• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Barrera Estevez, Michael (1)
  • Beining, Marcel (1)
  • Boezio, Giulia L. M. (1)
  • Canet Pons, Julia (1)
  • Castro, André Ferreira (1)
  • Doddaballapur, Anuradha (1)
  • El Sammak, Hadil (1)
  • Geiger, Julia (1)
  • Gentile, Alessandra (1)
  • Haslinger, Denise (1)
+ more

Year of publication

  • 2013 (4)
  • 2016 (4)
  • 2018 (4)
  • 2021 (4)
  • 2012 (3)
  • 2017 (3)
  • 2019 (3)
  • 2022 (3)
  • 2010 (2)
  • 2020 (2)
+ more

Document Type

  • Doctoral Thesis (34)

Language

  • English (33)
  • German (1)

Has Fulltext

  • yes (34)

Is part of the Bibliography

  • no (34)

Keywords

  • Autism Spectrum Disorder (1)
  • CNV 16p11.2 (1)
  • Cardiac regeneration (1)
  • Cerebral cortex (1)
  • Connectomics (1)
  • Coronaries (1)
  • Excitatory balance (1)
  • Inhibitory balance (1)
  • Inhibitory interneurons (1)
  • Neuronal Differentiation (1)
+ more

Institute

  • Biowissenschaften (33)
  • Biochemie, Chemie und Pharmazie (1)

