• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Abdellaoui, Chahinez (1)
  • Asido, Marvin Phil Ronald (1)
  • Bessi, Irene (1)
  • Binas, Oliver (1)
  • Blümler, Anja (1)
  • Bolz, Mathias (1)
  • Braner, Markus (1)
  • Buff, Maximilian (1)
  • Fichte, Manuela A. H. (1)
  • Friedrich, Felix (1)
+ more

Year of publication

  • 2016 (5)
  • 2018 (5)
  • 2010 (4)
  • 2021 (4)
  • 2022 (4)
  • 2017 (3)
  • 2019 (3)
  • 2020 (2)
  • 2013 (1)
  • 2015 (1)
+ more

Document Type

  • Doctoral Thesis (33)

Language

  • German (17)
  • English (16)

Has Fulltext

  • yes (33)

Is part of the Bibliography

  • no (33)

Keywords

  • DNA (3)
  • photolabile Schutzgruppe (3)
  • G-Quadruplex (2)
  • NMR (2)
  • Photolabile Schutzgruppen (2)
  • caging (2)
  • Aptamer (1)
  • Aptamere (1)
  • Biophysik (1)
  • Biopysikalische Chemie (1)
+ more

Institute

  • Biochemie, Chemie und Pharmazie (17)
  • Biochemie und Chemie (16)

