Refine
Year of publication
Document Type
- Preprint (26)
- Article (19)
- Conference Proceeding (2)
- Working Paper (1)
Language
- English (48)
Has Fulltext
- yes (48)
Is part of the Bibliography
- no (48)
Keywords
- 900 GeV (1)
- ALICE (1)
- Charge fluctuations (1)
- Excluded volume (1)
- Hadron resonance gas (1)
- Imaginary chemical potential (1)
- LHC (1)
- PYTHIA (1)
- QCD equation of state (1)
- QGP (1)
Institute
New results from the energy scan programme of NA49, in particular kaon production at 30 AGeV and phi production at 40 and 80 AGeV are presented. The K+/pi+ ratio shows a pronounced maximum at 30 AGeV; the kaon slope parameters are constant at SPS energies. Both findings support the scenario of a phase transition at about 30 AGeV beam energy. The phi/pi ratio increases smoothly with beam energy, showing an energy dependence similar to K-/pi-. The measured particle yields can be reproduced by a hadron gas model, with chemical freeze-out parameters on a smooth curve in the T-muB plane. The transverse spectra can be understood as resulting from a rapidly expanding, locally equilibrated source. No evidence for an earlier kinetic decoupling of heavy hyperons is found.
We present the first measurement of fluctuations from event to event in the production of strange particles in collisions of heavy nuclei. The ratio of charged kaons to charged pions is determined for individual central Pb+Pb collisions. After accounting for the fluctuations due to detector resolution and finite number statistics we derive an upper limit on genuine non-statistical fluctuations, perhaps related to a first or second order QCD phase transition. Such fluctuations are shown to be very small.
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80 and 158 AGeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s_NN^1/4 with a change of slope starting in the region 15-40 AGeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40 AGeV. A non-monotonic energy dependence of the ratio of K^+ to pi^+ yields is observed, with a maximum close to 40 AGeV and an indication of a nearly constant value at higher energies.The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.
Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 40 and 158 A GeV
(2003)
Directed and elliptic flow measurements for charged pions and protons are reported as a function of transverse momentum, rapidity, and centrality for 40 and 158A GeV Pb + Pb collisions as recorded by the NA49 detector. Both the standard method of correlating particles with an event plane, and the cumulant method of studying multiparticle correlations are used. In the standard method the directed flow is corrected for conservation of momentum. In the cumulant method elliptic flow is reconstructed from genuine 4, 6, and 8-particle correlations, showing the first unequivocal evidence for collective motion in A+A collisions at SPS energies.
Bose-Einstein correlations of charged kaons were measured near mid-rapidity in central Pb+Pb collisions at 158 A GeV by the NA49 experiment at the CERN SPS. Source radii were extracted using the Yano-Koonin-Podgoretsky and Bertsch-Pratt parameterizations. The results are compared to published pion data. The measured m_perp dependence for kaons and pions is consistent with collective transverse expansion of the source and a freeze-out time of about 9.5 fm.
The large acceptance and high momentum resolution as well as the significant particle identification capabilities of the NA49 experiment at the CERN SPS allow for a broad study of fluctuations and correlations in hadronic interactions. In the first part recent results on event-by-event charge and p_t fluctuations are presented. Charge fluctuations in central Pb+Pb reactions are investigated at three different beam energies (40, 80, and 158 AGeV), while for the p_t fluctuations the focus is put on the system size dependence at 158 AGeV. In the second part recent results on Bose Einstein correlations of h-h- pairs in minimum bias Pb+Pb reactions at 40 and 158 AGeV, as well as of K+K+ and K-K- pairs in central Pb+Pb collisions at 158 AGeV are shown. Additionally, other types of two particle correlations, namely pi p, Lambda p, and Lambda Lambda correlations, have been measured by the NA49 experiment. Finally, results on the energy and system size dependence of deuteron coalescence are discussed.
Rapidity distributions for Lambda and anti-Lambda hyperons in central Pb-Pb collisions at 40, 80 and 158 AGeV and for K 0 s mesons at 158 AGeV are presented. The lambda multiplicities are studied as a function of collision energy together with AGS and RHIC measurements and compared to model predictions. A different energy dependence of the Lambda/pi and anti-Lambda/pi is observed. The anti-Lambda/Lambda ratio shows a steep increase with collision energy. Evidence for a anti-Lambda/anti-p ratio greater than 1 is found at 40 AGeV.
The energy dependence of hadron production in central Pb+Pb collisions is presented and discussed. In particular, midrapidity m_T-spectra for pi-, K-, K+, p, bar p, d, phi, Lambda and bar Lambda at 40, 80 and 158 AGeV are shown. In addition Xi and Omega spectra are available at 158 AGeV. The spectra allow to determine the thermal freeze-out temperature T and the transverse flow velocity beta_T at the three energies. We do not observe a significant energy dependence of these parameters; furthermore there is no indication of early thermal freeze-out of Xi and Omega at 158 AGeV. Rapidity spectra for pi-, K-, K+ and phi at 40, 80 and 158 AGeV are shown, as well as first results on Omega rapidity distributions at 158 AGeV. The chemical freeze-out parameters T and mu_B at the three energies are determined from the total yields. The parameters are close to the expected phase boundary in the SPS energy range and above. Using the total yields of kaons and lambdas, the energy dependence of the strangeness to pion ratio is discussed. A maximum in this ratio is found at 40 AGeV. This maximum could indicate the formation of deconfined matter at energies above 40 AGeV. A search for open charm in a large sample of 158 AGeV events is presented. No signal is observed. This result is compared to several model predictions.
Experiment NA49 at the Cern SPS uses a large acceptance detector for a systematic study of particle yields and correlations in nucleus-nucleus, nucleon-nucleus and nucleon-nucleon collisions. Preliminary results for Pb+Pb collisions at 40, 80 and 158 A*GeV beam energy are shown and compared to measurements at lower and higher energies.