34 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
The role of ephrin-B2 in glioblastoma invasion (2010)
Zum Buttel, Helge
Fuer die schlechte Prognose von Glioblastompatienten mit einer ueberlebenszeit von 9-15 Monaten (Norden and Wen, 2006) ist vor allem die hohe Invasivitaet dieser Tumore verantwortlich. Nach operativer Entfernung des Haupttumors entstehen aus den verbleibenden invadierten Zellen sekundaere Tumore, die sich mitunter ueber weite Bereiche des Hirns verteilen. Des Weitern sind die hochinvasiven Tumorzellen oft resistent gegen Chemo- und Strahlentherapie (Drappatz et al., 2009; Lefranc et al., 2005). In Maustumormodellen und Pateinten konnte zudem gezeigt werden, dass die neuartige antiangiogenetische Therapie zwar das Tumorwachstum verringert, jedoch die Invasivitaet stark erhoeht. (Norden et al., 2008; Ebos et al., 2009; Paez-Ribes et al., 2009). Ueber die Mechanismen die diese hohen Invasivitaet induzieren, ist bislang nur sehr wenig bekannt. Die durch Reduktion von Blutgefaessen steigende Hypoxie des Tumors foerdert die Expression von Matrix-Metalloproteinasen (MMPs). Dies fuehrt zum Abbau der extrazelluaeren Matrix des umgebenden gesunden Gewebes und beguenstigt dadurch die Tumorzellinvasion (Indelicato et al., 2010; Miyazaki et al., 2008; Shyu et al., 2007). Die Umformung des Aktinzytoskeletts und damit die Mobilitaet von Zellen wird vorwiegend durch ein akkurates Zusammenspeil der Rho GTPasen Rac, Rho und Cdc42, kontrolliert (Ridley et al., 2003). Fuer die Organisation von Axonen im Nervensystem und fuer die Blut- und Lymphgefaessbildung wurde gezeigt, dass die Interaktion der Eph-Rezeptortyrosinkinasen und Ihrer Ephrin-Liganden Signalwege induziert, die in die Regulation dieses Zusammenspiels involviert sind (Egea and Klein, 2007; Makinen et al., 2005; Palmer et al., 2002; Sawamiphak et al., 2010). Des Weiteren zeigt die Analyse der Genloci von Eph-Rezeptoren und Ephrinen in verschieden Hirntumoren eine gehaeufte Deletionen des Ephrin-B2-Gens. Die Quantifizierung von Ephrin-B2 mRNA in diesen Tumoren hat ausserdem ergeben, dass mit zunehmender Malignitaet die Expression von Ephrin-B2 sinkt. Aus diesen Gruenden wurden die Untersuchungen in dieser Arbeit auf die Rolle von Ephrin-B2 anhaengigen Signalwegen in der Glioblastomzellinvasion konzentriert. In einem modifiziertem Boyden-Chamber-Assay konnte gezeigt werden, dass das Ephrin-B2 induzierte EphB4 forward signaling und EphB4 induzierte Ephrin-B2 reverse signaling die Invasivitaet der human Glioblastomzelllinien LN-229, G55 und SNB-19 reduziert. In einem Maustumormodel konnte weiterhin gezeigt werden, dass Ephrin-B2 Knock-Out (KO) Astrozytomzellen, im Vergleich zu Wild-Typ (WT) Zellen, Tumore mit einem groesseren Volumen und einer erhoehten Invasivitaet bilden. Da die Expressionslevel fuer die Ephrin-B2 bindenden Rezeptoren EphA4, EphB1 EphB3 und EphB6 auch im adulten Hirn hoch sind (Hafner et al., 2004), weisen diese in vitro und in vivo Ergebnisse auf eine Tumorsupressorfunktion von Ephrin-B2 hin, die durch repulsive Effekte des Ephrin-B2 reverse signaling vermittelte werden koennten. Dies geht mit Erkenntnissen ueber kolorektale Tumore einher (Batlle et al., 2005). Die in einem Sphaeroid-Invasionsassay mit einer EphB-Rezeptoren freien Umgebung beobachtete verminderte Invasion von Ephrin-B2 WT deutet auf eine zusaetzliche invasionsblockierende Rolle der Ephrin-B2-Eph-Rezeptor Interaktion zwischen benachbarten Tumorzellen hin, wie sie auch in Brusttumoren gefunden wurde (Noren et al., 2006). Es scheint als sei Tumorprogression und Invasion erst moeglich, nachdem die Expression von Ephrin-B2 vermindert wurde. Es konnte weiterhin gezeigt werden, dass in hypoxischen Glioblastomzellen die Ephrin-B2 Expression durch die direkte Bindung des den Transkriptionsfaktors ZEB2 an den Ephrin-B2 Promoter reprimiert wird. In einem Weiteren Maustumormodel konnte gezeigt werden, dass die Blockierung der ZEB2 Expression mittels shRNA und die damit einhergehenden Inhibition der hypoxie induzierten Ephrin-B2 Repression das Wachstum und die Invasivitaet von Glioblastomen verringert. Zusaetzlich wurde gezeigt, dass der Verlust von ZEB2 ausreicht, die durch antiangiogenetische Therapie induzierte stark erhoehte Invasivitaet zu vermeiden. Die in dieser Arbeit gewonnen Erkenntnisse fuehren zu folgendem Modelmechanismus. In kleinen normoxischen Tumoren koennen repulsive Effekte des Ephrin-B2 reverse signalings und EphB forward signalings zwischen Tumorzellen und Zellen des umgebenden Gewebes die Ausbreitung und Invasion des Tumors unterdruecken. Zusaetzlich koennte das Ephrin-B2 induzierte EphB forward signaling zwischen benachbarten Tumorzellen die Mobilitaet der Tumorzellen wie in Brusttumoren inhibieren. Beim Erreichen einer bestimmten Tumorgroesse tritt Hypoxie auf, wodurch HIF-1alpha stabilisiert wird. Dies fuehrt dann zur ZEB2 Expression und leitet die Repression von Ephrin-B2 ein, was wiederum zur erhoehten Tumorzellemobilitaet und im Zusammenspiel mit MMPs zu Invasion fuehren kann. Gleichzeitig werden durch den HIF-induzierten VEGF-Gradienten neue Blutgefaesse rekrutiert. Damit wird der hypoxie-induzierten Invasivitaet entgegengewirkt. Wird mittels antiangiogenetischer Behandlung versucht Tumorprogression entgegenzuwirken, resultiert daraus eine erneut gesteigerte Hypoxie, die dann durch die ZEB2 vermittelte Repression von Ephrin-B2 wieder eine erhoehte Invasivitaet induzieren kann. Das Blockieren der ZEB2 Expression kann dieser durch antiangiogenetischen Behandlung induzierten Invasivitaet entgegenwirken.
