STAR
(2024)
Angular distributions of charged particles relative to jet axes are studied in sNN−−−√ = 200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet< 20 and 20<pT,jet< 40 GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of (R=0.4) in the 20-50\% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN−−−√ = 2.76 TeV Pb+Pb collision data.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y| < 0.7) in Au+Au collisions at √sNN = 200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5 < pT < 9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p + p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.