33 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Synthese photolabil geschützter Desoxyribonukleoside und Anwendung photoaktivierbarer Aptamersequenzen zur Regulation von alpha-Thrombin (2010)
Mack, Timo
Innerhalb der letzten 30 Jahre haben sich photoaktivierbare Verbindungen („caged compounds“) zu einem äußerst wertvollen Werkzeug entwickelt. Seit der erstmals publizierten Anwendung von lichtaktivierbarem ATP im Jahre 1978 durch Hoffman et al. konnten viele neue Erkenntnisse im Bereich der Physiologie, Molekularbiologie und Biochemie mit Hilfe von photoaktivierbaren Verbindungen gewonnen werden. Hierunter versteht man Substanzen, deren biologische Wirksamkeit temporär inaktiviert ist, jedoch durch Bestrahlung mit Licht wiederhergestellt werden kann. Die Inaktivierung wird durch spezielle, lichtreaktive Chromophore erreicht, sogenannten photolabilen Schutzgruppen („cages“). Der Einsatz dieser Technik zur Aktivierung von Nukleinsäuren eröffnet ein weites Feld an Anwendungsmöglichkeiten. So ist auf diese Weise eine orts- und zeitaufgelöste Kontrolle der Aktivität von z.B. Antisense-DNA, siRNA oder Aptameren durch Licht möglich. Während der vorliegenden Doktorarbeit konnten zwei neuartige photolabil geschützte Desoxythymidine als Phosphoramidite zum Einsatz in der automatisierten DNA-Synthese dargestellt werden. Hierfür wurden jeweils NDBF-OH bzw. pHP-OH in O4-Position der Nukleobase eingeführt. Es konnte gezeigt werden, dass sich die beiden Nukleoside nach ihrem Einbau in DNA mittels UV-Licht entschützen lassen. Die photolabilen Schutzgruppen besaßen jedoch nur eine geringe chemische Stabilität unter verschiedenen basischen Abspaltbedingungen und sind deshalb nicht für die automatisierte DNA-Festphasensynthese unter Standardbedingungen geeignet. Durch Homologisierung der NDBF-Gruppe mit einer zusätzlichen Methyleneinheit zu hNDBF-OH wurde eine verbesserte Variante synthetisiert, welche eine ausreichende Basenstabilität und hervorragende photochemische Eigenschaften aufweist. Wie im Arbeitskreis Heckel gezeigt werden konnte, ist mittels in O6-Position hNDBF-modifiziertem Desoxyguanosin sowohl die DNA-Festphasensynthese unter Standardbedingungen möglich, als auch die spätere Photolyse dieser Schutzgruppe bei einer Wellenlänge von 420 nm. Hierdurch eröffnet sich zum ersten Mal die Möglichkeit, bei Verwendung von beispielsweise NPP und hNDBF, photolabil geschützte Bereiche in Nukleinsäuren wellenlängenselektiv durch Licht unterschiedlicher Wellenlänge zu aktivieren. In einem weiteren Projekt wurden erfolgreich photoaktivierbare Varianten des bivalenten Fusionsaptamers HD1-22 getestet. HD1-22 besitzt zwei Aptamerdomänen, HD1 und HD22, welche jeweils an eine der beiden Exosites I bzw. II von Thrombin binden. Im konkreten Fall konnten wir die Blutgerinnungsaktivität von Thrombin unter Verwendung einer photolabil geschützten Aptamersequenz von vollständig aktiv zu komplett inaktiv modulieren: Vor der UV-Bestrahlung war lediglich die Exosite II durch die HD22-Domäne blockiert. Dies erlaubte keinerlei Bindung des natürlichen Antikoagulans Antithrombin III an Thrombin – weder durch Heparin vermittelt noch ohne Beteiligung von Heparin. Der Zugang zur Exosite I war hingegen nicht eingeschränkt, die Blutgerinnungsaktivität des Thrombins somit durch die Rekrutierung von Fibrinogen an die Exosite I vollständig aktiv und nicht durch Antithrombin inhibierbar. Durch lichtvermittelte Entschützung der HD1-Domäne konnte nun eine Inaktivierung der Exosite I erfolgen, welche durch die hohe Bindungsaffinität der HD22-Aptamerdomäne stärker ausfiel als bei der ausschließlichen Verwendung eines HD1 Aptamers. Die koagulative Wirkung des Thrombins wurde somit vollständig aufgehoben. Im dritten Teil dieser Arbeit wurde der Grundstein für die Entwicklung eines kovalenten, lichtaktivierbaren Thrombin-Thrombinaptamer-Reagenzes gelegt. Dieses könnte zur gezielten Thromboembolisierung bei bestimmten malignen Tumorerkrankungen eingesetzt werden, um das entartete Gewebe von der Blut- und damit Nährstoffversorgung abzuschneiden. Zudem könnte so möglicherweise während einer Tumorexzision die Freisetzung von metastasierenden Krebszellen unterbunden werden. Das Reagenz besteht aus der von Heckel et al. publizierten „ausschaltbaren“ Variante des HD1-Aptamers. Diese besitzt einen photolabil geschützten Gegenstrang. Solange die Schutzgruppe intakt ist, bindet das Aptamer an die Exosite I von Thrombin und verhindert auf diese Weise die Rekrutierung von Fibrinogen. Wird die Sequenz jedoch mit UV-Licht bestrahlt, so erfolgt die Entschützung des Gegenstrangs und durch die folgende Basenpaarung eine Inaktivierung des HD1 Aptamers. Hieraus resultiert die Freisetzung von aktivem Thrombin, welches direkt zur Ausbildung eines Thrombus führt. Durch die – ebenfalls photospaltbare – kovalente Anbindung des „ausschaltbaren“ HD1 an die Proteinoberfläche werden eine vorzeitige Dissoziation des Aptamers und damit eine vorzeitige Wiederherstellung der Proteinaktivität verhindert.
Interaktionen für DNA-Nanoarchitekturen auf Basis von Polyamiden, G-Quadruplexen und lichtinduzierbaren Nukleinsäuren (2010)
Schmidt, Thorsten-Lars
Um Materie mit Nanometergenauigkeit anzuordnen, ist Selbstorganisation die mächtigste Strategie. DNA (Desoxyribonukleinsäure) ist hierfür ein hervorragendes Baumaterial, da sie ein billiges, programmierbares, biokompatibles und gut verstandenes Polymer ist. Aus diesen Gründen ist DNA zur Basis für ein schnell wachsendes Gebiet geworden: die DNA-Nanotechnologie. Das Ziel dieser Arbeit war es, neue Interaktionsmöglichkeiten für die DNA-Nanotechnologie zu entwickeln und neuartige Strukturen aus DNA-minicircles aufzubauen, einem bislang vernachlässigten Konstruktionselement. ...
Photoaktivierbare siRNAs und molecular beacons (2010)
Mikat, Vera Lucie
Die Verfügbarkeit synthetischer Oligonukleotide hat der Entwicklung einer Vielzahl molekularbiologischer, biochemischer und medizinischer Anwendungen den Weg geebnet. Und sind viele diese Anwendungen für sich genommen schon hochinteressant, so eröffnet die Kombination mehrerer Methoden oft noch ganz neue Möglichkeiten. In der vorliegenden Doktorarbeit ist es gelungen, die Technik der photolabilen Schützung auf die Anwendungen von siRNAs und molecular beacons zu übertragen und diesen damit die Option der orts- und zeitaufgelösten Aktivierung zu ermöglichen. Durch die Einführung eines Nukleotids mit 2-(2-nitrophenyl)propyl-geschützter Nukleobase in eine siRNA, konnte der katalytische Schritt der RNA-Interferenz, die mRNA-Spaltung, unterbunden werden. Hierzu wurde das photolabil modifizierte Nukleotid so in der siRNA positioniert, dass es gegenüber der mRNA-Schnittstelle bzw. in unmittelbarerer Nachbarschaft zu dieser lag. Dabei war das modifizierte Nukleotid selbst kein Ribonukleotid sondern ein Desoxynukleotid. Zuvor konnte gezeigt werden, dass die Einführung einzelner Desoxynukleotide in eine siRNA keinerlei Einfluss auf deren Aktivität hat. Als Modellsystem diente der RFP/eGFP-Reportergenassay, wobei die Plasmide mit der siRNA in die verwendeten HeLa-Zellen kotransfiziert wurden. Die verwendete siRNA regulierte dabei die eGFP-mRNA, die