Exploring the in vivo subthreshold membrane activity of phasic firing in midbrain dopamine neurons (2021)
Otomo, Kanako
Dopamine is a key neurotransmitter that serves several essential functions in daily behaviors such as locomotion, motivation, stimulus coding, and learning. Disrupted dopamine circuits can result in altered functions of these behaviors which can lead to motor and psychiatric symptoms and diseases. In the central nervous system, dopamine is primarily released by dopamine neurons located in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) within the midbrain, where they signal behaviorally-relevant information to downstream structures by altering their firing patterns. Their “pacemaker” firing maintains baseline dopamine levels at projection sites, whereas phasic “burst” firing transiently elevates dopamine concentrations. Firing activity of dopamine neurons projecting to different brain regions controls the activation of distinct dopamine pathways and circuits. Therefore, characterization of how distinct firing patterns are generated in dopamine neuron populations will be necessary to further advance our understanding of dopamine circuits that encode environmental information and facilitate a behavior. However, there is currently a large gap in the knowledge of biophysical mechanisms of phasic firing in dopamine neurons, as spontaneous burst firing is only observed in the intact brain, where access to intrinsic neuronal activity remains a challenge. So far, a series of highly-influential studies published in the 1980s by Grace and Bunney is the only available source of information on the intrinsic activity of midbrain dopamine neurons in vivo, in which sharp electrodes were used to penetrate dopamine neurons to record their intracellular activity. A novel approach is thus needed to fill in the gap. In vivo whole-cell patch-clamp method is a tool that enables access to a neuron’s intrinsic activity and subthreshold membrane potential dynamics in the intact brain. It has been used to record from neurons in superficial brain regions such as the cortex and hippocampus, and more recently in deeper regions such as the amygdala and brainstem, but has not yet been performed on midbrain dopamine neurons. Thus, the deep brain in vivo patch-clamp recording method was established in the lab in an attempt to investigate the subthreshold membrane potential dynamics of tonic and phasic firing in dopamine neurons in vivo. The use of this method allowed the first in-depth examination of burst firing and its subthreshold membrane potential activity of in vivo midbrain dopamine neurons, which illuminated that firing activity and subthreshold membrane activity of dopamine neurons are very closely related. Furthermore, systematic characterization of subthreshold membrane patterns revealed that tonic and phasic firing patterns of in vivo dopamine neurons can be classified based on three distinct subthreshold membrane signatures: 1) tonic firing, characterized by stable, non-fluctuating subthreshold membrane potentials; 2) rebound bursting, characterized by prominent hyperpolarizations that initiate bursting; and 3) plateau bursting, characterized by transient, depolarized plateaus on which bursting terminates. The results thus demonstrated that different types of phasic firing are driven by distinct patterns of subthreshold membrane activity, which may potentially signal distinct types of information. Taken together, the deep brain in vivo patch-clamp technique can be used for the investigation of firing mechanisms of dopamine neurons in the intact brain and will help address open questions in the dopamine field, particularly regarding the biophysical mechanisms of burst firing in dopamine neurons that control behavior.
BMPs control postnatal dendrite growth and complexity in sympathetic neurons / von Afsaneh Majdazari (2012)
Keller, Afsaneh
The vertebrate nervous system is a complex network of billions of neurons connected by dendrites and axons, integrated to functional circuits and areas/organs in the central and peripheral nervous system. The cells of the nervous system origin from common progenitors, which take on different cell fates based on intrinsic and extrinsic factors. These factors determine general neuronal traits, but also the morphology and the type of connections made to other cells. Mechanisms underlying axonal and dendritic growth are well described in contrast to the initiation of neurite growth, which remains to be fully elucidated, especially concerning dendrite formation. Recently BMPs have been identified as candidate dendrite inducing factors in sympathetic, cortical and hippocampal neurons. Here we focus on the in vivo role of BMPs on dendrite growth in sympathetic neurons as their development and differentiation processes have been analyzed in detail.
Function of ephrinBs in Reelin signaling during nervous system development and plasticity (2013)
Pfennig, Sylvia
