Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- computational chemistry (2)
- photochemistry (2)
- 900 GeV (1)
- ALICE (1)
- Alveolar macrophages (1)
- Basidiomycota (1)
- Closely related fungal species (1)
- DNA (1)
- Functional genomics (1)
- Fungal pan-genomes (1)
Background: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement ‘hotspot’ loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained.
Objective: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype.
Methods: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls.
Results: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10−6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10−12, OR 7.45, 95% CI 4.20–13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10−3,OR 2.85, 95% CI 1.62–4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls.
Conclusions: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.
Photolabile protecting groups are widely used to trigger oligonucleotide activity. The ON/OFF‐amplitude is a critical parameter. An experimental setup has been developed to identify protecting group derivatives with superior caging properties. Bulky rests are attached to the cage moiety via Cu‐catalyzed azide–alkyne cycloaddition post‐synthetically on DNA. Interestingly, the decrease in melting temperature upon introducing o‐nitrobenzyl‐caged (NPBY‐) and diethylaminocoumarin‐cages (DEACM‐) in DNA duplexes reaches a limiting value. NMR spectroscopy was used to characterize individual base‐pair stabilities and determine experimental structures of a selected number of photocaged DNA molecules. The experimental structures agree well with structures predicted by MD simulations. Combined, the structural data indicate that once a sterically demanding group is added to generate a tri‐substituted carbon, the sterically less demanding cage moiety points towards the neighboring nucleoside and the bulkier substituents remain in the major groove.
Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials & methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies.
Peronospora salviae‐officinalis, the causal agent of downy mildew on common sage, is an obligate biotrophic pathogen. It grows in the intercellular spaces of the leaf tissue of sage and forms intracellular haustoria to interface with host cells. Although P. salviae‐officinalis was described as a species of its own 10 years ago, the infection process remains obscure. To address this, a histological study of various infection events, from the adhesion of conidia on the leaf surface to de novo sporulation is presented here. As histological studies of oomycetes are challenging due to the lack of chitin in their cell wall, we also present an improved method for staining downy mildews for confocal laser scanning microscopy as well as evaluating the potential of autofluorescence of fixed nonstained samples. For staining, a 1:1 mixture of aniline blue and trypan blue was found most suitable and was used for staining of oomycete and plant structures, allowing discrimination between them as well as the visualization of plant immune responses. The method was also used to examine samples of Peronospora lamii on Lamium purpureum and Peronospora belbahrii on Ocimum basilicum, demonstrating the potential of the presented histological method for studying the infection processes of downy mildews in general.
Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted
MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
Das onkogene Fusionsprotein AML1/ETO entsteht durch die chromosomale Translokation t(8;21), die in etwa 12 % aller primären akuten myeloischen Leukämien (AML) auftritt. Die DNA-Bindedomäne des hämatopoetischen Transkriptionsfaktors AML1 wird hierbei mit fast dem gesamten ETO-Protein fusioniert, das als transkriptioneller Repressor wirkt. In den transformierten Zellen kommt es somit zur Blockierung der myeloischen Differenzierung und zur verstärkten Proliferation. Entscheidend für das leukämische Potential von AML1/ETO ist die Fähigkeit zur Oligomerisierung, die durch die Nervy-Homologie-Region-2 (NHR2)-Domäne im ETO-Anteil vermittelt wird.
Durch lentivirale Transduktion konnte bereits gezeigt werden, dass Proteine, welche die NHR2-Domäne enthalten, die Oligomerisierung von AML1/ETO inhibieren und damit den leukämischen Phänotyp AML1/ETO-exprimierender myeloischer Zellen aufheben. In der vorliegenden Arbeit sollten nun alternative Wege zur Einbringung der therapeutischen Proteine in t(8;21)-positive AML-Zellen untersucht werden. Dafür wurde sowohl die Möglichkeit der Proteintransduktion als auch die Verwendung nicht-integrierender viraler Vektoren analysiert.
Im ersten Projekt wurden durch Fusion mit der HIV-1 TAT-Domäne zellpermeable NHR2-Proteine generiert. Zunächst wurde ein Protokoll zur Expression und Reinigung der rekombinanten Proteine etabliert. Durch eine ausführliche biochemische Charakterisierung konnte gezeigt werden, dass die aus Bakterien aufgereinigten NHR2-Proteine funktionell und sehr rein waren. Sie wiesen den erwarteten hohen alpha-helikalen Anteil auf und behielten ihre Fähigkeit zur Bildung von Tetrameren in vitro bei. Die TAT-NHR2-Fusionsproteine sind in der Lage, in humane Zellen einzudringen und konnten erfolgreich in den Lysaten nachgewiesen werden. Mikroskopische Studien zeigten, dass der Großteil der internalisierten Proteine in Endosomen-ähnlichen Vesikeln lokalisiert war. Die Zugabe des Endosomeninhibitors Chloroquin oder eines endosomolytischen, zellpermeablen Peptides ermöglichte eine erhöhte intrazelluläre Stabilität der zellpenetrierenden Proteine. Co-Immunpräzipitations-Experimente konnten bestätigen, dass die aufgenommenen NHR2-Proteine spezifisch an das ETO-Protein in transfizierten, adhärenten Zellen binden können. Die Proteintransduktion in die myeloische, AML1/ETO-wachstumsabhängige Zelllinie Kasumi-1 ist unter serumfreien Bedingungen ebenfalls möglich. Die konsekutive Behandlung der AML-Zellen mit den TAT-NHR2-Fusionsproteinen führte zu einer Reduktion der Expression des Stammzellmarkers c-kit (CD117) in 26 % der behandelten Zellen. Die Anwendung zellpermeabler NHR2-Proteine ist demnach prinzipiell möglich, bedarf aber weiterer Optimierung, um die notwendige hohe Bioverfügbarkeit zu erreichen.
