### Refine

#### Document Type

- Doctoral Thesis (7)
- Habilitation (1)
- Master's Thesis (1)

#### Has Fulltext

- yes (9)

#### Is part of the Bibliography

- no (9)

#### Keywords

- Random CSP (1)
- Random Graphs (1)
- Random Matrices (1)

#### Institute

- Informatik und Mathematik (6)
- Mathematik (3)

This thesis concerns three specific constraint satisfaction problems: the k-SAT problem, random linear equations and the Potts model. We investigated a phenomenon called replica symmetry, its consequences and its limitation. For the $k$-SAT problem, we were able to show that replica symmetry holds up to a threshold $d^{*}$. However, after another critical threshold $d^{**}$, we discovered that replica symmetry could not hold anymore, which enabled us to establish the existence of a replica symmetry breaking region. For the random linear problem, a peculiar phenomenon occurs. We observed that a more robust version of replica symmetry (strong replica symmetry) holds up to a threshold $d=e$ and ceases to hold after. This phenomenon is linked to the fact that before the threshold $d=e$, the fraction of frozen variables, i.e. variable forced to take the same value in all solutions, is concentrated around a deterministic value but vacillates between two values with equal probability for $d>e$. Lastly, for the Potts model, we show that a phenomenon called metastability occurs. The latter phenomenon can be understood as a consequence of trivial replica symmetry breaking scheme. This metastability phenomenon further produces slow mixing results for two famous Markov chains, the Glauber and the Swendsen-Wang dynamics.

Although everyone is familiar with using algorithms on a daily basis, formulating, understanding and analysing them rigorously has been (and will remain) a challenging task for decades. Therefore, one way of making steps towards their understanding is the formulation of models that are portraying reality, but also remain easy to analyse. In this thesis we take a step towards this way by analyzing one particular problem, the so-called group testing problem. R. Dorfman introduced the problem in 1943. We assume a large population and in this population we find a infected group of individuals. Instead of testing everybody individually, we can test group (for instance by mixing blood samples). In this thesis we look for the minimum number of tests needed such that we can say something meaningful about the infection status. Furthermore we assume various versions of this problem to analyze at what point and why this problem is hard, easy or impossible to solve.

The thesis is about random Constraint Satisfaction Problems (rCSP). These are random instances of classical problems in NP. In the literature the study of rCSP involve identifying-locating phase transition phenomena as well as investigating algorithmic questions.
Recently, some ingenious however mathematically non-rigorous theories from statistical physics have given the study of rCSP a new perspective; the so-called Cavity Method makes some very impressing predictions about the most fundamental properties of rCSP.
In this thesis, we investigate the soundness of some of the most basic predictions of the Cavity Method, mainly, regarding the structure of the so-called Gibbs distribution on various rCSP models. Furthermore, we study some fundamental algorithmic problem related to rCSP. This includes both analysing well-known dynamical process (dynamics) like Glauber Dynamics, Metropolis Process, as well as proposing new algorithmic approaches to some natural problems related to rCSP.

In this thesis, we cover two intimately related objects in combinatorics, namely random constraint satisfaction problems and random matrices. First we solve a classic constraint satisfaction problem, 2-SAT using the graph structure and a message passing algorithm called Belief Propagation. We also explore another message passing algorithm called Warning Propagation and prove a useful result that can be employed to analyze various type of random graphs. In particular, we use this Warning Propagation to study a Bernoulli sparse parity matrix and reveal a unique phase transition regarding replica symmetry. Lastly, we use variational methods and a version of local limit theorem to prove a sufficient condition for a general random matrix to be of full rank.

Studying large discrete systems is of central interest in, non-exclusively, discrete mathematics, computer sciences and statistical physics. The study of phase transitions, e.g. points in the evolution of a large random system in which the behaviour of the system changes drastically, became of interest in the classical field of random graphs, the theory of spin glasses as well as in the analysis of algorithms [78,82, 121].
It turns out that ideas from the statistical physics’ point of view on spin glass systems can be used to study inherently combinatorial problems in discrete mathematics and theoretical computer sciences(for instance, satisfiability) or to analyse phase transitions occurring in inference problems (like the group testing problem) [68, 135, 168]. A mathematical flaw of this approach is that the physical methods only render mathematical conjectures as they are not known to be rigorous.
In this thesis, we will discuss the results of six contributions. For instance, we will explore how the
theory of diluted mean-field models for spin glasses helps studying random constraint satisfaction problems through the example of the random 2−SAT problem. We will derive a formula for the number of satisfying assignments that a random 2−SAT formula typically possesses [2].
Furthermore, we will discuss how ideas from spin glass models (more precisely, from their planted versions) can be used to facilitate inference in the group testing problem. We will answer all major open questions with respect to non-adaptive group testing if the number of infected individuals scales sublinearly in the population size and draw a complete picture of phase transitions with respect to the
complexity and solubility of this inference problem [41, 46].
Subsequently, we study the group testing problem under sparsity constrains and obtain a (not fully understood) phase diagram in which only small regions stay unexplored [88].
In all those cases, we will discover that important results can be achieved if one combines the rich theory of the statistical physics’ approach towards spin glasses and inherent combinatorial properties of the underlying random graph.
Furthermore, based on partial results of Coja-Oghlan, Perkins and Skubch [42] and Coja-Oghlan et al. [49], we introduce a consistent limit theory for discrete probability measures akin to the graph limit theory [31, 32, 128] in [47]. This limit theory involves the extensive study of a special variant of the cut-distance and we obtain a continuous version of a very simple algorithm, the pinning operation, which allows to decompose the phase space of an underlying system into parts such that a probability
measure, restricted to this decomposition, is close to a product measure under the cut-distance. We will see that this pinning lemma can be used to rigorise predictions, at least in some special cases, based on the physical idea of a Bethe state decomposition when applied to the Boltzmann distribution.
Finally, we study sufficient conditions for the existence of perfect matchings, Hamilton cycles and bounded degree trees in randomly perturbed graph models if the underlying deterministic graph is sparse [93].

The condensation phase transition and the number of solutions in random graph and hypergraph models
(2016)

This PhD thesis deals with two different types of questions on random graph and random hypergraph structures.
One part is about the proof of the existence and the determination of the location of the condensation phase transition. This transition will be investigated for large values of $k$ in the problem of $k$-colouring random graphs and in the problem of 2-colouring random $k$-uniform hypergraphs, where in the latter case we investigate a more general model with finite inverse temperature.
The other part deals with establishing the limiting distribution of the number of solutions in these structures in density regimes below the condensation threshold.