Nervous system development requires a sequence of processes such as neuronal migration, the development of dendrites and dendritic spines and the formation of synapses. The extracellular matrix protein Reelin plays an important role in these processes, Reelin regulates for example the migration of neurons from proliferative zones to their target positions in the brain. As a consequence, layered structures are formed in the neocortex, the hippocampus and cerebellum (Lambert de Rouvroit et al., 1999). Reelin exerts its functions by binding to two transmembrane receptors, apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR). This binding causes phosphorylation of the intracellular adapter protein Disabled-1 (Dab1) (D’Arcangelo et al., 1999) via activation of Src-family kinases (SFKs) (Bock and Herz, 2003), leading to cytoskeletal reorganization which enables cell migration and morphological changes (Lambert de Rouvroit and Goffinet, 2001). Since ApoER2 and VLDLR do not possess intrinsic kinase activity to activate SFKs, the existence of a co-receptor was suggested. EphrinBs are transmembrane ligands for Eph receptors and have signaling capabilities required for axon guidance (Cowan et al., 2004), dendritic spine maturation (Segura et al., 2007) and synaptic plasticity (Essmann et al., 2008; Grunwald et al., 2004). As stimulation of cultured cortical neurons with soluble EphB receptors causes recruitment of SFKs to ephrinB-containing membrane patches and SFK activation (Palmer et al., 2002), we investigated whether ephrinB ligands would be the missing co-receptors in the Reelin signaling pathway functioning during neuronal migration, dendritic spine maturation and synaptic plasticity. We found that the extracellular part of ephrinBs directly binds to Reelin and that ephrinBs interact with Dab1, phospho-Dab1, ApoER2 and VLDLR. EphrinB3 is localized in the same neurons as ApoER2 and Dab1 in the cortex and hippocampus, and in the cerebellum ephrinB2 is detected in neurons that express Dab1. To investigate the requirement of ephrinBs for neuronal migration, triple knockout mice lacking all ephrinB ligands were analyzed. The cortical layering of ephrinB1, B2, B3 knockout brains is inverted, showing the outside-in pattern typical for the reeler cortex. The hippocampus and cerebellum of triple knockout mice also exhibit reeler-like malformations, although less penetrant than the cortical defects. Dab1 phosphorylation is impaired in mice lacking ephrinB3 and this effect is strongly enhanced in neurons lacking all ephrin ligands. Moreover, activation of ephrinB3 reverse signaling induces Dab1phosphorylation in reeler primary neurons. In agreement with an important regulatory function of ephrinBs in Reelin signaling, activation of ephrinB3 reverse signaling is even able to rescue reeler defects in cortical layering in organotypic slice cultures. In summary, all these results identify ephrinBs as co-receptors for Reelin signaling, playing essential roles in neuronal migration during the development of cortex, hippocampus and cerebellum (Sentürk et al., 2011).
BRAG2, an Arf GEF, regulates integrin-dependent endothelial adhesion and is involved in developmental and pathological angiogenesis (2013)
Manavski, Yosif
ß1-integrins are essential for angiogenesis but the mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. BRAG2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of BRAG2 in EC and angiogenesis and the underlying molecular mechanisms remains unclear. siRNA-mediated BRAG2-silencing reduced EC angiogenic sprouting and migration. BRAG2-siRNA-transfection differentially affected a5ß1- and aVß3-integrin function: specifically, BRAG2-silencing increased focal/fibrillar adhesions and EC adhesion on ß1-integrin-ligands (fibronectin and collagen), while reducing the adhesion on the aVß3-integrin-ligand, vitronectin. Consistent with these results, BRAG2-silencing enhanced surface expression of a5ß1-integrin, while reducing surface expression of aVß3-integrin. Mechanistically, BRAG2 mediated recycling of aVß3-integrins and endocytosis of ß1-integrins and specifically of the active/matrix bound a5ß1-integrin present in fibrillar/focal adhesions (FA), suggesting that BRAG2 contributes to the disassembly of FA via ß1-integrin-endocytosis. Arf5 and Arf6 are promoting downstream of BRAG2 angiogenic sprouting, ß1-integrin-endocytosis and the regulation of FA. In vivo silencing of the BRAG2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitral injection of plasmids containing BRAG2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveals that BRAG2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating ß1-integrin internalization and associates for the first time the process of ß1-integrin endocytosis with angiogenesis.
The role of Vegfc signaling during cardiac regeneration in zebrafish (2022)
El Sammak, Hadil