In einem zweiten Projekt wurden Adeno-assoziierte virale (AAV) Vektoren verwendet, um die NHR2-Proteine in den hämatopoetischen Zellen zu exprimieren. Mit Hilfe mehrerer Methoden konnte gezeigt werden, dass sich mit den generierten Vektoren, die auf dem AAV-Serotyp 2 basierten, erfolgreich eine transiente Genexpression induzieren ließ. Der CMV-Promoter vermittelte jedoch nur eine schwache Expression in den hämatopoetischen Zellen. Unter Verwendung des stärkeren SFFV-Promoters konnte die Expressionsstärke deutlich gesteigert werden. Die von den optimierten AAV-Vektoren vermittelte Expression der NHR2-Proteine führte in den beiden AML1/ETO-positiven Zelllinien Kasumi-1 und SKNO-1 zu den erwarteten, spezifischen Effekten. So wurde das Wachstum verlangsamt und gleichzeitig die Apoptoserate erhöht. AML1/ETO-unabhängige Zellen wurden dagegen von den AAV-NHR2-Vektoren nicht beeinflusst. Obwohl die Proteinexpression in SKNO-1 Zellen stärker war, zeigten die Kasumi-1 Zellen deutlichere Effekte. Die NHR2-Proteine bewirkten in den transduzierten t(8;21)-positiven Zellen außerdem eine Reduktion der Expression der Stammzellmarker CD34 bzw. c-kit. Dies deutet auf eine partielle Differenzierung der beiden AML1/ETO-abhängigen Zelllinien hin. Damit ließen sich durch AAV-vermittelte Transduktion in den AML-Zellen dieselbe Wirkung in Hinblick auf Wachstum, Differenzierbarkeit und Apoptoserate erzielen wie dies mit den lentiviralen Vektoren zuvor beschrieben wurde. In einem abschließenden Vergleich wurde aber deutlich, dass nicht-integrierende Vektorsysteme generell eine schwächere NHR2-Proteinexpression induzieren und demzufolge auch schwächere Effekte als integrierende Vektoren in den AML1/ETO-positiven Zellen auslösen.
We developed three bathochromic, green-light activatable, photolabile protecting groups based on a nitrodibenzofuran (NDBF) core with D-π-A push–pull structures. Variation of donor substituents (D) at the favored ring position enabled us to observe their impact on the photolysis quantum yields. Comparing our new azetidinyl-NDBF (Az-NDBF) photolabile protecting group with our earlier published DMA-NDBF, we obtained insight into its excitation-specific photochemistry. While the “two-photon-only” cage DMA-NDBF was inert against one-photon excitation (1PE) in the visible spectral range, we were able to efficiently release glutamic acid from azetidinyl-NDBF with irradiation at 420 and 530 nm. Thus, a minimal change (a cyclization adding only one carbon atom) resulted in a drastically changed photochemical behavior, which enables photolysis in the green part of the spectrum.
Background Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement “hotspot” loci. However, deciphering their role outside hotspots and risk assessment by epilepsy sub-type has not been conducted.
Methods We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1,366 patients with Genetic Generalized Epilepsy (GGE) plus two sets of additional unpublished genome-wide microdeletions found in 281 Rolandic Epilepsy (RE) and 807 Adult Focal Epilepsy (AFE) patients, totaling 2,454 cases. These microdeletion sets were assessed in a combined analysis and in sub-type specific approaches against 6,746 ethnically matched controls.
Results When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted-P= 2.00×10-7; OR = 1.89; 95%-CI: 1.51-2.35), where the implicated microdeletions overlapped with rarely deleted genes and those involved in neurodevelopmental processes. Sub-type specific analyses showed that hotspot deletions in the GGE subgroup contribute most of the signal (adjusted-P = 1.22×10-12; OR = 7.45; 95%-CI = 4.20-11.97). Outside hotspot loci, microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted-P = 4.78×10-3; OR = 2.30; 95%-CI = 1.42-3.70), whereas no additional signal was observed for RE and AFE. Still, gene content analysis was able to identify known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes affected in more than one epilepsy sub-type but not in controls.
Conclusions Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor to negligible contribution in the etiology of RE and AFE.
The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.
Tilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely related fungal species differ in their teliospore morphology and partially in their physiology and infection biology. The gene content as well as intraspecies variation in these species and the genetic basis of their separation is unknown. We sequenced the genome of four T. caries, five T. controversa, and two T. laevis and extended this dataset with five publicly available ones. The genomes of the three species displayed microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. The majority of functionally characterized genes involved in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were found to be absent or poorly conserved in the draft genomes and the biosynthetic pathway for trimethylamine in Tilletia spp. could be different from bacteria. Overall, 75% of the identified protein-coding genes comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted proteins, and 47.4% of effector-like proteins were conserved and shared across all 16 isolates. We predicted nine highly identical secondary metabolite biosynthesis gene clusters comprising in total 62 genes in all species and none were species-specific. Less than 0.1% of the protein-coding genes were species-specific and their function remained mostly unknown. Tilletia controversa had the highest intraspecies genetic variation, followed by T. caries and the lowest in T. laevis. Although the genomes of the three species are very similar, employing 241 single copy genes T. controversa was phylogenetically distinct from T. caries and T. laevis, however these two could not be resolved as individual monophyletic groups. This was in line with the genome-wide number of single nucleotide polymorphisms and small insertions and deletions. Despite the conspicuously different teliospore ornamentation of T. caries and T. laevis, a high degree of genomic identity and scarcity of species-specific genes indicate that the two species could be conspecific.