Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
Over the last several decades, spinel-structured minerals with the chemical formula AB2O4 (where A and B stand for divalent and trivalent cations, respectively) have attracted more and more attention, particularly with regards to their breakdown at high pressures and temperatures and the nature of the so-called "post-spinel" phases. Spinel-structured phases with different endmember compositions, like magnetite (Fe3O4), hercynite (FeAl2O4) or spinel (MgAl2O4), are known to breakdown differently at high pressure-temperature conditions (e.g., Akaogi et al. 1999; Schollenbruch et al. 2010; Woodland et al. 2012). Such phases are of particular interest when they incorporate ferric (Fe3+) and ferrous (Fe2+) cations as this makes their stability sensitive to redox conditions. Since magnetite and magnesioferrite (MgFe3+ 2O4) have been found as inclusions in diamond (e.g., Stachel et al. 1998; Harte et al. 1999; Wirth et al. 2014; Palot et al. 2016; Jacob et al. 2016), understanding their phase relations is important for setting constraints on the conditions of their formation.
This study aimed to experimentally investigate the phase relations of Fe-Mg spinel-structured phases at conditions of the deep upper mantle and transition zone. Exploring the stability of new post-spinel phases and their characterization were also major goals of this study. Approaching a pyrolitic mantle composition by adding amounts of SiO2 in the system allowed constraints on the relevance of Fe-Mg post-spinel phases coexisting with mantle silicates to be made. ...
Als Voraussetzung für die experimentellen Arbeiten wurde am Mineralogischen Institut in Frankfurt eine Hochdruckpresse mit einer Multi-Anvil-Apparatur vom Walker-Typ aufgebaut und kalibriert. Diese Arbeiten nahmen einen beträchtlichen Teil der Promotionszeit ein. In einer Reihe von Hochdruck-Experimenten wurde dann die maximale Löslichkeit von Aluminium und den Seltenerd-Elementen Lanthan, Gadolinium und Lutetium in den Phasen des CaSiO3-Systems im Druckbereich zwischen 2.0 und 13.0 GPa untersucht. Unsere Experimente ergaben eine Zunahme der maximalen Löslichkeit mit steigendem Druck, von Wollastonit über Ca-Walstromit, Larnit + Si-Titanit bis Ca-Perowskit. Ca-Perowskit zeigt extrem hohe SEE-Konzentrationen mit einem Maximum bei den mittleren SEE. In den anderen Phasen nimmt die Löslichkeit mit zunehmender Kompatibilität der SEE zu. Innerhalb der Stabilitätsfelder zeigte sich keine signifikante Druck- oder Temperatur-Abhängigkeit der maximalen Löslichkeit. Anhand der Mikrosonden-Analysen konnte gezeigt werden, dass der Einbau von Al und SEE in Ca-Walstromit nicht über eine gekoppelte Substitution erfolgt, sondern wahrscheinlich über eine Defektstruktur. Dies deckt sich mit unseren TEM-Untersuchungen an diesen synthetischen Produkten, die eine hohe Dichte an planaren Baufehlern mit leicht erhöhten SEE-Konzentrationen ergaben. In allen Ca-Silikat-Phasen lag die maximale Löslichkeit der Seltenen Erden höher als die Konzentration in natürlichen Proben. Damit steht fest, dass die in Einschlüssen gemessenen SEE-Gehalte „primär“ sind und sich nicht durch etwaige Entmischungen im Zuge einer Anpassung der Kristallstruktur an die veränderten P,T-Bedingungen verändert haben. Entmischungen in Form einer SEE-reichen Phase würden eine an LSEE extrem angereicherte Quelle voraussetzen. Ein Vergleich unserer Subsolidus-Experimente mit CaSiO3-Einschlüssen in Diamanten aus Guinea zeigt, dass einige mit bis zu 0.13 Gew.