gemessene Fluoreszenz wurde auf die RFP-Fluoreszenz normiert. In der Studie gelang es, ein sauberes „An/Aus-Verhalten“ zu erzielen, das heißt, die modifizierte siRNA zeigte zunächst keinerlei Einfluss auf die eGFP-mRNA. Bestrahlte man diese siRNA jedoch für drei Minuten bei 366 nm, erzielte man eine Unterdrückung der eGFP-Expression, die der einer unmodifizierten siRNA entsprach. Dies funktionierte für vor der Transfektion bestrahlte siRNAs ebenso, wie für solche, die erst nach der Transfektion in der Zelle entschützt wurden. Vereinfachte Darstellung der lichtaktivierbaren RNA Interferenz. Links: solange die Photoschutzgruppe (rot) auf dem Führungsstrang sitzt wird das Substrat des RISC nicht geschnitten. Rechts: Bestrahlung mit UV-Licht entfernt die Photoschutzgruppe und aktiviert die RNAi-Maschinerie. Ein bis jetzt ungeklärtes und noch näher zu untersuchendes Phänomen ist die Stabilität der Modifikationen in der Zelle. Aus bisher nicht eindeutig zu benennender Ursache fand nach einer definierten Zeit eine Aktivierung der ausgeschalteten siRNA statt, ohne dass diese bestrahlt wurde. Versuche mit photolabil modifizierten Nukleotiden an anderen Positionen innerhalb der siRNA, sowie eine Fluoreszenz-Korrelationsspektroskopie-Studie mit fluoreszenzmarkierter siRNA und fluoreszenzmarkiertem RISC erlaubten es Rückschlüsse auf den Schritt der RNAi zu ziehen, der durch die Einführung der Basenmodifikation blockiert wird. Offenbar handelt es sich tatsächlich um den katalytischen Schritt der mRNA-Spaltung, ein Einbau der modifizierten siRNA in den RISC findet statt. Zudem zeigte die erfolgreiche Inaktivierung der für die FCS-Studie genutzten anti-TK siRNA, dass der Ansatz, die Modifikation im Bereich der Schnittstelle einzubauen, von der anti-eGFP siRNA auf andere siRNAs übertragbar ist. Im zweiten erfolgreichen Projekt gelang es, molecular beacons durch Einführung zahlreicher photolabiler Basenmodifikationen lichtaktivierbar zu machen. Hierzu wurde ein bereits beschriebener GAPDH-molecular beacon verwendet. Modifiziert man die Schleife dieses molecular beacon mit sieben photolabilen Basenschutzgruppen (NPP und NPE) so gelingt es die Bindung desselben an seine komplementäre Ziel-RNA komplett zu unterbinden, während ein GAPDH-beacon mit drei oder fünf Modifikationen noch in verringertem Maße bindungsfähig ist. Dieses Verhalten wurde sowohl mittels einfachen Auslesens der Fluoreszenzintensität, als auch anhand eines PA-Geles belegt. Eine große Herausforderung bei diesem Projekt stellte die Aufreinigung des hochmodifizierten molecular beacon dar, der neben Fluorophor und Quencher auch zahlreiche Photoschutzgruppen trägt. Diese gelang schließlich durch den Einsatz einer extra densely bond-RP-HPLC-Säule und wiederholter HPL-Chromatographie. Ebenfalls konnte der große Vorteil eines lichtaktivierbaren molecular beacon, die Möglichkeit der präzisen Ortsauflösung der Aktivierung, dargestellt werden. Hierzu wurde modellhaft die Ziel-RNA auf einer Objektträgeroberfläche immobilisiert. Die dann aufgetragene molecular beacon-Lösung zeigte zunächst keine Fluoreszenz. Diese trat erst nach Bestrahlung und auch nur begrenzt auf den wenige Quadratmikrometer großen Bestrahlungsbereich auf.
Regulation der Aktivität eines Anti-Thrombin-Aptamers und des glmS-Ribozyms mit Licht (2010)
Buff, Maximilian
Im ersten Teil dieser Arbeit wurde eine Variante des Anti-Thrombin-Aptamers HD1 entwickelt, die vor Belichten aktiv war und sich durch Belichten deaktivieren ließ. Dazu wurde das Wildtyp-Aptamer am 5'-Ende um eine GAAA-Schleife und eine Gegenstrangregion, bestehend aus vier Nukleotiden, erweitert. Dies reichte für eine vollständige Inaktivierung des Aptamers aus. In die Gegenstrangregion wurde ein photolabil geschütztes Nukleotid eingebaut, das die Bildung einer Haarnadelstruktur vorübergehend verhindert. Dazu wurde ein Desoxycytidin-Derivat synthetisiert, das an seiner N4-Position mit einer 1-(2-Nitrophenyl)ethyl-Gruppe modifiziert war. Durch die Maskierung der Antisense-Region wies das Aptamer vor Belichtung blutgerinnungshemmende Aktivität auf, allerdings in geringerem Maße als das Wildtyp-Aptamer. Durch Belichten wurde die Gegenstrangregion freigesetzt und dadurch die aktive Konformation des Aptamers zerstört, sodass es keine blutgerinnungshemmende Wirkung mehr besaß. In einem daran anknüpfenden Projekt sollte eine mit Licht ausschaltbare HD1-Variante mit verbessertem Schaltverhalten entwickelt werden, deren Aktivität vor dem Belichten mit der des Wildtyp-Aptamers vergleichbar ist. Tests zeigten, dass eine 5'-Erweiterung des Aptamers stets einen Aktivitätsverlust zur Folge hatte. Getestet wurden verschiedene Linker-Sequenzen, D-Spacer (Abasic Sites) und nicht nukleotidische Linker wie Glykollinker oder alkylische Linker. Eine Erweiterung am 3'-Ende brachte dagegen fast immer Aptamervarianten hervor, deren Aktivität die des Wildtypaptamers überstiegen. Um diese verbesserten Aptamervarianten zu deaktivieren, war eine Antisense-Region bestehend aus bis zu neun Nukleotiden nötig. Für eine photolabil geschützte Variante wurde zusätzlich ein Desoxyadenosinderivat mit N6-1-(2-Nitrophenyl)ethylmodifikation synthetisiert. Es zeigte sich, dass eine photolabile Schutzgruppe nicht ausreichte um die Antisense- Region zu neutralisieren. Aptamervarianten mit vier oder fünf photolabilen Schutzgruppen in der Antisenseregion waren vor dem Belichten aktiver als das Wildtyp-Aptamer HD1 und konnten durch Belichten vollständig deaktiviert werden. In einem weiteren Projekt dieser Arbeit wurde eine photolabil geschützte Glukosamin-6- phosphat-Variante synthetisiert, um eine lichtabhängige Spaltung des glmS-Ribozyms aus Bacillus subtilis zu induzieren. Dazu wurde GlcN6P an der Aminofunktion über eine Carbonyllinker mit einer 2-(2-Nitrophenyl) propylgruppe modifiziert. In vitro konnte gezeigt werden, dass mit dieser Verbindung durch Belichten die Spaltung eines glmS-EGFP-mRNA-Konstrukts induziert werden konnte. In HeLa-Zellen wurde untersucht, ob sich dieses System zur Regulation der EGFP-Expression eignet. Da erste Versuche erfolglos blieben, wurde eine lipophile, zellgängige Variante des photolabil geschützten GlcN6Ps synthetisiert. Versuche, in denen dieses Derivat getestet wird, werden zur Zeit von unseren Kooperationspartnern durchgeführt. In einem weiteren Projekt wurden Desoxyguanosinderivate für die DNA-Festphasensynthese synthetisiert, die an ihrer O6-Position mit einer p-Hydroxyphenacylgruppe bzw. mit einer 1-(3-Nitrodibenzofuran-2-yl)ethylgruppe modifiziert wurden. Diese wurden in ein Desoxyoligonukleotid eingebaut und es konnte gezeigt werden, dass die photolabilen Schutzgruppen durch Belichten abgespalten werden. Beide photolabilen Modifikationen waren allerdings unter den basischen DNA-Abspaltbedingungen zu instabil, als dass sie sich für den routinemäßigen Einsatz zur Herstellung lichtaktivierbarer Nukleinsäuren eignen würden. Im letzten Teil der Arbeit wurde eine photolabile Schutzgruppe entwickelt, die über einen zusätzlichen Aminolinker verfügt [2-(4-(Aminomethyl)-2-nitrophenyl)-propanol]. Die Aminofunktionalität war für die Dauer der DNA/RNA-Festphasensynthese mit einer Trifluoracetylgruppe geschützt, die unter den basischen Abspaltbedingungen ebenfalls entfernt wird. Mit dieser photolabilen Schutzgruppe wurden ein Thymidinderivat an der O4-Position und ein Desoxyguanosinderivat an der O6-Position modifiziert. Das Desoxyguanosinderivat wurde erfolgreich in der Oligonukleotidfestphasensynthese eingesetzt. Die photolabile Schutzgruppe konnte durch Belichten vollständig von der synthetisierten Nukleinsäure abgespalten werden. Darüber hinaus gelang es, über die Aminofunktionalität die heterobifunktionalen Crosslinker SMCC und SMPB mit der Nukleinsäure zu verknüpfen. Auf diese Weise ist eine reversible Vernküpfung der Nukleinsäure mit einem nahezu beliebigen Bindungspartner möglich. Durch Belichten kann die Nukleinsäure in ihrer ursprünglichen Form wiederhergestellt werden.
Adaptormoleküle zur Rekrutierung von Transkriptionsfaktoren oder miRNAs an nicht native Bindestellen (2020)
Bolz, Mathias
Die Kontrolle der Genexpression ist eines der großen Ziele der chemischen Biologie. Gemäß dem klassischen Dogma der Molekularbiologe verläuft der Fluss der genetischen Information über die Transkription von DNA zur messenger RNA (mRNA) und durch die Translation von mRNA zu Proteinen. Auch wenn der ursprünglichen Formulierung dieses Dogmas verschiedene Aspekte hinzugefügt wurden, bleibt die Kernaussage unverändert. Eine Störung der Genexpression ist in vielen Fällen die Ursache für schwerwiegende Erkrankungen. Klassische Therapeutika, die im Allgemeinen aus kleinen Molekülen bestehen, können pathogene Proteine spezifisch binden und inhibieren. Allerdings greifen diese Wirkstoffe am Ende der Produktionskette ein und nicht alle Proteine können adressiert werden. Im Gegensatz dazu könnte ein Eingriff auf der Ebene der Transkription oder Translation die Expression der pathogenen Proteine auf ein normales Maß senken oder ganz verhindern. Als entscheidende Regulatoren der Genexpression stellen Transkriptionsfaktoren (TFs) einen interessanten Angriffspunkt zur Kontrolle der Transkription dar. TFs können über den Kontakt zu weiteren Proteinen die RNA Polymerase II rekrutieren und so die Transkription starten. Für die Translation ist die Halbwertszeit der mRNA ein entscheidender Faktor. Die Lebensdauer wird durch eine Vielzahl an Proteinen und micro RNAs (miRNAs) reguliert. MiRNAs sind kurze Oligonukleotide, die in Argonautproteine eingebaut werden können. Die daraus resultierenden RNA-induced silencing complexes (RISCs) sind in der Lage, den Abbau der mRNA einzuleiten. Sowohl TFs als auch RISCs besitzen dabei Nukleinsäure-bindende Untereinheiten, die mit spezifische Sequenzen assoziieren. In gewisser Weise ist die molekulare Erkennung der Nukleinsäuren vergleichbar mit einer Postsendung, die aufgrund der Adresse korrekt zugestellt wird. Um in diesem Bild des täglichen Lebens zu bleiben: Bei einem Wechsel des Wohnorts ist es üblich, einen Nachsendeauftrag zu stellen. Dabei wird die alte Anschrift auf den Postsendungen mit einem neuen Adressetikett überklebt und die Zustellung erfolgt an den neuen Wohnort. Das zentrale Thema dieser Dissertation ist, dieses „Umetikettieren“ auch auf TFs und RISCs zu übertragen. Hierbei ist es notwendig, die Nukleinsäure-bindenden Untereinheiten der Komplexe, also die „alte Adresse“, vollständig zu blockieren und gleichzeitig eine hohe Affinität zu einer neuen Sequenz zu erzeugen. Hierzu könnten bifunktionale Adaptormoleküle verwendet werden. Die Adaptoren für die Rekrutierung von TFs müssen in der Lage sein, sowohl die doppelsträngige DNA (dsDNA) als auch einen TF zu binden (Abbildung I). Dabei sollte eine Selbstbindung des Adaptors vermieden werden. In dieser Arbeit wurde der TF Sp1 als Ziel gewählt, da er an GC-reiche dsDNAs bindet. Dies ermöglicht die Wahl einer AT- oder GA reichen DNA-Sequenz als Ziel der Umleitung, wodurch eine Selbstbindung des Adaptors minimiert werden sollte. Zur Erkennung der DNA war geplant, Pyrrol-Imidazol-Polyamide (PIPs), triplexbildende Oligonukleotide (TFOs) oder pseudokomplementäre PNAs einzusetzen. Für Letztere war es möglich, eine neue Syntheseroute zu einem Fmoc geschützten Thiouracil-Monomer zu entwerfen. Dabei konnte eine selektive Alkylierung an der N1-Position des Thiouracils durchgeführt werden. Auf Basis der PIPs und der TFOs wurden jeweils verschiedene Adaptoren entworfen, deren Bindung zu ihren Zielen mit Band-Shift-Experimenten und im Fall der PIPs zusätzlich mit fluoreszenzbasierten Pulldown-Experimenten gezeigt wurde. Im Rahmen dieser Versuche zeigte sich, dass die PIP-basierten Systeme deutlich besser an die Zielsequenzen banden als die TFO-basierten Adaptoren. Das Konjugat K5a besaß hierbei die besten Eigenschaften. Weiterhin konnte mit diesem Adaptor in Pulldown-Experimenten gezeigt werden, dass Sp1 auf eine nicht kanonische AT-reiche Bindestelle umgeleitet wurde. Im Anschluss konnte das Sp1 in Western-Blots detektiert werden. Des Weiteren ließ sich zeigen, dass K5a in einem HeLa Lysat über mehrere Stunden stabil war und somit eine Anwendung in Zellkulturexperimenten möglich sein sollte. Für die Rekrutierung der RISCs war lediglich eine Erkennung zweier einzelsträngiger RNA-Abschnitte notwendig. Hierzu wurden zwei LNAs oder LNA/DNA-Mixmere verwendet, die über einen Linker verknüpft waren (Abbildung I). Als Folge dieses Aufbaus mussten die beiden Adaptorhälften orthogonal sein, da eine Selbstbindung des Adaptors leichter als bei den TF-Adaptoren auftreten konnte. Diese Adaptoren wurden mit Band-Shift- und fluoreszenzbasierten Pulldown-Experimenten auf ihre Fähigkeit, eine Cy5-gelabelte miRNA auf eine Ziel-RNA umzuleiten, überprüft. Es konnte beobachtet werden, dass all-LNA Adaptoren sehr viele off-target-Effekt aufwiesen, welche die Umleitung von miRNAs verhinderte. Im Gegensatz dazu konnten mit DNA/LNA-Mixmeren eine vollständige Umleitung von miRNA-Modellen beobachtet werden. Es war ebenfalls möglich, spezifische RISCs aus HeLa-Lysaten mit unterschiedlichen Adaptoren in Pulldown-Experimenten zu isolieren und in nachfolgenden Western-Blots zu detektieren. Nachdem gezeigt war, dass eine Umleitung in vitro gelang, sollte die Funktion der Adaptoren in Zellkulturexperimenten geprüft werden. Allerdings konnten in diesen Versuchen keine eindeutigen Ergebnisse erhalten werden, sodass die biologische Relevanz der RISC-Umleitung bislang noch nicht bestätigt werden konnte.
Multiphoton processes and photocontrol of biochemical reaction pathways ()
Asido, Marvin Phil Ronald
Die vorliegende Arbeit mit dem Titel Multiphoton Processes and Photocontrol of Biochemical Reaction Pathways befasst sich mit verschiedenen Strategien zur Implementierung von optischer Kontrolle in biochemisch relevanten Systemen. Auf systemischer Ebene wurde einerseits die Licht-getriebene Natriumpumpe Krokinobacter Eikastus Rhodopsin 2 (KR2) vor dem Hintergrund optogenetischer Anwendungen untersucht, und andererseits die Optimierung der wichtigsten photochemischen Parameter von photolabilen Schutzgruppen (PPG, engl. photolabile protecting group) angestrebt. Von der technisch-photophysikalischen Seite wurde ein weiterer Fokus auf den Aktivierungs- und Deaktivierungsschritt gelegt. Hierbei wurden vor allem Mehrphotonen-Prozesse betrachtet, die entweder durch simultane Absorption zweier Photonen zu einer spezifischen hoch-energetischen Anregung führen, oder durch sequentielle Absorption eine sukzessive Aktivierung und Deaktivierung eines Systems bewerkstelligen können. Auch wenn der Schwerpunkt dieser schriftlichen Arbeit auf den spektroskopischen Ergebnissen liegt, waren alle hier diskutierten Projekte stark kollaborativ und umfassten eine große Bandbreite verschiedener Techniken. Dies spiegelt den interdisziplinären Charakter vieler aktueller Fragestellungen in der photochemischen Forschung wider, die - in vielen Fällen - letztlich auf medizinische oder pharmazeutische Fortschritte abzielen. Zunächst wurde die lichtgetriebene Natriumpumpe KR2 untersucht, die durch ihre mögliche Anwendung als optogenetisches Werkzeug bekannt wurde. In einer vergleichenden Studie der Natrium- und Protonenpumpmodi von KR2 konnten wichtige mechanistische Prinzipien für die Funktionalität des Proteins identifiziert werden. Dazu gehört die direkte Beteiligung spezifischer Strukturmerkmale wie die Aminosäure N112 und/oder der ECL1-Domäne am Ionen-Translokationsweg, sowie das enge Zusammenspiel zwischen dem Retinal und seinem Gegenion D116. Gleichzeitig bot diese IR-Studie einen der ersten mechanistischen Einblicke in den Protonenpump-Photozyklus in KR2, der deutlich weniger erforscht war. In Zusammenarbeit mit dem Arbeitskreis Glaubitz wurden die strukturellen Veränderungen des Chromophors und seiner Umgebung während der verschiedenen Photointermediate mittels DNP-verstärkter Festkörper-NMR und optischer Spektroskopie näher untersucht. Hier trugen zeitaufgelöste IR-Messungen in der HOOP (engl. hydrogen out of plane)-Moden-Region dazu bei, die dynamischen Veränderungen der Chromophorkonfiguration und -Verdrillung zu verfolgen. Es konnte gezeigt werden, dass Retinal im O-Intermediat tatsächlich zu seiner all-trans-Konfiguration reisomerisiert wird, aber im Vergleich zu seiner Dunkelzustandskonfiguration deutlich stärker verdreht vorliegt. Dies wurde auch durch die Ergebnisse im nahen UV-Bereich bestätigt, welcher bei der Charakterisierung von mikrobiellen Rhodopsinen oft ausgelassen wird. Die neu gefundene Signatur erwies sich als SBS (engl. second bright state) der 13-cis-Konfiguration des Retinals, die mit der Bildung des O-Intermediats in KR2 verschwindet. Neben der offensichtlichen Verwendung als spektraler Marker wurde der SBS-Übergang auch bezüglich seiner Anwendbarkeit für optische Kontrollexperimente untersucht. Ähnlich wie beim BLQ (engl. blue light quenching)-Effekt war es möglich, den KR2-Dunkelzustand durch Anwendung von fs-Pulsen im nahen UV - ausgehend von einem photostationären Zustand - zu regenerieren. Durch Variation der Probenbedingungen war es möglich, gezielt K (pH~5) oder M (pH~9) anzusteuern, was sich auch in unterschiedlichen Deaktivierungs-Dynamiken äußerte. Diese Ergebnisse können zusammen mit dem hier vorgeschlagenen experimentellen Konzept als Grundlage für komplexere Multiphotonen-Sequenzen im Zusammenhang optogenetischer Fragestellungen verwendet werden. Im Gegensatz zu den recht großen und komplexen Photorezeptoren bieten unter anderem PPGs einen feineren Weg, um biochemische Reaktionen gezielt zu steuern und auszulesen. In diesem Zusammenhang sind zwei Eigenschaften von großer Bedeutung: Einerseits die Fähigkeit der PPG, Photonen bestimmter Wellenlängen zu absorbieren, und andererseits die Effizienz der gewünschten photochemischen Reaktion. Der letztgenannte Aspekt wurde unter der Hypothese untersucht, dass die Verringerung der konkurrierenden Deaktivierungskanäle in PPGs zu einer höheren Quantenffizienz der Freisetzung führt. Dies wurde an DEACM-basierten Modellverbindungen getestet, die systematisch modifiziert wurden, um verschiedene Deaktivierungsprozesse des angeregten Zustands zu identifizieren. Durch das Hinzufügen eines zusätzlichen sechsgliedrigen Rings wurde die Freisetzungsausbeute im Vergleich zu DEACM um das 2- bis 3-fache erhöht. Dies konnte durch eine weitere Planarisierung des Systems mit einer zusätzlichen Doppelbindung an der C6-Position sogar noch weiter verbessert werden (bis zu einem Faktor von 5-6). Die Anregung des Cumarin-Rückgrats führt zu einem lokal-angeregten Zustand, der sich im Gleichgewicht mit einem Ladungstransferzustand befindet. In Abhängigkeit der lokalen Umgebung, die vor allem durch die Protizität und Polarität des Lösungsmittels bestimmt wird, wird der Ladungstransfercharakter eher stabilisiert oder gar destabilisiert. Die Ladungsverschiebung führt auch zu einer Abschwächung der spaltbaren C-C-Bindung, die eine Voraussetzung für die Freisetzungsreaktion ist. Darüber hinaus wurde gezeigt, dass der mit der Freisetzungsreaktion verbundene zusätzliche Zerfallskanal zu einer mehr als 2-fachen Verringerung der Lebensdauer des angeregten Zustands in den funktionalisierten PPGs führt. Diese Eigenschaft ist ein vielversprechender photophysikalischer Indikator für die Freisetzung der Abgangsgruppe, der durch spektroskopische oder - mit zusätzlicher räumlicher Auflösung - auch durch mikroskopische Techniken wie in der Fluoreszenzlebensdauer-Mikroskopie ausgelesen werden könnte...
Spectroscopic characterization of photoresponsive systems: from chromoproteins to switchable and caged compounds (2018)
Hammer, Christopher-Andrew
Ein Hauptziel dieser Arbeit war die spektroskopische Charakterisierung einer neuartigen photolabilen Schutzgruppe (Photocage). Diese besteht aus dem weitverbreiteten (7-Diethylaminocumarin)methyl (DEACM), welches zusätzlich mit einer Art Antenne (ATTO 390) ausgestattet ist. Letztere soll die Zwei-Photonen-Absorption (2PA) erleichtern, was neben dem Energietransfer von der Antenne zur photolabilen Schutzgruppe sowie die Freisetzungsreaktion eines gebundenen Effektormoleküls untersucht wurde. Der Nachweis der erhöhten 2PA wurde durch Zwei-Photonen-induzierte Fluoreszenz erbracht, welche die Bestimmung des Zwei-Photonen-Einfangquerschnitts ermöglicht. Die 2PA wurde durch Messungen mit variierender Anregungsenergie an Rhodamin B und dem neuartigen Antennen-Photocage-System bestätigt, welche eine fast perfekte quadratische Abhängigkeit der Fluoreszenzintensität nach vorangegangener 2PA widerspiegelten. Die Werte des Zwei-Photonen-Einfangquerschnitts der neuartigen photolabilen Schutzgruppe sind über alle Wellenlängen hinweg größer als die von DEACM-OH. Der Beweis eines intramolekularen Energietransfers von der Antenne zu DEACM erfolgte durch transiente Absorptionsspektroskopie. Hierfür wurde der Photocage mit 365nm angeregt, was überwiegend die Antenne adressiert. Ein intramolekularer Energietransfer konnte mit einer Zeitkonstante von 20 ps beobachtet werden, welcher wahrscheinlich von einem nachgelagerten Ladungstransfer von DEACM auf ATTO 390 begleitet wurde. Die Funktionalität des neuartigen Photocages wurde durch Aufnahme von Absorptionsspektren im IR-Bereich während kontinuierlicher Belichtung bei 365 nm untersucht. Hierbei konnte die Entstehung der intensiven Absorption von Kohlendioxid aufgrund der Photodecarboxylierung detektiert werden. Absorptionsänderungen während kontinuierlicher Belichtung wurden ebenfalls im UV/Vis-Bereich detektiert, in welchen eine hypsochrome Verschiebung der langwelligen Absorptionsbande sowie ein Anstieg der Absorption festgestellt wurden. Hieraus konnte eine Quantenausbeute der Freisetzungsreaktion von 1,5% ermittelt werden. Die Ergebnisse zum Antennen-Photocage-System zeigen auf, dass durch Anbringen einer Antenne die 2PA verbessert werden kann, ohne die Funktionalität des Freisetzungsprozesses negativ zu beeinflussen. In einem nächsten Schritt zielen Verbesserungen des untersuchten Photocages darauf ab, den Ladungstransfer zu unterdrücken. Die Validierung dieses Ansatzes sollte die Einführung anderer Antennen mit erhöhten Zwei-Photonen-Einfangquerschnitten, wie z.B. Quantenpunkte, weiter motivieren. Der zweite Ergebnisteil dieser Arbeit konzentriert sich auf drei verschiedene Photosysteme, die sich durch eine sehr kurzlebige Fluoreszenz auszeichnen, welche mit einem Kerrschalter aufgenommen wurde. Das erste der drei untersuchten Systeme umfasst eine kooperative BODIPY-DTE-Dyade(Bordipyrromethen-Dithienylethen), die einen hocheffizienten photochromen Förster-Resonanzenergietransfer aufweist. Dieser wurde durch verkürzte Lebenszeiten der Differenzsignale im transienten Absorptionsspektrum der Dyade im photostationären Zustand abgeleitet. In diesem stellt BODIPY-DTE eine hochkonjugierte Einheit dar, welches durch die geschlossene Form des photochromen DTEs einen Energietransfer vom photoangeregten BODIPY zum DTE ermöglicht. Bei diesem Prozess wird die Fluoreszenz des Donors um einige Größenordnungen reduziert. Die Ergebnisse der transienten Absorptionsmessung wurde durch ein zeitaufgelöstes Fluoreszenzexperimentbestätigt. Die detektierte Fluoreszenztransiente zerfällt mit einer Zeitkonstante von etwa 15 ps und weist somit sehr hohe Ähnlichkeit mit dem Signal des Grundzustandsbleichens (GSB) aus dem transienten Absorptionsexperiment auf. Des Weiteren wurde die photochrome Ringschlussreaktion eines wasserlöslichen Indolylfulgimids spektroskopisch charakterisiert. Transiente Absorptionsmessungen geben einen direkten Einblick in den Mechanismus der Reaktion, in welcher, nach Photoanregung, die Relaxation aus dem Franck-Condon Bereich und die schnelle biphasische Relaxation des Moleküls über die konische Durchschneidung abgeleitet werden kann. Zusätzlich wurden zeitaufgelöste Fluoreszenzmessungen mit Hilfe des Kerrschalters durchgeführt, da die stimulierte Emission (SE) in transienten Absorptionsmessungen durch die Überlagerung mehrerer Signale nicht vollständig zu erkennen war. Die globale Lebensdaueranalyse der mit dem Kerrschalter aufgenommenen Breitband-Fluoreszenz lieferte drei Zeitkonstanten, welche wesentliche Übereinstimmung mit den Zeitkonstanten aus der globalen Lebensdaueranalyse der transienten Absorptionsmessungen aufweisen. Schlussendlich wurde die Deaktivierung des elektronisch angeregten Zustands des flavinbindenden Dodecins aus Mycobacterium tuberculosis mit Hilfe von unterschiedlichen spektroskopischen Methoden charakterisiert. Stationäre Fluoreszenzmessungen bei unterschiedlichen pH-Werten zeigten bei pH 5 eine im Vergleich zu nahezu physiologischen Bedingungen (pH 7,5)reduzierte Fluoreszenz auf. Auffällig ist, dass diese Beobachtungen durch transiente Absorptionsmessungen nicht bestätigt werden konnten, da diese eine große Ähnlichkeit bezüglich der Dynamik und der spektralen Signatur zueinander besaßen. Ein negatives Signal, hervorgerufen durch die SE, wurde hierbei nicht gefunden. Allerdings konnte in den zerfallsassoziierten Spektren eine spektrale Signatur beobachtet werden, die auf eine SE hindeutete, welche allerdings mit größeren positiven Signalen überlagert ist. Dieser Aspekt wurde in einer Kerrschalter-Messung untersucht, in der eine schwache Emission bei pH 7,5 festgestellt werden konnte. Zusätzlich wies die Zerfallsdynamik der Emission Übereinstimmung mit dem GSB-Signal aus den transienten Absorptionsmessungen auf.
Spectroscopic studies on photosensitive probes : molecular dynamics of RNA-protein complexes, caged and photoswitchable compounds (2019)
Tran, Dinh Du
Die Steuerung biochemischer Prozesse oder die Verbesserung von Materialien erfordert zunächst ein tiefgründiges Verständnis über die zugrundeliegenden Systeme. Zur Untersuchung eignet sich Licht als ideales Werkzeug, da hiermit nützliche Informationen über die chemische Struktur, ihre Eigenschaften sowie den zusammenhängenden, schnellen Reaktionsabläufen erhalten werden können. Um die Aufklärung zu erleichtern können kleine, chemische Verbindungen eingeführt werden, welche beispielsweise ein Fluoreszenzmarker, eine photolabile Schutzgruppe oder eine photoschaltbare Verbindung sein können. Von jeweils einem Vertreter dieser Moleküle wurden unterschiedliche Studien durchgeführt, dessen Ergebnisse in dieser Arbeit in insgesamt drei Projekten zusammengefasst werden. Zunächst wurde die Funktionalität der Helikase RhlB untersucht, die der Familie der DEAD-Box Proteine zugeordnet wird, und RNA-Duplexe in ihre Einzelstränge entwindet. Als RNA-Modellduplex diente JM2h, an dem ein RNA-Einzelstrang fluoreszenzmarkiert war (M2AP6). Die Einführung dieses Markers ermöglichte die Durchführung von statischen Fluoreszenzmessungen sowie von Mischexperimenten, die mit Hilfe der stopped-flow-Technik durchgeführt wurden. In den einleitenden Studien wurde die Helikase weggelassen, wodurch der Fokus auf den Fluoreszenzeigenschaften der RNA gelegt wurde. Die Ergebnisse hierzu zeigten, dass die Fluoreszenzintensität des Einzelstrangs durch Zugabe des komplementären Strangs deutlich abnimmt, wobei das Minimum bei einem äquimolaren Verhältnis erreicht wird. Die dazugehörigen stopped-flow-Messungen zeigten eine Beschleunigung der Hybridisierungsreaktion, wenn höhere Konzentrationen des Gegenstrangs in der Lösung vorhanden waren. Nach anschließender Zugabe der Helikase zur Lösung wurde ein Anstieg der Fluoreszenzintensität erwartet, der vom separierten Einzelstrang M2AP6 herrühren sollte. Dieser Anstieg wurde jedoch erst nach weiterer Zugabe von ATP beobachtet, der auf eine ATP-Abhängigkeit der Entwindungsreaktion von RhlB hindeutet. Diese Abhängigkeit wurde auch bereits für andere Helikasen der DEAD-Box Familie entdeckt. Die korrekte Funktionalität sowie die ATP-Abhängigkeit wurden in stopped-flow-Messungen verfiziert, bei denen der Fluoreszenzanstieg auch zeitaufgelöst betrachtet werden konnte. Für die spektralen Korrekturen der Fluoreszenzspektren wurde ein selbstgeschriebenes MATLAB-Programm namens FluCY verwendet (engl.: Fluorescence Correction & Quantum yield), welches eine schnelle und fehlerfreie Verarbeitung des Datensatzes ermöglichte. Die zwei im folgenden beschriebenen Projekte handeln von photoaktivierbaren Molekülen. Zum einen photolabile Verbindungen, welche die Funktion z.B. eines Biomoleküls durch eine chemische Modifikation deaktivieren können. Durch eine lichtinduzierte Reaktion kommt es zur Abspaltung der Modifikation und die Funktion ist wiederhergestellt. In dieser Arbeit wurden verschiedene photolabile Schutzgruppen untersucht, die denselben Chromophor BIST (BIsStyryl-Thiophen) tragen. Durch die Einführung dieses Chromophors absorbierten sämtliche untersuchte Verbindungen sehr effizient sichtbares Licht (epsilon(445)=55.700 M^(-1) cm^(-1)), wodurch der photoinduzierte Bindungsbruch mit Wellenlängen durchgeführt werden, die bei einer biologischen Anwendungen keinen Schaden an der Zelle anrichten würden. Hieraufhin wurden in statischen und zeitaufgelösten Absorptionsmessungen Teilschritte der Freisetzungsreaktion untersucht, indem nach Photoanregung die Absorptionsänderungen auf verschiedenen Zeitskalen analysiert wurden. Die ultraschnelle Dynamik im Piko- bis Nanosekundenbereich (10^(-12)-10^(-9) s) wird durch eine spektral breite, positive Absorptionsänderng dominiert. Diese impliziert, dass die Deaktivierung über den Triplettpfad abläuft, der die vergleichsweise niedrigen Freisetzungsausbeuten erklärt (phi(u) < 5). Aufgrund des hohen Extinktionskoeffizienten reichen dennoch bereits niedrige Strahlungsdosen aus, um eine Freisetzung zu initiieren. Der geschwindigkeitsbestimmende Schritt dieser Reaktion ist dem Zerfall des aci-nitro Intermediats zugeordnet. Für ein sekundäres Amin, welches mit BIST geschützt wurde, ist eine Lebensdauer des Intermediats von 71 µs gefunden worden. In einigen Fällen ist es erwünscht, eine vorliegende Aktivität nicht nur ein-, sondern auch ausschalten zu können, wofür photochrome Verbindungen (oder Photoschalter) verwendet werden. Die in dieser Arbeit untersuchte Verbindung ceCAM ist ein Alken-Photoschalter und vollführt bei Bestrahlung mit Licht eine cis/trans-Isomerisierung. ceCAM ist das Cyanoester-Derivat (ce) von Cumarin-substituierten Allylidenmalonat, von denen beide Konformere sehr effizient sichtbares Licht absorbieren trans: epsilon(489)=50.300 M^(-1) cm^(-1); cis: epsilon(437)=18.600 M^(-1) cm^(-1)). Andere photophysikalische Eigenschaften umfassen u.a. hohe thermische und photochemische Stabilität. Letztere wurde über ein Experiment nachgewiesen, bei dem die lichtinduzierte Isomerisierung alternierend durchgeführt wurde und selbst bei über 250 Zyklen keine signifikate Abnahme der Absorption beobachtet werden konnte. Des Weiteren konnte die Reaktion mit Quantenausbeuten von 39% (trans) und 42% (cis) induziert werden, wobei im photostationären Gleichgewicht auch hohe Isomerenverhältnisse mit bis zu 80% (trans) und 96% (cis) akkumuliert werden konnten. Die Geschwindigkeit der Reaktion wurde mit Hilfe der Ultakurzzeit-Spektroskopie untersucht. Die Dynamik im Zeitbereich von ps-ns zeigte, dass die trans/cis-Isomerisierung unterhalb von 0,5 ns und die umgekehrte Reaktion noch viel schneller (wenige ps) abgeschlossen ist. Durch die Untersuchungen in dieser Arbeit an den BIST-Verbindungen und ceCAM sind viele vorteilhafte, photophysikalische Eigenschaften charakterisiert worden, wodurch sie als verbesserte Alternative zu den bisher bekannten photolabilen Schutzgruppen oder Photoschaltern anzusehen sind.
New chemical tools to study RNA distribution in neuronal cells (2022)
Klimek, Robin
The most versatile tool for visualizing endogenous RNA is molecular beacons (MBs). MBs are modified oligonucleotides that consist of a stem-loop structure equipped with a fluorophore and a quencher at the opposite ends. They only give a fluorescent signal when hybridized to the target RNA. Here we present our recent efforts to enhance the spatiotemporal resolution of RNA visualization by refining MBs. We first asked if we could refine MBs to visualize defined subcellular populations of RNA in living neurons. To achieve this, we utilize visible light-activatable Q-dye MBs to allow only a subcellular fraction to be activated. Here, the fluorophore at the 5’-end was linked to a second quencher via a photolabile coumarin protecting group. Therefore, the MB only gives a fluorescent signal, when activated with visible light and hybridized to the target. This architecture allowed local activation of a hybridized subpopulation in a defined area of the cell. Knowing the exact origin of the activated RNA, we were able to increase the available monitoring time for neuronal mRNA from several minutes (literature known MBs) to more than 14 hours. We next asked if it would be possible to gain spatiotemporal control over where the MB hybridization events occur. Therefore, we developed photo-tethered MBs where two phosphates in the loop backbone are covalently linked to each other via two photocages. This prevents the MB from hybridization to the target RNA. Only when light is applied, the photo-tethers are cleaved, and the inherent hybridization function of the MB is activated. This architecture allowed us to control the hybridization of photo-tethered MBs in primary cultured neurons.
Photolabile Schutzgruppen und ihre Anwendung zur wellenlängenselektiven Aktvierung und Deaktivierung eines Antibiotikums (2022)
Abdellaoui, Chahinez
Die Verwendung von photolabilen Schutzgruppen zur nicht-invasiven Kontrolle von Systemen birgt ein großes Potential für verschiedenste Anwendungsgebiete, die von der Erforschung und Regulation biologischer Prozesse, über den Einsatz in medizinischer Therapie bis hin zur Verwendung als molekulare Datenspeicher reichen. Für diese Umsetzung benötigt es allerdings eine breite Auswahl an entsprechenden PPGs und das Wissen über ihre Reaktionsmechanismen. Im Allgemeinen lässt sich die Konzeptionierung von PPGs in drei Prozesse einteilen, beginnend bei dem Design und der Synthese einer neuen PPG. Bei diesem Schritt liegt der Fokus auf ein oder zwei besonderen Eigenschaften, wie beispielsweise einer Absorptionswellenlänge in einem bestimmten Spektralbereich oder einer hohen Uncaging-Quantenausbeute. Im zweiten Schritt folgt die Untersuchung der PPG bezüglich spektroskopischer und mechanistischer Eigenschaften und ggf. anschließender Optimierung auf synthetischer Ebene. Die so gewonnenen Informationen sind dann hilfreich bei dem letzten Schritt, bei dem es um den Einsatz der PPG in einem entsprechenden System geht. Hierbei müssen die verwendeten PPGs genau auf das Zielsystem abgestimmt sein, dazu zählen verschiedenste Parameter wie Anregungswellenlänge, Extinktionskoeffizient, Art und Struktur der Photoprodukte sowie Uncaging-Effizienz und Geschwindigkeit. In der vorliegenden Arbeit wurde über die drei vorgestellten Projekte mittels spektroskopischer Methoden zu allen drei genannten Stadien zur Konzeptionierung von PPGs ein Beitrag geleistet. Dazu zählt die Entwicklung der CBT-basierten PPGs, die Untersuchung der Struktur-Wirkungsbeziehung von (DMA)(2)F-PPGs und die Etablierung einer wellenlängenselektiven An-/Aus-Funktionalität eines Antibiotikums. In enger interdisziplinärer Zusammenarbeit zwischen theoretischen, synthetischen und biologischen Teilgebieten konnte jedes Projekt innerhalb der jeweiligen Entwicklungsstufe erfolgreich abgeschlossen werden. Mithilfe des relativ neuen Ansatzes, bei dem durch quantenmechanische Berechnungen der vertikalen Anregungsenergie von der kationischen Spezies einer PPG-Grundstruktur eine Aussage über ihre Qualität postuliert werden kann, konnte ausgehend von der Fluoren-Grundstruktur eine neue Klasse von PPGs gefunden werden. Dabei erwies sich die CBT-Struktur mit den Schwefelatomen an der para-Position als besonders geeignet. Insbesondere konnte die Grundstruktur durch die (OMePh)2-Substitution, welche in einer signifikanten bathochromen Verschiebung des Absorptionsmaximums resultierte, optimiert werden. Die Untersuchung der Ultrakurzzeit-Dynamik beider p-CBT Strukturen gab Aufschluss über die unterschiedlichen photochemischen Eigenschaften als PPG. Für die Stoffklasse der Dimethylamino-Fluorene wurde ein wichtiger Unterschied zwischen den einfach- und zweifach-substituierten Derivaten aufgedeckt, der entscheidend für einen signifikanten Uncaging-Effizienzunterschied ist. Dabei stellt sich die Stabilität des symmetrisch-substituierten Fluorenyl-Kations als der wichtigste Faktor bezüglich der Uncaging-Quantenausbeuten heraus. Beide Schutzgruppen sind in der Lage photoinduziert eine AG freizusetzen, wobei der Reaktionsmechanismus über die kationische Spezies (DMA)(2)F + abläuft. Der Unterschied hierbei liegt in der Lebensdauer der beiden Kationen, die im Falle der symmetrischen PPG stark lösungsmittelabhängig ist und bis zu mehreren Stunden betragen kann, was bis dato das langlebigste Kation dieser Molekülklasse darstellt. Für die zukünftige Optimierung dieser PPG-Klasse ist die Erkenntnis über die Gründe für die Stabilität des Kations von großem Vorteil. Der stabilisierende Faktor ist zum einen die zweite Dimethylamino-Gruppe der symmetrischen Verbindung, welche durch die Erweiterung der Mesomerie zur besseren Verteilung der positiven Ladung im Molekül führt. Zum anderen spielt das Lösungsmittel eine entscheidende Rolle. Dabei bieten protische, polare Medien eine zusätzliche Stabilisierung, die notwendig für die Langlebigkeit des Kations ist. Die Lebensdauer des Kations war zudem durch eine zweite Bestrahlungswellenlänge kontrollierbar. Ausgehend vom Kation konnte eine reversible Nebenreaktion in protischen Lösungsmitteln identifiziert werden, die einen Austausch der AG durch das Lösungsmittel darstellt. Zusätzlich konnte die kleine Stoffklasse der bisher bekannten Photobasen durch die Verbindung (DMA)2F-OH erweitert werden. Genauer betrachtet handelt es sich dabei um eine photoinduzierte Hydroxidfreisetzung, wodurch je nach eingesetzter Konzentration ein pH-Sprung von bis zu drei Einheiten erreicht werden konnte. Dabei stellt sich die Lebensdauer des pH-Sprungs als ein entscheidender Parameter für Photobasen dar, welcher sich für die hier untersuchte Verbindung aufgrund der besonderen Stabilität des entsprechenden Kations, im Vergleich zu einigen der bereits bekannten Verbindungen, als besonders langlebig herausgestellt hat. Ein weiterer Vorteil des Einsatzes von (DMA)2F-OH als Photobase ist die Möglichkeit den pH-Sprung durch zwei verschiedene Wellenlängen sowohl zeitlich als auch örtlich zu kontrollieren, indem die Verbindung zwischen den zwei Spezies (DMA)2F-OH und (DMA)2F + geschaltet werden kann. Im Hinblick auf die Anwendungen von PPGs zur verbesserten zeitlichen und örtlichen Kontrolle biologischer Zielsysteme ist im Rahmen dieser Arbeit das Prinzip vom wellenlängenselektiven Uncaging zweier PPGs an einem Molekül (two-PPG-one-molecule, TPOM) etabliert worden. Das Zielmolekül war hier das Antibiotikum Puromycin, welches durch seine Fähigkeit an das Ribosom zu binden, die Proteinbiosynthese inhibieren kann. Dabei wurden zwei verschiedene PPGs gefunden, die sowohl aufeinander als auch auf das Biomolekül selbst abgestimmt sind. Im Ausgangszustand sind beide PPGs am Puromycin angebracht, wodurch es in seiner biologischen Wirkung inaktiv ist. Befindet sich das doppelt geschützte Puromycin in der ROI, so kann es durch die Bestrahlung mit einer bestimmten Wellenlänge infolge des ersten Uncaging-Schritts aktiviert werden. Da biologische Systeme nicht statisch sind, können aktivierte Moleküle stets von der gewünschten ROI nach außen gelangen, wodurch der Anspruch der räumlichen Kontrolle nicht erfüllt wird. In diesem Fall kann durch die TPOM-Umsetzung die zweite Bestrahlungswellenlänge auf den entsprechenden Bereich angewendet werden, wodurch das Uncaging der zweiten PPG initiiert und folglich das Puromycin deaktiviert wird. Des Weiteren konnte gezeigt werden, dass die Deaktivierungswellenlänge auch in der Lage ist beide PPGs zu entfernen, wodurch eine vollständige Inaktivierung des Puromycins außerhalb der ROI garantiert werden kann. Ist die Proteinbiosynthese längerfristig blockiert, führt das schließlich zum Zelltod. Ein großes Anwendungsgebiet dieses Antibiotikums sind die Neurowissenschaften. Aufgrund der Tatsache, dass Puromycin keine Unterscheidung zwischen eukaryotischen und prokaryotischen Zellen macht, findet es keine Anwendung in der Medizin. Eine zeitliche und örtliche Kontrolle seiner Wirkung könnte den Anwendungsbereich dieses Antibiotikums evtl. ausweiten. Das wohl naheliegendste wäre der Einsatz bei Tumorzellen, deren Behandlung durch Zytostatika auf den gesamten Körper wirken und dadurch viele schwere Nebenwirkungen verursachen. Wie bereits weiter oben beschrieben muss für jedes Biomolekül und das entsprechende Wirkzentrum die Auswahl des passenden PPG-Paares einzeln abgestimmt werden. Dennoch lässt sich anhand des hier etablierten Systems ein Konzept für die erfolgreiche Umsetzung zukünftiger TPOM-Systeme an anderen biomolekularen Wirkstoffen zusammenfassend formulieren. * Der erste Schritt sollte die Betrachtung des Wirkzentrums des zu modifizierenden Biomoleküls sein: Welche funktionelle Gruppe bzw. Gruppen sind entscheidend für die Bindetasche oder –stelle? Dieser Bereich des Biomoleküls soll im Zuge des Uncagings entweder blockiert oder abgespalten werden. In der unmittelbaren Nähe muss die PPG1 angebracht werden. * Bei der Wahl von PPG1 ist das wichtigste Kriterium, dass das Biomolekül mit enthaltener Schutzgruppe in seiner Wirkung unbeeinträchtigt bleibt. Dies schränkt die Auswahl beträchtlich ein. Eine mögliche Umsetzung wäre die Anbringung einer Nitro-Gruppe falls vorhanden an einen Benzolring, welcher sich im Fall eines großen Biomoleküls in der Nähe der wichtigen funktionellen Stelle befindet. * Die zweite PPG (PPG2), deren photoinduzierte Abspaltung zur Aktivierung des Wirkstoffs führen soll, kann strukturell frei gewählt werden. Das Auswahlkriterium hierbei ist das Absorptionsspektrum. Hierbei sollte das Absorptionsmaximum rotverschoben zur PPG1 sein, um eine unerwünschte Abspaltung zu vermeiden. Außerdem darf keine signifikante Absorption von PPG2 bei der Uncaging-Wellenlänge von PPG1 vorhanden sein. * Beide PPGs sollten eine ähnliche Uncaging-Quantenausbeute vorweisen, um im Deaktivierungsschritt der doppelt geschützten Verbindung durch das höher energetische Licht keine Bevorzugung einer einzelnen Schutzgruppe zu riskieren. Anhand der erarbeiteten Herangehensweise können weitere Wirkstoffe oder Biomoleküle hin zu einer An- / Aus-Funktionalität modifiziert werden. Mit der Umsetzung des TPOM-Konzepts kann eine Verbesserung der örtlichen und zeitlichen Kontrolle der Aktivität eines Antibiotikums erreicht werden. Für die Anwendung in biologischer Umgebung ist diese präzische Kontrolle essentiell, um unerwünschte Nebenwirkungen angesundem Gewebe zu verhindern.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks