Refine
Year of publication
Document Type
- Doctoral Thesis (21)
- diplomthesis (2)
- Book (1)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- RFQ-Beschleuniger (3)
- Beschleuniger (2)
- Dauerstrichbetrieb (2)
- Ionenbeschleuniger (2)
- Ionenstrahl (2)
- Linearbeschleuniger (2)
- RFQ (2)
- Radio Frequenz Quadrupol (2)
- Bildladung (1)
- CW (1)
Institute
- Physik (24)
Elektron-Zyklotron-Resonanz-Ionenquellen dienen der Erzeugung von hochgeladenen Schwerionen. Die Erzeugung und Extraktion der Schwerionen beruht auf dem komplexen Zusammenspiel von physikalischen Prozessen aus der Atom, Oberflächen und Plasmaphysik sowie der Elektrodynamik. In dieser Arbeit werden grundlegende physikalische Prozesse in EZR-Ionenquellen experimentell untersucht, welche auf Grund der Komplexität bislang nicht vollständig verstanden sind. Als Schwerpunkt werden insbesondere die häufig angewendeten Methoden zur Steigerung der Ausbeute an hochgeladenen Ionen erforscht. Hierzu zählen die negativ vorgespannte Scheibe (eine Elektrode in axialer Nähe des Plasmas, biased Disk), die Beschichtung der Plasmakammerwände mit Isolatoren (Wall coating) und die Gasbeimischung von leichteren Gasen zum eigentlichen Arbeitsgas. Die Untersuchungen wurden an der Frankfurter EZR-(VE)RFQ-Beschleunigeranlage durchgeführt und mit aktuellen Theorien sowie Messungen an anderen EZR-Ionenquellen verglichen. Zur Diagnose wird erstmals die negativ vorgespannte Scheibe im gepulsten Betrieb eingesetzt, um die dynamische Auswirkung dieser Scheibe auf den Ionisationsprozeß und die Ionenextraktion zu studieren. Als erstaunlichstes Ergebnis wird die bisher vermutete und in der Literatur dargestellte physikalische Wirkungsweise der biased Disk, nämlich die Erhöhung der Plasmadichte und eine Verbesserung des Ionisationsprozesses, widerlegt. Dieses Ergebnis wird durch Messungen der Quellenemittanz, des dynamischen Ionisationsverlaufes durch Injektion von kurzen Neutralteilchenpulsen mittels Laserablation, der Spektroskopie der Röntgenbremsstrahlung und der optischen Spektroskopie des sichtbaren Lichtes bestätigt. Als neue Hypothese für die physikalische Auswirkung der negativ vorgespannten Scheibe auf die Ausbeute an hochgeladenen Schwerionen wird eine axiale Elektronenverteilung angenommen. Diese entsteht aus axial oszillierenden Elektronen, welche in einem Potentialtopf zwischen der negativ vorgespannten Scheibe und dem Extraktionsbereich der Ionenquelle eingeschlossen sind. Radial werden diese Elektronen durch die Magnetfeldlinien der beiden Magnetspulen geführt. Diese Elektronenverteilung beeinflußt die Ionendiffusion aus dem EZR-Plasma und die Ionenstrahlformierung im Extraktionsbereich der Ionenquelle positiv. In dieser Arbeit wird zudem gezeigt, daß die gezielte Steuerung der Ionenextraktion durch die vorgespannte Scheibe (biased Disk) mit sehr geringem Aufwand möglich ist. Insbesondere durch Pulsung der Disk-Spannung ist die Extraktion von gepulsten Ionenstrahlen aus einer EZR-Ionenquelle mit bislang nicht erreichten Wiederholungsfrequenzen möglich (bis einige 10 kHz). Die Ionenpulse weisen zudem höhere Intensitäten im Vergleich zur kontinuierlichen Extraktion auf. Eine weitere angewendete Diagnosemethode ist die Injektion von kurzen Pulsen an Neutralteilchen in das EZR-Plasma mit dem Ziel, die Ionenerzeugung und die Ionenextraktion zeitaufgelöst zu studieren. Die Neutralteilchenpulse werden mit Hilfe der Laserablation erzeugt und im EZR-Plasma sukzessive ionisiert. Das zeitliche Verhalten der extrahierten Ionen gibt Ausschluß über die Dynamik des Ionisationsprozesses, den Ioneneinschluß und die Extraktion der Ionen. Hierbei werden die Auswirkungen der Mikrowellenleistung, des Quellengasdruckes, der Gaszusammensetzung und der negativ vorgespannten Scheibe auf die Erzeugung von hochgeladenen Ionen in einer EZR-Ionenquelle untersucht. Auch diese Messungen werden durch die Untersuchung der Röntgenbremsstrahlung und der optischen Spektroskopie des sichtbaren Lichtes vervollständigt. Außerdem wird der Einfluß der injizierten Neutralteilchenpulse auf das bestehende Plasma in der Ionenquelle gemessen. Neben der Plasmadiagnose durch die Injektion von Neutralteilchenpulsen mittels Laserablation wurde auch die Erzeugung von gepulsten Strahlen hochgeladener Ionen verschiedenster Festkörperelemente untersucht. Es wird gezeigt, daß durch einen einfachen Versuchsaufbau hochgeladene Ionen von nahezu allen Festkörpern erzeugt werden können. Durch den Einsatz von speziellen Aluminium-Hohlzylindern mit metalldielektrischer Beschichtung (AlAl 2 O 3 ) in der Plasmakammer der EZR-Ionenquelle (Wall coating) und der dadurch gezielten Beeinflussung der Plasma-Wand-Wechselwirkung kann die Ausbeute an hochgeladenen Schwerionen (z. B. Ar 16 ) um bis zu einem Faktor 50 gesteigert werden. Die in dieser Arbeit angewandten Diagnosemethoden und das dadurch erzielte bessere Verständnis der physikalischen Prozesse und der Dynamik im EZR-Plasma ermöglichen die Erhöhung der Ausbeute an hochgeladenen Ionen, die effektive Erzeugung von hochgeladenen Festkörperionen und die Extraktion von gepulsten Ionenstrahlen mit bisher nicht erreichten Wiederholungsfrequenzen.
Die vorliegende Arbeit stellt Design, Aufbau und erste experimentelle Testergebnisse einer integrierten RFQ-Driftröhrenkombination für den Einsatz im Injektorbereich einer klinischen Synchrotronanlage zur Behandlung von Tumorerkrankungen mit Ionenstrahlen vor. Das Hauptziel der Bemühungen war, eine sehr kompakte und auf die gestellten Aufgaben hoch spezialisierte Lösung zu finden, die den täglichen Anforderungen im Klinikbetrieb gerecht wird. Zuverlässigkeit, einfache Bedienbarkeit und möglichst geringe Betriebskosten standen dabei im Vordergrund und führten letztlich zu einer nur 1,40 m langen Kombination der beiden Beschleunigerkomponenten, die üblicher Weise in zwei getrennten Kavitäten mit separater Leistungsversorgung, separater Steuerung und mit deutlich mehr Platzbedarf untergebracht sind. Im Zuge der Designarbeiten wurde insbesondere das Programm PARMPRO den hier aufgetretenen aktuellen Problemstellungen angepasst. Die Berechnung der Wechselwirkung von Ionen bei raumladungsdominierten Teilchenstrahlen wurde korrigiert, das Programm um ein Transportelement zu Transformation geladener Teilchen durch eine frei wählbare Potentialverteilung erweitert und mit einem neu entwickelten Programmteil wurden die zur Fertigung notwendigen Daten generiert. Die Optimierung der Strukturparameter mit Hilfe einer externen Visual-Basic-Anwendung zum automatischen Optimieren der Strukturdaten mit Hilfe von PARMPRO war ein Schritt auf dem Wege zum endgültigen, an die Eingangsstrahldaten und an die Erfordernisse der darauffolgenden IH-Struktur angepassten Elektrodendesign. Nach den Simulationsrechnungen erfolgten Referenzmessungen an entsprechenden Modellaufbauten insbesondere mit einem computergesteuerten Störkörpermessstand, zur experimentellen Bestimmung der Spannungsverhältnisse an der jeweils zu untersuchenden Strukturvariante. Auf diesen Ergebnissen basiert das endgültig entwickelte Resonatorkonzept der RFQ-Driftröhrenkombination. Das Kapitel "Aufbau des Medizin-RFQs" behandelt die Konstruktion und die technische Umsetzung des erarbeiteten Beschleunigerkonzepts. Einzelnen Beschleunigerkomponenten wie Tank, Elektroden, Resonatorstruktur, Bunchereinheit und deren Fertigungsprozesse werden vorgestellt, Arbeitsschritte wie das Verkupfern des Tanks in der Galvanik der GSI oder das Verfahren zum Versilbern von Kontaktteilen im hauseigenen Labor werden beschrieben. Es folgt eine Diskussion des Justierkonzepts und der Maßnahmen zur Einhaltung der erforderlichen Genauigkeiten von ca. 20 mm, um die berechnete Strahlqualität zu gewährleisen. Abschließend werden die Ergebnisse erster HF-Testmessungen auf Messsenderniveau beschrieben. Hier wurden zunächst experimentell grundlegende Resonatoreigenschaften wie etwa Resonanzfrequenz, Güte und Parallelersatzwiderstand bestimmt. Danach wurde ein spezielles Störkörpermessverfahren angewandt, um den über die Montagehöhe der Driftröhre einstellbaren Spannungsbereich der Bunchereinheit zu erfassen, da die geometrischen Verhältnisse einen computergesteuerten Messstand wie er zur Untersuchung der Modellaufbauten herangezogen wurde nicht zuließen. Abschließend erfolgte ein Abstimmen der Spannungsverteilung entlang der RFQ-Elektroden. Diese experimentellen Ergebnisse belegen eindrucksvoll die Funktionsfähigkeit der RFQ-Driftröhrenkombination, so ist insbesondere die erforderliche Buncherspannung auf einer mittleren Montagehöhe der spannungsführenden Driftröhre zu erreichen, die durch die zusätzlich Driftröhrenkapazität hervorgerufene Verzerrung der Spannungsverteilung auf den Elektroden lässt sich über die höhenverschiebbaren Kurzschlussplatten gut korrigieren. Das erarbeitete Gesamtkonzept dieser neuartigen, sehr kompakten RFQ-Driftröhrenkombination ist auch für andere Anwendungsbereiche sehr attraktiv, so dass bereits ein Patent darauf angemeldet wurde. Damit ist das Ziel, eine RFQ-Driftröhrenkombination für die medizinische Beschleunigeranlage in Heidelberg aufzubauen erreicht. Strahltests und die experimentelle Bestimmung der Phasen- und Energiebreite des Ionenstrahls sind als nächstes vorgesehen.
Untersuchungen zum technischen und teilchenoptischen Design kompakter Speicherringe für Ionen
(2002)
Die vorliegende Arbeit befasst sich mit der Berechnung und dem Bau von elektrostatischen Speicherringen. Eine solche Maschine kann als eine Kreuzung zwischen elektrostatischen Fallen und "klassischen" magnetischen Ringen angesehen werden. Kompakte Bauform, gute Zugänglichkeit der Elemente und vergleichsweise niedrigen Kosten werden mit hoher Flexibilität in Bezug auf mögliche Experimente kombiniert. Im 1. Kapitel werden zunächst die Unterschiede der Bewegung von Ionen in elektrostatischen und magnetischen Speicherringen untersucht. Die Massenunabhängigkeit der Teilchenbewegung bei gegebener Energie und Ladung in rein elektrostatischen Feldern erlaubt es, unterschiedlichste Ionen im Prinzip in direkter Folge in einen elektrostatischen Ring einzuschießen, ohne dass die Felder der optischen Elemente verändern werden müssen. Die Felder in den für einen Speicherring notwendigen Strahlführungskomponenten werden berechnet, die zugehörigen Bewegungsgleichungen aufgestellt und in linearer Näherung gelöst. Dabei werden zunächst die Bahnen einzelner Teilchen untersucht und dann das Strahlverhalten insgesamt durch Übergang auf einen Matrizenformalismus beschrieben. Die aus dieser Darstellung resultierenden Trajektorien stellen eine starke Vereinfachung dar. Die Untersuchung der realen Teilchenbewegung mit Einfluss von Randfeldern, Positionierungsfehlern und die Berechnung der dreidimensionalen Feldverteilung ist Gegenstand des 2. Kapitels. Ein kritischer Punkt bei der Bewegung von Teilchen in Ringbeschleunigern sind durch Feldfehler induzierten Resonanzerscheinungen. Zur Diskussion der verschiedenen möglichen Resonanzen werden im 3. Kapitel die Effekte durch zusätzliche Dipol- und Quadrupolfelder analysiert, dargestellt und schließlich anhand eines Resonanzdiagramms erläutert. In den geplanten Speicherring werden Ionen in einem einzigen Bunch, mit einer Ausdehnung von rund dem halben Ringumfang, injiziert. Ihre Lebensdauer hängt wesentlich von dem erzielbaren Vakuumenddruck ab. Die vorgesehenen Getterpumpen weisen eine sehr hohe Pumpleistung für die meisten Gase auf. Ihre Wirkungsweise wird im 4. Kapitel beschrieben und praktische Aspekte ihrer Handhabung diskutiert. Für den Betrieb eines Speicherrings ist es notwendig, die Parameter des umlaufenden Strahls zu jeder Zeit zu kennen und gegebenenfalls modifizieren zu können. Zentrales Element des Kontroll- und Diagnosesystems sind Strahlpositionsmonitore. In elektrostatischen Pickup-Elektroden induziert der Strahl beim Durchgang Spannungen über die eine Positionsbestimmung möglich ist. Die Wirkungsweise dieser Sonden wird in der zweiten Hälfte des 4. Kapitels diskutiert und Methoden zur Signalaufbereitung und -analyse beschrieben. Die allgemeinen Ergebnisse der Überlegungen zu elektrostatischen Speicherringen aus den ersten Kapiteln werden schließlich auf spezielle Fälle übertragen. Im Rahmen dieser Arbeit wurden verschiedene Entwürfe für einen elektrostatischen Speicherring angefertigt und ein Viertelringsegment zu Testzwecken entworfen und aufgebaut. Die Ergebnisse sind Inhalt des abschließenden 5. Kapitels. Mit den in dieser Arbeit vorgestellten Methoden ist es möglich, elektrostatische Speicherringe detailliert zu berechnen und an die experimentellen Rahmenbedingungen anzupassen. Sämtliche Rechnungen wurden im Hinblick auf den geplanten Bau eines Rings für Teilchen mit Energien bis 50 keV durchgeführt.
Energy and environment are two major concerns in the 21st century. At present, the energy required for the daily life still mainly relies on the traditional fossil fuel resources, but the caused air pollution problem and greenhouse effect have seriously threatened the sustainable development of mankind. Another adopted energy source which can provide a large fraction of electricity for the world is the nuclear fission reaction. However, the increasing high-radioactive spent nuclear fuels, which half-lives are usually >1 million years, are becoming the hidden perils to the earth. A great advance in accelerator physics and technology opens an opportunity to solve this dilemma between man and nature, because powerful accelerator-based neutron sources can play important roles for clean nuclear power production, for example: - The Accelerator-Driven System (ADS) can serve as an easy control of a sub-critical fission reactor so that the nuclear fuels will be burnt more completely and safely. - The EUROTRANS project launched by EU is investigating another application of the ADS technology to reduce the radiotoxicity and the volume of the existing nuclear waste greatly and quickly in a transmutation way. - The developing international IFMIF plant will be used to test and qualify reactor materials for future fusion power stations, which can produce much cleaner nuclear electricity more efficiently than the fission ones. Therefore, the R&D of high-power driver linacs (HPDL) is of a worldwide importance. As the proverb said, "everything is hard at the beginning", the front end is the most difficult part for realizing an HPDL machine. Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hardon beams in the low- and medium-beta-region. Besides the 5mA/30mA, 17MeV proton injector (RFQ+DTL) and the 125mA, 40MeV deuteron DTL of the above-mentioned EUROTRANS and IFMIF facilities, a 200mA, 700keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200mA and 125mA, which are the record values for the proton and deuteron linacs, respectively. Though the design intensities for the two development stages, XT-ADS (5mA) and EFIT (30mA), of the EUROTRANS injector are well within the capability of the modern RF linac technology, the special design concept for an easy upgrade from XT-ADS to EFIT brings unusual challenges to realize a linac layout which allows flexible operation with different beam intensities. To design the 200mA FRANZ RFQ and the two-intensity EUROTRANS RFQ, the classic LANL (Los Alamos National Laboratory) Four-Section Procedure, which was developed by neglecting the space-charge forces, is not sufficient anymore. Abandoning the unreasonable constant- B (constant-transverse-focusing-strength) law and the resulting inefficient evolution manners of dynamics parameters adopted by the LANL method, a new design approach so-called "BABBLE", which can provide a "Balanced and Accelerated Beam Bunching at Low Energy", has been developed for intense beams. Being consistent with the beam-development process including space-charge effects, the main features of the "BABBLE" strategy (see Pages 55-58) are: 1) At the entrance, the synchronous phase is kept at = phi s = -90° while a gradual increase in the electrode modulation is started so that the input beam can firstly get a symmetrical and soft bunching within a full-360° phase acceptance. 2) In the following main bunching section, B is increasing to balance the stronger and stronger transverse defocusing effects induced by the decreasing bunch size so that the bunching speed can be fast and safely increased. 3) When the real acceleration starts, the quickly increased beam velocity will naturally weaken the transverse defocusing effects, so B is accordingly falling down to avoid longitudinal emittance growths and to allow larger bore apertures. Taking advantage of the gentle initial bunching and the accelerated main bunching under balanced forces enabled by the "BABBLE" strategy, a 2m-long RFQ with beam transmission in excess of 98% and low emittance growths has been designed for FRANZ, and a 4.3m-long RFQ with almost no beam losses and flat emittance evolutions at both 5mA and 30mA has been designed for EUROTRANS. All design results have proven that the "BABBLE" strategy is a general design approach leading to an efficient and robust RFQ with good beam quality in a wide intensity-range from 0mA to 200mA (even higher). To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions, e.g. long drift spaces, SC transverse focusing elements and high accelerating gradients. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the Linac Design for Intense Hadron Beams accelerating gradients and accordingly other configurations of the cavities (see Pages 78-80), a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements (see Pages 81-82) as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the phi s=0° sections have been totally redesigned (see Pages 83-84) resulting in good beam performances in both radial and longitudinal planes. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities, such as employing short adjustable rebunching cavities with phi s = -90° (see Page 116), have been applied. ...
Im Rahmen des Programms zur Intensitätserhöhung am Universal Linear Accelerator UNILAC für das Element Uran hat sich die Forderung nach einer Ionenquelle ergeben, die einen intensiven, hochbrillianten Ionenstrahl aus vierfach geladenen Uranionen bereitstellen kann. Ziel war es, im Zusammenspiel von Ionenquelle, Nachbeschleunigungssystem und Niederenergiestrahlführung einen Strahlstrom von mindestens 15 emA U4+ am Eingang des RFQ-Beschleunigers bereitzustellen. Die vorliegende Arbeit befaßt sich mit den Optimierungen und den experimentellen Untersuchungen an der Vakuumbogenionenquelle VARIS für den Uranbetrieb, welche schließlich ihre Leistungsfähigkeit an der Beschleunigeranlage der GSI erfolgreich unter Beweis gestellt hat. Der erste Teil dieser Arbeit widmet sich der Theorie der Vakuumbogenentladung unter besonderer Berücksichtigung der Erzeugung von U4+. Die Generierung von U4+ erfolgt dabei zu einem Teil im dichten Kathodenspotplasma, wo das Ionisationspotential von 31 auf 21 eV herabgesetzt ist, U4+ also bei vergleichsweise niedrigen Elektronenenergien erzeugt werden kann. Der U4+-Anteil beträgt jedoch nur 30 %. Die Erzeugung eines höheren Anteils an U4+ ist geknüpft an zusätzlich Ionisationsvorgänge im expandierenden Zwischenelektrodenplasma, für welches eine neuartige Theorie (MHD Ansatz) angegeben werden konnte. Für die Vakuumbogenentladung im axialen Magnetfeld konnte eine Erhöhung der Elektronentemperatur vorhersagt werden, die für eine höhere Ionisationsrate für U4+ verantwortlich ist. Für die Elektronentemperatur wurde bei einer magnetischen Flußdichte von 40 mT ein Wert von 10 eV vorhergesagt, welcher experimentell bestätigt werden konnte. Zieht man zudem die berechneten Wirkungsquerschnitte für die Ein- und Mehrfachionisation heran, so konnte aus den Wirkungsquerschnitten vorausgesagt werden, daß für die Produktion eines hohen Anteils an U4+ eine Elektronenenergie von zirka 50 eV für die Generierung von U4+ aus U3+ erforderlich ist. Im weiteren wurde ausgeführt, wie ein Extraktionssystem ausgelegt sein muß, welches den Forderungen nach einem Gesamtstrom von 140 mA entspricht oder diesen übertrifft. Das Erreichen dieses Stroms ist im Einlochextraktionssystem mit Schwierigkeiten verbunden (große Emissionsfläche, langes Extraktionssystem, Extraktionsspannung zirka 180 kV). Aus diesen Gründen ist die Entscheidung zugunsten eines Extraktionssystem mit 13 Öffnungen mit einem Durchmesser von jeweils 3 mm gefallen. Die Gesamtemissionsfläche aller Aperturen liegt bei 0,92 cm2. Zur Bestimmung der Strahlformierung einer Öffnung im Extraktionssystem ist das Strahlsimulationsprogramm KOBRA3INP unter Berücksichtigung einer experimentell gut zugänglichen Feldstärke von 11 kV/mm bei einem Aspektverhältnis von 0,5 genutzt worden. Es ergab sich ein minimaler Divergenzwinkel von etwa 55 mrad, die unnormierte effektive Emittanz geht mit steigender Stromdichte asymptotisch einem Wert von 65p mm mrad entgegen. Für das Extraktionssystem (13 Öffnungen) kann die unnormierte effektive Emittanz zu 610p mm mrad abgeschätzt werden. Die Stromdichte, welche der Plasmagenerator bereitstellen muß, beträgt etwa 1600 A/m2. Die Extraktionsspannung liegt bei 32 kV, welche, ebenso wie die Stromdichte, experimentell erreicht wurde. Bei den experimentellen Untersuchungen wurde zunächst untersucht, inwieweit die Impedanz des Vakuumbogenplasmas gesteigert werden kann. Ziel war es, eine möglichst hohe Plasmaimpedanz und damit eine hohe Bogenspannung zu erhalten, wodurch die erreichbare Elektronenenergie vergrößert wird (Regelung der Bogenspannung durch die Plasmaimpedanz). Es ist gezeigt worden, daß die Impedanz vor allem durch eine geeignete Magnetfeldkonfiguration erhöht werden kann (axiales Feld). Ebenso sind die Geometrie der Ionenquelle (Abstand Kathode-Anode 15 mm, Anodenöffnung 15 mm) und die verwendeten Materialien (Anode aus Edelstahl, kleiner Sputterkoeffizient und Sekundärelektronenaus97 löse) entscheidend, wobei zugunsten eines zuverlässigen Zündverhaltens der Ionenquelle die Entscheidung für eine Anodenöffnung von 15 mm statt 25 mm gefallen ist. So erreicht man für eine magnetische Flußdichte von 120 mT bei einem Bogenstrom von 700 A eine Bogenspannung von 54 V, wodurch die Erzeugung bis zu sechsfach geladenen Uranionen möglich wird. Um grundlegende Eigenschaften des Vakuumbogenplasmas zu bestimmen und das theoretische Modell zur Erzeugung von U4+ zu überprüfen, wurden die Ionen- und Elektronenenergieverteilung im Plasma gemessen ...
A basic introduction to RFQs has been given in the first part of this thesis. The principle and the main ideas of the RFQ have been described and a small summary of different resonator concepts has been given. Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the limitation of these approaches were shown. The main work of this thesis was the implementation and analysis of a Multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a Multigrid Poisson solver are the ability of a Gauß-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauß-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. After illustrating the results of the multigrid Poisson solver, a comparison to the field of the old multipole expansion method was made. The multipole expansion method is an accurate representation of the field within the minimum aperture, as limited by cylindrical symmetry. Within these limitations the multigrid Poisson solver and the multipole expansion method agree well. Beyond the limitation the two method give different fields. It was shown that particles leave the region in which the multipole expansion method gives correct fields and that the transmission is affected therefrom as well as the single particle dynamic. The multigridPoisson solver also gives a more realistic description of the field in the beginning of the RFQ, because it takes the tank wall into account, and this effect is shown as well. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. For RFQs with small apertures and big modulations the two different method give different values for the transmission due to the limitation of the multipole expansion method. The internal space charge fields without images was analyzed at the level of single particle dynamic and compared to the well known SCHEFF routine from LANL, showing major differences for the analyzed particle. For comparing influences on the transmissions of the set of 12 RFQs a third space charge routine (PICNIC) was considered as well. The basic shape of the transmission curve was the same independent of space charge routines, but the absolute values differ a little from routine to routine, with SCHEFF about 2% lower than the other routines. The multigrid Poisson solver and PICNIC agree quite well (less than 1%), but PICNIC has an extremely long running time. The major advantage of the multigrid Poisson solver in calculating space charge effects compared to the other two routines used here is that the Poisson solver can take the effect of image charges on the electrodes into account by just changing the boundaries to have the shape of the vanes whereas all other settings remain unchanged. It was demonstrated that the effect of image charges on the vanes on the space charge field is very big in the region close to the electrodes. Particles in that region will see a stronger transversely defocusing force than without images. The result is that the transmission decreases by as much as 10% which is considerably more than determined by other (inexact) routines before. This is an important result, because knowing about the big effect of image charges on the electrodes it allows it to taken into account while designing the RFQ to increase the performance of the machine. It is also an important factor in resolving the traditional difference observed between the transmission of actual RFQs and the transmission predicted by earlier simulations. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The machine was assembled in Frankfurt and a beam test stand was built. The shunt impedance of the structure was measured using different techniques, the output energy of the structure were measured and finally its transmission was determined and compared to the beam dynamics simulations of the RFQ. Unfortunately, the transmission measurements were done without exact knowledge of the beam’s emittance. So the comparison to the simulation is somewhat rough, but with a reasonable guess of the emittance a good comparison between the measurement and simulation was obtained.
Das Ziel der vorliegenden Arbeit war der Einbau, die Inbetriebnahme, die Abstimmung und der Test eines Strahlmatchingsystems in eine Zweistrahl-RFQ-Beschleunigerstruktur. Dieses Strahlmatchingsystem wurde entwickelt, um die Beschleunigereinheit des Frankfurter Funneling-Experimentes besser an die nachfolgende HF-Deflektoreinheit anzupassen und um zu zeigen, dass ein Strahlmatching innerhalb der RFQ-Beschleunigerstruktur möglich ist. Des Weiteren wurden die zum Versuch gehörigen Ionenquellen modifiziert, um eine bessere Anpassung der Strahlherstellung an die Beschleunigerstruktur zu erreichen. Die Spannungsverteilung in der Beschleunigerstruktur selbst wurde durch weitergehende Tuningmaßnahmen verbessert, um die Teilchenverluste weiter zu minimieren Mit dem Funnelingexperiment soll experimentell geprüft werden, ob eine Strahlstromerhöhung durch das Zusammenführen mehrerer Ionenstrahlen verschiedener Ionenquellen möglich ist. Solch ein System ist für einige Zukunftsprojekte (HIDIF, SNS-Ausbau, ESS, u.ä.), die große Strahlströme benötigen, die nicht aus nur einer Ionenquelle extrahiert werden können, erforderlich. Das in dieser Arbeit behandelte Strahlmatching ist für das Experiment notwendig, da zu große Teilchenverluste in der Funnelsektion entstanden und somit eine bessere Anpassung des Strahls an den HF-Deflektor erforderlich wurde. Es konnte gezeigt werden, dass die hier verwendete Art der Strahlfokussierung auch in eine komplizierte RFQ-Beschleunigerstruktur integrierbar ist, in der zwei Strahlkanäle auf der gleichen Stützen-Bodenplatten-Konstruktion aufgebaut sind. Die Verlängerung der Endelektroden und die Integration einer Strahlanpassung haben einen positiven Einfluss auf die Transsmission innerhalb des Beschleunigers und verbessern die Transmission durch den Deflektor. Es konnten Energiemessungen und zeitaufgelöste Faradaytassenmessungen der Teilchenbunche sowie zeitaufgelöst Makropulse mit der Faradaytasse gemessen werden. Floureszensschirmmessungen zeigten, dass die beiden Teilchenstrahlen auf eine neue gemeinsame Strahlachse gebogen wurden. Die Energiemessung zeigte, dass die Simulationen mit RFQSIM sehr genau die Endenergie der Teilchen berechnen konnte. Im Strahlkreuzungspunkt hinter dem Zweistrahl-RFQ-Beschleuniger konnten nahezu identische Teilchenbunche erzeugt werden. Diese Teilchenbunche wiesen zudem die in vorherigen Simulationen errechneten Charakteristika auf, in denen eine transversale und eine longitudinale Fokussierung gegenüber dem ungematchten Strahl simuliert wurden. Es konnte auch eine weitere Strahlradiusreduzierung gemessen werden, die auf eine exaktere Justierung der Elektroden zurückzuführen ist. Die Phasenfokussierung konnte verbessert werden, indem die Elektrodenspannung besser an die Strahlmatchingsektion angepasst wurde. Hierzu mussten auch die Einschussparameter der Strahlen in die Beschleuniger angepasst werden, damit die Transmission der Beschleuniger sich nicht verschlechterte. Insgesamt konnte mit den durchgeführten Experimenten erstmals demonstriert werden, dass zwei Strahlen in einem RFQ-Beschleuniger auf einen Punkt hinter dem Beschleuniger angepasst werden können und die Spannungsverteilung in solch einer Struktur durch Tuningmaßnahmen abstimmbar ist. Es konnte erstmals demonstriert werden das über 90% der Teilchen beider Strahlen, bei guten Strahleigenschaften, auf eine neue gemeinsame Strahlachse abgelenkt (gefunnelt) wurden.
Cancer has become one of the most fatal diseases. The Heidelberg Heavy Ion Cancer Therapy (HICAT) has the potential to become an important and efficient treatment method because of its excellent “Bragg peak” characteristics and on-line irradiation control by the PET diagnostics. The dedicated Heidelberg Heavy Ion Cancer Therapy Project includes two ECR ion sources, a RF linear injector, a synchrotron and three treatment rooms. It will deliver 4*10 high 10 protons, or 1*10 high 10 He, or 1*10 high 9 Carbons, or 5*10 high 8 Oxygens per synchrotron cycle with the beam energy 50-430AMeV for the treatments. The RF linear injector consists of a 400AkeV RFQ and of a very compact 7AMeV IH-DTL accelerator operated at 216.816MHz. The development of the IH-DTL within the HICAT project is a great challenge with respect to the present state of the DTL art because of the following reasons: • The highest operating frequency (216.816MHz) of all IH-DTL cavities; • Extremely large cavity length to diameter ratio of about 11; • IH-DTL with three internal triplets; • The highest effective voltage gain per meter (5.5MV/m); • Very short MEBT design for the beam matching. The following achievements have been reached during the development of the IH-DTL injector for HICAT : The KONUS beam dynamics design with LORASR code fulfills the beam requirement of the HICAT synchrotron at the injection point. The simulations for the IH-DTL injector have been performed not only with a homogeneous input beam, but also with the actual particle distribution from the exit of the HICAT RFQ accelerator as delivered by the PARMTEQ code. The output longitudinal normalized emittance for 95% of all particles is 2.00AkeVns, the emittance growth is less than 24%, while the X-X’ and Y-Y’ normalized emittance are 0.77mmmrad and 0.62mmmrad, respectively. The emittance growth in X-X’ is less than 18%, and the emittance growth in Y-Y’ is less than 5%. Based on the transverse envelopes of the transported particles, the redesign of the buncher drift tubes at the RFQ high energy end has been made to get a higher transit time factor for this novel RFQ internal buncher. An optimized effective buncher gap voltage of 45.4KV has been calculated to deliver a minimized longitudinal beam emittance, while the influence of the effective buncher voltage on the transverse emittance can be neglected. Six different tuning concepts were investigated in detail while tuning the 1:2 scaled HICAT IH model cavity. ‘Volume Tuning’ by a variation of the cavity cross sectional area can compensate the unbalanced capacitance distribution in case of an extreme beta-lambda-variation along an IH cavity. ‘Additional Capacitance Plates’ or copper sheets clamped on drift tube stems are a fast way for checking the tuning sensitivity, but they will be replaced by massive copper blocks mounted on the drift tube girders finally. ‘Lens Coupling’ is an important tuning to stabilize the operation mode and to increase or decrease the coupling between neighboring sections. ‘Tube Tuning’ is the fine tuning concept and also the standard tuning method to reach the needed field distributions as well as the gap voltage distributions. ‘Undercut Tuning’ is a very sensitive tuning for the end sections and with respect to the voltage distribution balance along the structure. The different types of ‘plungers’ in the 3rd and 4th sections have different effects on the resonance frequency and on the field distribution. The different triplet stems and the geometry of the cavity end have been also investigated to reach the design field and voltage distributions. Finally, the needed uniform field distribution along the IH-DTL cavity and the corresponding effective voltage distribution were realized, the remaining maximum gap voltage difference was less than 5% for the model cavity. The several important higher order modes were also measured. The RF tuning of the IH-DTL model cavity delivers the final geometry parameters of the IH-DTL power cavity. A rectangular cavity cross section was adopted for the first time for this IH-DTL cavity. This eases the realization of the volume tuning concept in the 1st and 2nd sections. Lens coupling determines the final distance between the triplet and the girder. The triplets are mounted on the lower cavity half shell. The Microwave Studio simulations have been carried out not only for the HICAT model cavity, but also for the final geometry of the IH-DTL power cavity. The field distribution for the operation mode H110 fits to the model cavity measurement as well as the Higher Order Modes. The simulations prove the IH-DTL geometrical design. On the other hand, the precision of one simulation with 2.3 million mesh points for full cross section area and the CPU time more than 15hours on a DELL PC with Intel Pentium 4 of 2.4GHz and 2.096GRAM were exploited to their limit when calculating the real parameters for the two final machining iterations during production. The shunt impedance of the IH-DTL power cavity is estimated by comparison with the existing tanks to about 195.8MOmega/m, which fits to the simulation result of 200.3MOmega/m with reducing the conductivity to the 5.0*10 high 7 Omega-1m-1. The effective shunt impedance is 153 MOmega/m. The needed RF power is 755kW. The expected quality factor of the IH-DTL cavity is about 15600. The IH-DTL power cavity tuning measurements before cavity copper plating have been performed. The results are within the specifications. There is no doubt that the needed accuracy of the voltage distribution will be reached with the foreseen fine tuning concepts in the last steps.
Die vorliegende Arbeit befasste sich mit der Entwicklung und der Aufbau einer neuartigen Fingerdriftröhren-Struktur als Teil des neuen Vorbeschleunigers COSY-SCL am Kernforschungszentrum in Jülich. In dieser Arbeit wird die Entwicklung der Spiralresonatoren beschrieben, die als Nachbeschleuniger direkt hinter den RFQs zum Einsatz kommen sollen. Als mögliche Option zur Verbesserung der Strahlqualität wurden Fingerdriftröhren vorgeschlagen. Mit Hilfe dieser Struktur ist es möglich, mit geringer zusätzlicher Leistung eine Fokussierung des Ionenstrahls in der beschleunigenden Struktur zu erreichen. Dies war bisher nur bei niedrigen Energien mit der RFQ-Struktur möglich. Bei höheren Energien ist man stets auf magnetische Quadrupollinsen angewiesen. Dies führt jedoch gerade in einem Geschwindigkeitsbereich bis ca. 10 % der Lichtgeschwindigkeit zu Problemen, da die zur Verfügung stehenden Abmessungen zu gering sind. Nachdem zunächst das COSY-SCL Projekt vorgestellt wurde und die grundlegende Theorie für RFQ und Driftröhrenbeschleuniger behandelt wurde, wurden in Kapitel 5 Rechnungen zur Strahldynamik mit dem Programm RFQSIM vorgestellt. Aufgrund der hohen benötigten Gesamtspannung fiel die Entscheidung, einen Vierspaltresonator mit einer geerdeten Mitteldriftröhre aufzubauen. Durch diese Veränderung wurde es möglich, die Feldstärken in den einzelnen Spalten gleichmäßiger zu verteilen und niedriger zu halten, und die benötigte Verlustleistung zu minimieren. Die Teilchendynamik in einem Beschleunigungsspalt mit Fingerelektroden wurde mit einem neuen Transportmodul in RFQSIM untersucht, das den Transport geladener Teilchen durch beliebige dreidimensionale Elektrodenkonfiguration ermöglicht. Mit Hilfe der Fingerdriftröhren ist es möglich, die transversale Ausdehnung des Strahls am Ausgang des Nachbeschleunigers zu verringern und die Anpassung an einen folgenden Beschleuniger zu vereinfachen, ohne das große Einbußen bezüglich der Effektivität der Beschleunigung in Kauf genommen werden müssen. Um die HF Eigenschaften der beiden Beschleunigerstrukturen zu vergleichen, wurden sie mit dem MWS Programm numerisch berechnet. Um genauere Aussagen über die Eigenschaften des elektrischen Feldes zu machen, wurde eine Multipolanalyse der Felder durchgeführt. Damit lässt sich eine Aussage über die Stärke der Fokussierung und mögliche Feldfehler machen. Dabei zeigte sich, dass die auftretenden Feldfehler vernachlässigbar klein sind und sogar störende Effekte unterdrückt werden. Abschließend wurde der Aufbau des Resonators und den daran durchgeführten Messungen auf Meßsenderniveau behandelt. Resultat dieser Untersuchungen ist eine Struktur, die sehr gut und effektiv als Nachbeschleuniger hinter dem RFQ für COSY-SCL eingesetzt werden kann. Durch den Einsatz der Fingerdriftröhren kann mit einer einzelnen Struktur sowohl die Aufgabe der Beschleunigung als auch der Fokussierung bei mittleren Teilchenenergien bewältigt werden. Der neue fokussierende Spiralresonator entspricht in seinen Eigenschaften einer RFQ-Struktur für höhere Teilchengeschwindigkeiten. Die Ergebnisse dieser Arbeit zeigen, wie attraktiv eine solche Lösung mit Fingerdriftröhren ist. Deshalb ist geplant, in einem nächsten Schritt Strahltests durchzuführen, da die beschriebene Driftröhrenstruktur mit ihren Eigenschaften sehr gut für die Beschleunigung von Ionen in dem Geschwindigkeitsbereich zwischen RFQ- und IH Struktur geeignet ist und ein Einsatz z.B. in dem FLAIR Projekt möglich wäre.
Ziel der vorliegenden Arbeit ist die Entwicklung, Aufbau und Inbetriebnahme eines Funnelsystems zur Zusammenführung zweier Teilchenstrahlen, bestehend aus zwei Injektionssystemen, zwei RFQ-Beschleunigern, Hochfrequenz-Deflektoren und Diagnoseeinheiten. Die Aufgabe des Experiments ist die praktische Umsetzung eines neuartigen Verfahrens zur Strahlstromerhöhung bei im Idealfall gleichbleibender Emittanz und steigender Brillanz. Notwendig wird dies durch die benötigten hohen Strahlströme im niederenergetischen Bereich einiger zukünftiger geplanter Beschleunigeranlagen. Hier kann der Strahlstrom nicht mehr konventionell von einer einzigen Ionenquelle erzeugt werden. Nur durch die Parallelerzeugung mehrerer Teilchenstrahlen sowie mehrfachem Zusammenführen (Funneling) der Teilchenstrahlen ist es möglich, die notwendigen Strahlströme bei der geforderten kleinen Emittanz zur Verfügung zu stellen. Das Frankfurter Funneling-Experiment ist die skalierte erste HIDIF-Funneling-Stufe als Teil eines Fusionstreibers. Hier werden zwei möglichst identische Helium-Teilchenstrahlen von zwei Ionenquellen erzeugt und in zwei RFQ-Beschleunigern beschleunigt. Der Deflektor biegt die Teilchenstrahlen reißverschlussartig auf eine gemeinsame Strahlachse. Am Anfang der Arbeit stand die Optimierung des Betriebs der Beschleunigerkomponeten und die Entwicklung und der Aufbau eines Einzellendeflektors. Erste erfolgreiche Strahlexperimente zur Strahlvereinigung werden im Kapitel 7.5 vorgestellt. Die Phasenraumellipse des zusammengeführten Strahls zeigt starke bananenförmige Deformierungen, die auf eine schlechte Anpassung des RFQ an den Funnel-Deflektor zurückzuführen sind. Das Elektrodendesign des RFQ ist in zwei unabhängige Bereiche unterteilt. Die erste Zone dient der Beschleunigung der Teilchen. In der zweiten Zone soll erstmals ein sogenannter 3D-Fokus der Strahlradien der x- und y-Ebene und einer longitudinaler Fokussierung erreicht werden. Der zweite Abschnitt bestand für erste Strahltests aus zunächst unmodulierten Elektroden. Zur besseren Anpassung des RFQ an den Funneldeflektor wurde dann das letzte Elektrodenteil erneuert. Der Umbau erfolgte zunächst nur bei einem der beiden RFQ-Beschleuniger. Somit war der direkte Vergleich zwischen altem und neuen Elektrodendesign im Strahlbetrieb möglich. Mit diesem neuen Elektrodenendteil wurde eine Reduktion der Strahlradien der x- sowie y-Ebene, eine bessere longitudinalen Fokussierung sowie eine höhere Transmission erreicht (Kapitel 8). Damit ist es erstmals gelungen mit einer speziellen Auslegung der RFQ-Elektroden eine direkte Anpassung an nachfolgende Elemente zu realisieren. Untersuchungen zur Strahlzusammenführungen werden seit einigen Jahren am Institut durchgeführt. Mit der Entwicklung des 3D-matchers wurde ein weiteres der kritischen Probleme gelöst. Der Umbau des zweiten Beschleunigers findet zur Zeit statt. Nach der Inbetriebnahme werden Funneling-Experimente mit dem Einspalt- und einem neuem Vielspaltdeflektor folgen.