% Al2O3 an Aluminium gesättigt sind. Diese Tatsache ist besonders interessant bei der Interpretation Alhaltiger Einschlussphasen. Neben absoluten Spurenelement-Konzentrationen sind Verteilungskoeffizienten äußerst wertvolle Hilfsmittel bei der Bewertung natürlicher Proben. Die in der Literatur bestehenden Datensätze wurden mit unseren Kristall/Schmelz-Verteilungskoeffizienten bzw. Verteilungskoeffizienten zwischen Ca-Silikatphasen erweitert. Verteilungskoeffizienten der Seltenerd-Elemente zwischen Ca-Walstromit und Karbonat sind um eine Größenordnung höher als Ca-Walstromit/Schmelz-Verteilungskoeffizienten und zeigen eine größere Steigung zwischen den MSEE und den SSEE (Lu/Gd). Die Seltenen Erden verhalten sich sowohl in Larnit als auch in Si-Titanit inkompatibel, wobei DX/L La für Larnit etwa 0.1 und für CaSi2O5 etwa 0.002 ist, d.h. auch, dass die LSEE im Vergleich zu Si-Titanit bevorzugt in Larnit eingebaut werden. Al verhält sich in Si-Titanit Zusammenfassung 147 kompatibel (DX/LAl=4) und in Larnit leicht inkompatibel. Diese Ergebnisse decken sich mit Analysen an natürlichen Proben. Die SEE-Verteilungskoeffizienten zwischen Ca-Perowskit und Schmelze liegen mit Ausnahme von La über eins und zeigen in Übereinstimmung mit Literaturdaten ein Maximum bei Gd. Für Granat konnte gezeigt werden, dass der Einbau der SEE und Si in MgO-haltigen Kristallen in Abhängigkeit von Druck und Startzusammensetzung über eine Ca SEE2 Mg2 Si3O12- Komponente bzw. über eine Ca3 MgSi Si3O12-Komponente mit 6-fach koordiniertem Silizium erfolgt. In zahlreichen Experimenten kristallisierte eine neue Ca-SEE-Silikat-Phase mit Feldspat-Stöchiometrie. Dabei handelt es sich offenbar um ein Mischkristallsystem mit einem Endglied, in das vorwiegend die leichten SEE eingebaut werden und in einem zweiten mit vorwiegend schweren SEE. Ab einem Druck von etwa 10.0 GPa trennt ein Solvus die beiden Endglieder voneinander. In der Literatur ist bisher nur ein CaLa2Si2O8-Endglied beschrieben worden. In einigen Experimenten mit P und Li wurde zusätzlich untersucht, ob diese Elemente zur Rekonstruktion der Bildungsbedingungen von Diamanten verwendet werden können. Dabei zeigte sich, dass die max. Löslichkeit von Li in CaSiO3 näher an den natürlichen Probenzusammensetzungen liegt und damit möglicherweise Potential für die Rekonstruktion von Bildungsbedingungen hat. In einem weiteren Teil dieser Arbeit wurde die Kinetik retrograder Reaktionen im CaSiO3-System untersucht. Die für die In-Situ-Experimente mit Synchrotron-Strahlung notwendigen Versuchsaufbauten wurden von uns entwickelt und die entsprechenden Entwicklungsschritte und technischen Probleme ausführlich beschrieben. Anhand von Entlastungsexperimenten wurden die Disproportionierung von Ca-Perowskit zu Larnit + Si-Titanit und die Rekombination zu Ca-Walstromit bei unterschiedlichen Temperaturen und unter dem Einfluss von Wasser untersucht. Aufgrund der wenigen verwertbaren Daten, die uns vorliegen, konnten zwar keine Aktivierungsenergien berechnet werden, es sind aber aufgrund unser Beobachtungen folgende Feststellungen zu treffen: Die Reaktion von Ca-Perowskit zu Larnit + Si-Titanit erfolgt bei gleicher Temperatur offenbar um Größenordnungen schneller als die sich bei niedrigen Drucken anschließende Rekombination zu Ca-Walstromit. Dies deckt sich mit Beobachtungen an natürlichen Proben, bei denen Larnit und Si-Titanit teilweise unvollständig zu Ca-Walstromit reagierten. Dadurch erscheint es eher unwahrscheinlich, dass amorphes CaSiO3 in Diamanten ein direktes Umwandlungsprodukt von Ca-Perowskit ist. Aber auch für die in der Literatur beschriebene Amorphisierung von Ca-Walstromit-Einschlüssen (Stachel 2000) noch innerhalb des umgebenden Diamanten ließ sich durch unsere In-Situ-Entlastungsexperimente nicht stützen. Eine Amorphisierung von Ca-Walstromit beobachteten wir nur bei einer Untersuchung am TEM, wo die Phase sehr instabil war und selbst in einem Kryohalter rasch unter dem Einfluss der Elektronenstrahls amorphisierte. Die Beugungs-Spektren, die nach einer Druckentlastung im Ca-Walstromit-Stabilitätsfeld aufgenommen wurden, unterschieden sich trotz der CaSiO3-Chemie der neu gebildeten Phase deutlich von unseren Ca-Walstromit-Referenz-Spektren, so dass die Umwandlung möglicherweise über eine metastabile Zwischenstufe erfolgt. Vor dem Hintergrund von unterschiedlichen, in der Literatur beschriebenen Strukturtypen von Ca-Walstromit wäre eine systematische Untersuchung der Struktur innerhalb des gesamten Stabilitätsfeldes wichtig.