Ischemic heart disease caused by occlusion of coronary vessels leads to the death of downstream tissues, resulting in a fibrotic scar that cannot be resolved. In contrast to the adult mammalian heart, the adult zebrafish heart can regenerate following injury, enabling the study of the underlying cellular and molecular mechanisms. One of the earliest responses that take place after cardiac injury in adult zebrafish is coronary revascularization. Previous transcriptomic data from our lab show that vegfc, a well-known regulator of lymphatic development, is upregulated early after injury and peaks at 96 hours post cryoinjury, coinciding with the peak of coronary endothelial cell proliferation. To test the hypothesis that vegfc is involved in coronary revascularization, I examined its expression pattern and found that it is expressed by coronary endothelial cells after cardiac damage. Using a loss-of-function approach to block Vegfc signaling, I found that it is required for coronary revascularization during cardiac regeneration. Notably, blocking Vegfc signaling resulted in a significant reduction in cardiomyocyte regeneration. Using transcriptomic analysis, I identified the extracellular matrix component gene emilin2a and the chemokine gene cxcl8a as effectors of Vegfc signaling. During cardiac regeneration, cxcl8a is expressed in epicardium-derived cells, while the gene encoding its receptor cxcr1 is expressed on coronary endothelial cells. I found that overexpressing emilin2a increases coronary revascularization, and induces cxcl8a expression. Using loss-of-function approaches, I observed that both cxcl8a and cxcr1 are required for coronary revascularization after cardiac injury. Altogether, my findings indicate that Vegfc acts as an angiocrine factor that plays an important role in regulating cardiac regeneration in zebrafish. Mechanistically, Vegfc promotes the expression of emilin2a, which promotes coronary proliferation, at least in part by enhancing Cxcl8a-Cxcr1 signaling. This study helps in understanding the mechanisms underlying coronary revascularization during cardiac regeneration, with promising therapeutic applications for human heart regeneration.
Understanding cellular and molecular mechanisms of zebrafish cardiomyocyte integrity and valve interstitial cells differentiation (2022)
Gentile, Alessandra
The heart is the first functional organ that develops in the embryo. To become a functional organ, it undergoes several morphogenetic processes. These morphogenetic events involve different cell types, that interact with each other and respond to the surrounding extracellular matrix, as well as intrinsic and extrinsic mechanical forces, assuming different behaviors. Additionally, transcription factor networks, conserved among vertebrates, control the development. To have a better understanding of cell behavior during development, it is necessary to find a model system that allows the investigation in vivo and at single-cell resolution. Thanks to the common evolutionary origin of the different cardiac structures, together with the conserved molecular pathways, the two-chambered zebrafish heart offers many advantages to study cell behavior during cardiac morphogenesis. Here, using the zebrafish heart as a model system, I uncovered the cell behavior behind two of the main cardiac morphogenetic events: cardiac wall maturation and cardiac valve formation. In the first part of this study, I investigated how the cardiac wall is maintained at the molecular level. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required for myocardial wall integrity. Global loss of snai1b leads to the extrusion of CMs away from the cardiac lumen, a process we show is dependent on cardiac contractility. Examining CM junctions in snai1b mutants, we observed that N-cadherin localization was compromised, thereby likely weakening cell-cell adhesion. In addition, extruding CMs exhibit increased actomyosin contractility basally, as revealed by the specific enrichment of canonical markers of actomyosin tension - phosphorylated myosin light chain (active myosin) and the α-catenin epitope α-18. By comparing the transcriptome of wild-type and snai1b mutant hearts at the early stages of CM extrusion, we found the dysregulation of intermediate filament genes in mutants including the upregulation of desmin b. We tested the role of desmin b in myocardial wall integrity and found that CM-specific desmin b overexpression led to CM extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 is a critical regulator of intermediate filament gene expression in CMs and that it maintains the integrity of the myocardial epithelium during embryogenesis, at least in part by repressing desmin b expression. In the second part of this study, I focused on the behavior of valve cells during cardiac development. Using the zebrafish atrioventricular valve, I focus on the valve interstitial cells which confer biomechanical strength to the cardiac valve leaflets. We find that initially AV endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the extracellular matrix (ECM) between the two EC monolayers, undergo an endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a pro-migratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b, a well-known regulator of epithelial-to-mesenchymal transition. This study shows for the first time that Nfatc1 regulates zebrafish VICs formation regulating valve EMT in part by regulating twist1b expression. Moreover, it proposes the zebrafish valve as an excellent model to study the cellular and molecular process that regulate VIC development and dysfunction. In conclusion, my work: 1) identified an unsuspected role of Snai1 in maintaining the integrity of the myocardial epithelium, opening new avenues in its role in regulating cellular contractility; 2) uncovered the function of Nfatc1 in the establishment of the VIC, establishing a new model to study valve development and function.
Targeted local combination therapy with checkpoint inhibitors and CAR-NK cells in glioblastoma using DARPin-linked AAV vectors (2022)
Strecker, Maja Isabelle
With 5-10 newly diagnosed patients per 100,000 people every year, glioblastoma is the most common malignant primary brain tumor. Despite extensive research activity in the last decades, clinical effectiveness of the currently available therapy standard of surgery, radiochemotherapy and tumor-treating fields is still limited and mean survival rates in unselected collectives are only about one year. Accordingly, there is an urgent need to explore new therapeutic options. The current standard of care includes surgery followed by radiation therapy in combination with the alkylating chemotherapeutic agent Temozolomide. Even with successful initial therapy, tumor recurrence is still inevitable. Currently, there are no defined recommendations for clinical management of the disease in the event of tumor recurrence. Only 20-30% of patients qualify for a second surgical resection, while other options include retreatment with Temozolomide, CCNU (Lomustine) or Regorafenib and enrollment in a clinical trial. The development of immunotherapies for glioblastoma, in particular, has been the focus of intense preclinical and clinical efforts. However, low numbers of mutations and a highly immunosuppressive tumor microenvironment result in glioblastoma being considered an immunologically “cold” tumor. Strategies successfully established in mutagen-induced tumors with antibodies directed against the PD-1, PD-L1 or CTLA-A4 immune checkpoints have therefore failed in glioblastoma. Cellular immunotherapies based on chimeric antigen receptor (CAR)-technology have emerged as an alternative powerful option to tackle immunologically “cold” tumors. Several CAR-T cell products targeting glioma antigens have been developed and some evidence of clinical activity has been demonstrated. Natural killer (NK) cells as carriers of CAR constructs have several advantages over T cells, including a much lower risk of neurotoxicity and better interaction with immune cells in the microenvironment. Based on the human NK cell line NK-92, a clinical-grade product, suitable as an off-the-shelf therapeutic, has been developed. The NK-92/5.28.z clone (CAR-NK) expresses a CAR based on the HER2-specific antibody FRP5 in addition to signal-enhancing CD28 and CD3ζ domains. Similar to several other tumor entities, overexpression of the growth factor receptor HER2 is often found in glioblastoma patients. Because of its substantial role in the regulation of cell proliferation, survival, differentiation, angiogenesis and invasion, this receptor is classified as an oncogene. HER2 overexpression plays a major role in the malignant transformation of cells and its oncogenic potential has been studied in detail in breast cancer. However, HER2 expression was also found in up to 80% of glioblastomas, which correlates with an impaired probability of survival. Under physiological conditions, HER2 is not expressed in the adult central nervous system, making it a promising target antigen for glioblastoma immunotherapy. In previous projects, it has already been shown that these CAR-NK cells exhibit a high and specific lytic activity towards HER2+ glioblastoma cells. While repetitive intratumoral injections of CAR-NK cells already significantly extended symptom-free survival in murine orthotopic xenograft models, CAR-NK cell therapy in immunocompetent mice promotes an endogenous anti-tumor immune response which improves tumor control and provides persisting anti-tumor immunity after therapy of early-stage tumors. However, in more advanced tumor models, efficacy is limited and induction of the checkpoint-molecule PD-L1 in response to CAR-NK-cell therapy was identified as a key mechanism of therapy resistance. Immunotherapy employing the intravenous administration of checkpoint inhibitors has already revolutionized the treatment of various malignant diseases such as melanoma or lung cancer. In particular, the approach of cancer immunotherapy has focused on the systemic administration of antibodies directed against immune checkpoints such as PD-1, PD-L1 and CTLA-4. In glioblastoma, both tumor cells and microglia, the brain-resident macrophages, express PD-L1, which hinders the activation of CD8+ and CD4+ T cells. Therefore, immunotherapy directed against the PD-1/PD-L1 axis represents a promising approach for the treatment of glioblastoma. One problem, however, is the severe toxicity caused by the systemic effects of checkpoint inhibitors, since the immune response is stimulated not only in tumor tissue but also in healthy organs. Serious side effects such as colitis, hepatitis, pancreatitis or hypophysitis, including numerous deaths, have been reported. This study aimed to improve the efficacy of CAR-NK cell therapy by combining it with adeno-associated virus (AAV)-mediated transfer of anti-PD-1 antibodies as a strategy to enable local combination therapy to control intracranial tumors. AAVs carrying a payload coding for an anti-PD-1 immunoadhesin (aPD-1) retargeted to HER2-expressing cells by fusion of so-called Designed Ankyrin Repeat Proteins (DARPins) with a viral capsid protein were employed for this to focus checkpoint inhibitor therapy to the tumor area, resulting in high intratumoral and low systemic drug concentrations. ...
Metabolically induced neuronal differentiation (2021)
Maurer, Sandy
In recent years, several neuronal differentiation protocols were published that circumvent the requirement of embryoid body (EB) formation under serum-deprivation and simplified medium conditions. But a neuronal default model to establish an approach that works efficiently for all pluripotent cells and neuronal precursors is still lacking. Whether such a default neural mechanism exist and how this is implemented across a broad spectrum of cell source, is addressed in several studies and still controversially discussed. It was proposed that the default neuronal fate is initiated in the absence of extrinsic signals and is achieved by eliminating extracellular inhibitors of neuroectodermal fate and suppressing cell-cell signalling through limited cell density. Previous studies reported that ESC and ECC grown at low density and in absence of exogenous factors or feeder layers die within 24 h but acquire a neural identity as indicated by expression of the neural marker Nestin. Thus, this application is not suitable for generating neural cultures. Furthermore, it was reported that P19 cells survive and express neuroectodermal marker genes in serum-free DMEM/F12 medium containing transferrin, insulin, and selenite, although no neurites were identified. Based on this background, in this study, a novel approach to induce neuronal differentiation in vitro was developed that implements a nutrient-poor environment, which, in contrast to previous studies, ensures the survival of neuronally differentiated cells over a long period of time and allows normal formation of neurites. Neither the formation of free-floating aggregates nor supplementation of growth factors or known inducers was required to establish a reliable neuronal differentiation protocol. A simple medium, consisting of DMEM/F12+N2 that was highly diluted in salt solution, was sufficient to drive a fast neuronal differentiation in monolayer cultures. Serum deprivation and strong dilution of DMEM/F12+N2 medium cause a nutrient-poor environment in which the influence of growth factors and inducers is minimized. This medium creates a metabolically defined environment that is presumably free of extrinsic signals that prevent the decision of neuronal fate. Analysis of the medium components discovered no actual inducer. Hence, it was suggested that the metabolic composition of the medium exclusively covers specific cell requirements of neurons, therefore ensures their survival, and drives the switch from pluripotent cells to neurons. The self-developed method was established by usage of the murine embryonal carcinoma cell line P19 and could be transferred to murine ESC. Consequently, the method could provide a feasible protocol for a generally valid neuronal default model. The established protocol provides several advantages such as the possibility to generate stable pure neuronal cultures by a fast, simple, and highly reproducible one-step induction under defined medium conditions with a minimum of exogen effectors. The method is characterised by clear and steady medium conditions that makes the investigation of specific cell requirements during differentiation accessible. It is therefore expected to be a useful tool to investigate the molecular basis of neuronal differentiation as well as for high throughput screenings. The phenotype of mature postmitotic neurons was arising within one week and cultures were shown to stay stable at least for three weeks. The neuronal identity was confirmed by expression of neuronal markers through immunofluorescence staining and mass spectrometry analysis. Furthermore, increased levels of axon markers were detected in early neuronal differentiation and functionality of the synapses of the P19-derived neurons was ascertained by detection of calcium activity. Axonal laser ablation, immediately followed by fast regrowth of connections in the neuronal network, revealed a strong regeneration potential under the given conditions. Furthermore, the generated neurons showed a morphologically distinct phenotype and the formation of neural rosettes. Immunofluorescence staining demonstrated the generation of pure and homogeneous neuronal cultures, free of glial cells. Retinoic acid (RA) plays an essential role in cell signalling during embryogenesis and efficiently induces neuronal differentiation in vitro in a concentration dependent manner. Neither retinol nor retinoic acid was included in any of the components of the self-prepared medium in this work. However, I observed, dependence on RARβ- and/or RARγ-regulated RA signalling in serum-free monolayer cultures. Nevertheless, neuronal differentiation in serum-free monolayer cultures was assumed to be RARα-independent because (i) RARα was slightly downregulated after neuronal induction, (ii) the truncated RARα of the RAC65 mutant had no effect on induction efficiency, and (iii) a pan-RAR inhibitor suppressed neuronal differentiation. In contrast to serum-free monolayer cultures, the truncated RARα prevented neuronal differentiation by application of the conventional protocol where cells are grown in free floating cell aggregates in serum-containing medium. Proteome analysis of P19 cells, treated by the self-developed differentiation protocol over five days showed increased levels of cellular RA binding proteins that mediate the cellular RA transport and are involved in canonical as well as non-canonical RA signalling. ...
Functional analysis of purinergic signaling in the control of adult neurogenesis in mice : the hippocampal and hypothalamic neurogenic niche (2016)
Stefani, Jennifer
In the adult mammalian brain stem cells within defined neurogenic niches retain the capacity for lifelong de novo generation of neurons. The subventricular zone (SVZ) of the lateral ventricles and the subgranular layer (SGL) of the hippocampal dentate gyrus (DG) have been identified as the two major sites of adult neurogenesis. Moreover, the third ventricle in the hypothalamus is emerging as a new neurogenic niche in the adult brain. Extracellular purine and pyrimidine nucleotides are involved in the control of both embryonic and adult neuro-genesis. These nucleotides act via ionotropic P2X or metabotropic P2Y receptors and studies of the adult SVZ and the DG provide strong evidence that ATP promotes progenitor cell proliferation in this stem cell rich regions. Previous studies have shown that the extracellular nucleotide-hydrolyzing enzyme NTPDase2 is highly expressed by adult neural stem and progenitor cells of the SVZ and the rostral migratory stream (RMS), the hippocampal SGL, and the third ventricle. NTPDase2 preferentially hydrolyzes extracellular nucleoside triphosphates (NTPs) and, to a lower extent, diphosphates, thus modulating their effect on nearby nucleotide receptors. Deletion of the enzyme increases extracellular NTP concentrations, and might indicate roles of purinergic signaling in adult neurogenesis. As shown by enzyme histochemistry, genetic deletion of NTPDase2 essentially eliminates ATPase activity in neurogenic niches but does not affect protein expression levels and activity of other ectonucleotidases. Lack of NTPDase2 leads to expansion of the hippocampal stem cell pool as well as of the inter-mediate progenitor type-2 cells. Cell expansion is lost at around type-3 stage, paralleled by increased labeling for caspase-3, indicating increased apoptosis, and decreased levels in CREB phosphorylation in doublecortin-expressing cells, diminishing survival in this cell population. In line with increased cell death, P2Y12 receptor-expressing microglia is enriched at the hilus orientated side of the granule cell layer. These data strongly suggest that NTPDase2 functions as central homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion in the adult brain by balancing extracellular nucleotide concentrations and activation of purinergic receptors. In order to further characterize the role of purinergic signaling in adult neurogenesis, the ADP-sensitive P2Y13 receptor was identified as a potential candidate whose activation might inhibit neurogenesis in the hippocampal dentate gyrus and the newly identified neurogenic niche at the third ventricle. Deletion of P2ry13 increased progenitor cell proliferation and long-term progenitor survival as well as new neuron formation in the hippocampal neurogenic niche. This was further paralleled by increased thickening of the granule cell layer, CREB phosphorylation, and expression of the neuronal activity marker c-Fos. Increased progenitor cell proliferation and progenitor survival persist in aged P2ry13 knockout animals. However, in the ventral dentate gyrus proliferation and expansion levels of progenitor cells did not differ significantly from the wild type. This study strongly supports the notion that extracellular nucleotides significantly contribute to the control of adult neurogenesis in the dentate gyrus in situ. Data in this work suggest that activation of the P2Y13 receptor dampens progenitor cell proliferation, new neuron formation, and neuronal activity. In contrast to several in vitro studies and studies in the SVZ in situ, a contribution of the ATP/ADP-sensitive P2Y1 receptor could not be confirmed in the dentate gyrus in vivo. To unravel implications of purinergic signaling and P2Y13 receptor action in the control of adult hypothalamic neurogenesis a pilot study was performed. Mice null for P2ry13 revealed increased progenitor cell proliferation at the third ventricle as well as long-term progeny survival and new neuron formation in the hypothalamus. In contrast to results obtained in the dentate gyrus expression of the neuronal activity marker c-Fos was significantly decreased in hypothalamic nuclei, indicating increased inhibition of appetite-regulating neuronal circuits by surplus neurons in knockout animals. These data provide first evidence that extracellular nucleotide signaling contributes to the control of adult hypothalamic neurogenesis in situ. Activation of the P2Y13 receptor inhibits progenitor cell proliferation, long-term survival and neuron formation and therefore controls inhibition of appetite-regulating circuits in the adult rodent hypothalamus.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks