Refine
Document Type
- Doctoral Thesis (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Feldtheorie (2)
- Anisotropie (1)
- Chiralität <Elementarteilchenphysik> (1)
- Color Superconductivity (1)
- Effective Field Theory (1)
- Eichtheorie (1)
- Gittereichtheorie (1)
- Instabilität (1)
- Kernastrophysik (1)
- Kinetische Theorie (1)
Institute
In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schrödinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavyquark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma.
Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills
(2010)
We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the "fuzzy" bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory.
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient $hat{q}$. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy-ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy.
Nichtgleichgewichtsdynamik des chiralen Phasenübergangs in relativistischen Kern-Kern-Kollisionen
(2005)
In meiner Dissertation "Nichtgleichgewichtsdynamik des chiralen Phasenübergangs bei endlichen Temperaturen und Dichten" untersuche ich das Verhalten von stark wechselwirkender Materie bei hohen Temperaturen und Baryonendichten. Diese Form der Materie untersucht man mit Hilfe von Kern-Kern-Kollisionen an großen Beschleunigern am SPS in Genf (Schweiz) und am RHIC in Brookhaven (USA). Die Quantenchromodynamik (QCD) ist bis heute der beste Kandidat für die Theorie der starken Wechselwirkung und sollte daher die verschiedenen Phasen bei allen Baryonendichten und Temperaturen beschreiben. In der Praxis läßt die QCD sich bisher allerdings nur in einigen Grenzfällen, bei denen eine Störungstheoretische Beschreibung möglich ist, lösen. Daher ist es notwendig, bei endlichen Temperaturen und Baryonendichten effektive Modelle zu entwickeln, welche dann nur den grundlegenden Eigenschaften der QCD Rechnung tragen. Untersuchungen haben ergeben, daß die QCD zwei unterschiedliche Phasenübergänge beinhaltet. Zum einen den sogenannten Deconfinement-Phasenübergang von Kernmaterie zu einem asymptotisch freien Zustand, dem Quark Gluon Plasma, und zum anderen den chiralen Phasenübergang von massiven zu masselosen Teilchen. Gittereichtheoretische Rechnungen haben darüber hinaus gezeigt, daß es im Phasendiagramm einen kritischen Punkt und es Phasenübergänge erster Ordnung und sogenannte Crossover-übergänge gibt. In meiner Arbeit habe ich ein Modell verwendet und weiterentwickelt mit dem es möglich ist, den sogenannten {\em chiralen Phasenübergang} im Nichtgleichgewicht zu untersuchen. Dabei betrachte ich den übergang von masselosen (bei hohen Temperaturen und Baryonendichten) zu massiven Quarks (bei niedrigen Temperaturen und Baryonendichten). Der Schwerpunkt meiner Arbeit liegt auf den Nichtgleichgewichtseffekten des chiralen Phasenübergangs. Solche Nichtgleichgewichtseffekte sind zum Beispiel der Siedeverzug, wie man ihn manchmal beim Kochen von Wasser in einem Reagenzglas vorfindet. Auch hier wird die zeitliche Entwicklung des Systems durch Nichtgleichgewichtseffekte stark verändert, das Wasser kocht nicht einfach nur, sondern es verdampft schlagartig. Ziel meiner Arbeit ist es nun, den Einfluß von Nichtgleichgewichtseffekten auf den chiralen Phasenübergang in Kern-Kern-Kollisionen und insbesondere den Einfluß des kritischen Punktes zu untersuchen. Um mehr über den Phasenübergang im Nichtgleichgewicht herauszufinden, bietet es sich an, Fluktuationen bestimmter thermodynamischer Größen und ihren Einfluß auf Observablen zu untersuchen. Hierzu werden Fluktuationen in die Anfangsbedingungen der numerischen Simulationen eingefügt und untersucht, wie sich jeweils die zeitliche Entwicklung des Systems verhält. Zunächst habe ich die zeitliche Entwicklung der Fluktuationen in Abhängigkeit von der anfänglichen Systemgröße untersucht. Für ein unendliches System würde man am kritischen Punkt eine divergierende Korrelationslänge der Fluktuationen erwarten. Bei einer Kern-Kern-Kollision ist die Größe des Systems hingegen endlich und das System expandiert sehr schnell. Meine Ergebnisse zeigen, daß für alle untersuchten Systemgrößen die Korrelationslänge maximal 2-3 mal so groß wie die anfängliche Korrelationslänge wurde. Es ist daher zweifelhaft, ob dieser Effekt in Kern-Kern-Kollisionen gemessen werden kann. \\ Daher habe ich im weiteren untersucht, wie sich die anfänglichen Fluktuationen des Ordnungsparameters auf die Entwicklung der Energie- und Baryonendichte des Systems auswirken. Die Ergebnisse zeigen, wie Inhomogenitäten von Energie- und Baryonendichte durch die Anwesenheit von verschiedenen Phasenübergängen beeinflußt werden. Während die Inhomogenitäten der Energiedichte sich nur wenig unterscheiden, zeigt sich bei der Baryonendichte ein anderes Verhalten. Für Phasenüberänge erster Ordnung sind die Inhomogenitäten deutlich höher als für Crossover-übergänge. Dies könnte sich unter anderem in der relativen Häufigkeit bestimmter Teilchenspezies wie der Kaonen und Pionen bemerkbar machen.
I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3He), the A and A* phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A* phase is favored. It is shown that the 2SC phase is identical to the A* phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity.