Refine
Document Type
- Doctoral Thesis (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Biomineralization (1)
- Carbonate (1)
- Carbonated apatite (1)
- Clumped isotopes (1)
- Eurasia, Mediterranean, Miocene, Paleoclimate, Biomarkers, Stable isotopes (1)
- Middle Miocene (1)
- geology (1)
- paleoanthropology (1)
- paleoecology (1)
- paleontology (1)
Institute
The stable isotope geochemistry of pedogenic and lacustrine carbonate and fossil herbivore tooth enamel is a powerful tool to study the evolution of terrestrial paleoenvironments. This thesis aims to reconstruct Neogene ecosystems in the Karonga Basin in the southern part the East African Rift (EAR) and the Central Anatolian Plateau (CAP).
Karonga Basin: Understanding the development of East African savanna biomes is crucial for reconstructing the evolution, migration and dietary behaviors of early hominins. These rift ecosystems range from closed woodland to open grassland savanna and vary widely in fraction of woody cover. Here I present Plio-Pleistocene carbon (δ13C) and oxygen (δ18O) records from pedogenic carbonate and fossil herbivore tooth enamel collected from the Malawi Rift. This is the first southern hemisphere long-term record in the East African Rift.
The studied ca. 4.3 Ma to 0.6 Ma deposits of the Chiwondo Beds (Karonga Basin) are home to two hominin fossil finds, a maxillary fragment of Paranthropus boisei and a mandible of Homo rudolfensis, both dated to ca. 2.4 Ma. The study site is situated between the well-known hominin-bearing localities of eastern and southern Africa and hence fills an important geographical gap for early hominin research.
The δ13C values of pedogenic carbonate (n = 321) and of enamel from 14 different large-bodied herbivorous mammal taxa (suid, equid, bovid, elephant an hippopotamus; n = 122) permit assessment of the evolutionary history of C3 and C4 biomass, which is closely linked to climate patterns. The reconstruction of C4-grassland development offers insights into the retreat of tree cover and the distribution and seasonality of precipitation. δ18O values reflect hydrological patterns, and we supplement the data of fossil proxy material with analyses of modern meteoric water to evaluate influences of seasonality and evaporation.
Consistent δ13C values around -9‰ and δ18O values of ca. 24‰ of the pedogenic carbonate from 14 sections spanning the last 4.3 Ma indicate a relatively mesic and persistent climate with C3-dominated woodland savannas in the Karonga Basin. The data from tooth enamel of suid, elephant, and hippo taxa complement these findings with constantly low δ13C and δ18O values, demonstrating intake of mainly C3 biomass and water from sources which are only very limited affected by evaporation.
In contrast, Karonga Basin equid and bovid taxa reflect much more complex dietary patterns, ranging from mixed C3/C4-feeders to strongly C4-influenced diets. Intra-tooth δ18O values also show large variations, indicating water intake from resources that differ in their isotopic composition and therefore experienced different hydrological settings.
Overall, the stable isotope data reflect a mostly C3-dominated mesic paleoecosystem, which comprises patches of more open C4-grasslands within the range of migrating mammals. Supplementary analyses of δ18O values of modern meteoric water (precipitation, lake, river and groundwater; n = 111) show a similar magnitude to the fossil herbivore oxygen isotopic values. Expected 18O values of the drinking water calculated from herbivore enamel of animals with a mixed- or C3-diet indicate water intake from barely evaporated sources. Specialized feeders with a high C4-consumtion, however, reflect s|||||||||||||||||||||values of 16O-depleted reservoirs, similar in δ18O |||||||||||| to modern evaporated lakes.
The absence of long-term trends towards more positive δ13C and δ18O values in the Karonga Basin contrasts the increasing role of C4-grasslands since ca. 2.5 Ma in the Eastern Rift. Our data hence point to regional differences in climate and vegetation dynamics during the Plio-Pleistocene. Therefore, regions that are home to early hominins such as H. rudolfensis and P. boisei may have had a different environmental history when compared to the Eastern Rift. This suggests that hominin adaptation is not necessarily directly linked to the emergence of open landscapes.
Central Anatolian Plateau: The development of relief and climate patterns in the Central Anatolian Plateau is long-standing debate in modern paleoecological studies. This thesis presents long-term δ13C and δ18O records on five lacustrine successions, which are widely distributed across the CAP. Also, new 40Ar/39Ar geochronological data from volcanic ashes are established in addition to existing biostratigraphic and paleomagnetic data.
Field relationships combined with stable isotope data of 230 lacustrine carbonates indicate a Late Oligocene environment that was characterized by large, temporally open freshwater lakes in a relatively humid subtropic climate. In the middle Aquitanian, an increase in lake δ18O values reflects more arid settings and an overall increasing dominance of closed saline lakes. This time was probably characterized by frequent climatic fluctuations, recording the influence of seasonality, topography and the waxing and waning of aridity.
Enhanced aridification of Central Asia driven by the combined effects of orogenic surface uplift, Paratethys retreat, changes in atmospheric moisture transport and global cooling is one of the most prominent Cenozoic climate change events of the Northern Hemisphere. Deciphering regional long-term patterns of Central Asian hydrology is, therefore, a key element in understanding the role of Northern Hemisphere mid-latitude drying in the global hydrological system. Pedogenic carbonates record information of the paleoecosystem, the paleogeography, hydrology, tectonic and climatic conditions as well as the sedimentary regime during the time in which they formed. The calcrete-bearing paleosols in continental sedimentary basins yield the possibility for understanding these processes, mechanisms and controlling factors. This study characterizes long-term paleoenvironmental conditions between the late Oligocene and early Miocene in SE Kazakhstan based on stable isotopes, elemental geochemistry and laser ablation U-Pb geochronology from alluvial, fluvial and pedogenic deposits. The main topics addressed in this thesis are paleosol and calcrete formation processes in the light of geochemistry, tectonic and climatic influences on both, as well as the paleoenvironmental and hydrological conditions which led to these processes.
The sedimentological succession of the 14 km-long Kendyrlisai Valley in the Ili Basin, SE Kazakhstan in Central Asia, yields exceptional well-developed paleosols which provide an insight into the relationship between tectonics and sedimentation as well as soil formation processes. The valley accommodates more than 600 m of siliciclastic sediments deposited in a fluvial to alluvial environment in the lower part which grade into lacustrine to fluvial deposition with minor gypsum accumulation in the upper part. The yet undated sediments of Kendyrlisai Valley are compared with a biostratigraphically dated and well described succession in an adjacent location. The correlation of the two successions revealed a proximal-distal relation with the Kendyrlisai Valley succession represents the basin margin position with coarse alluvial-fluvial sediments. The calcrete nodules in Kendyrlisai Valley paleosols give the opportunity of U-Pb dating with LA-ICP-MS which uses the variation in both U and Pb to directly date the calcite. The U-Pb dating revealed a late Oligocene-early Miocene age for the investigated section. The analysis of facies and geochemistry of the paleosol profiles in Kendyrlisai Valley gives insight into calcretization stages, pedogenic processes and landscape stability. Kendyrlisai Valley paleosols show a low to moderate weathering intensity with the highest weathering intensity between 0.5 and 0.8 m depth in the paleosol profile. The comparison between acid leachable and non-acid leachable fraction indicate an incorporation of Ca and Ba in incipient calcrete calcite, whereas clay minerals adsorb Mg and Sr. During the evolution from early to more mature calcrete stages, i.e. calcrete nodules, Ba is lost by dissolution and subsequently adsorbed on clay minerals. The nodules consist almost exclusively of pure calcium carbonate with rare substitution of Ca by Mg indicating a constant supply of Ca by weathering and solution during calcrete formation. The occurrence of Mg-bearing clay minerals indicates high evaporative conditions with alkaline waters (pH >9).
Sampled calcrete nodule cross sections reveal more than one weathering and calcrete formation phase with a higher supply of Ca, Mg and Fe during early phases. The organic and inorganic carbon isotope composition of the calcrete nodules reflects C3 metabolism under occasionally moisture stress, resulting in higher δ13C values and lower respiration rates. This study also presents calculated atmospheric pCO2 values from the calcrete nodules with the equation from Cerling et al. (1999). The average calculated CO2 concentration for Kendyrlisai Valley paleosols is 313 ± 110 ppmv. The comparison with data from other studies during the late Oligocene–early Miocene reveal lower values for Kendyrlisai Valley paleosols, which may stem from an underestimation of the plant-respired CO2.
The knowledge of the variability within the paleosols and calcrete nodules enables a reliable paleoclimatic interpretation for the Kendyrlisai Valley and beyond the Ili Basin. Sedimentary facies and geochemical weathering indices suggest an increased surface and groundwater discharge fed by orographically-enhanced precipitation in the Tien Shan hinterland. In contrast, pedogenic stable isotope data and elevated rates of Mg fixation in clay minerals mirror enhanced rates of evaporation in the vadose zone due to protracted aridification. This study posits that pronounced surface uplift of the Tien Shan Mountains during the Oligocene–Miocene transition promoted regionally increased orographic precipitation and the development of fluvial discharge systems.
The comparison with other studies in adjacent basins creates a precipitation pattern for Central Asia during the late Oligocene to early Miocene. The westerlies supplied Central Asia with atmospheric moisture from the West, possibly from the Eastern Paratethys. The uplifting Tien Shan Mountain ranges captured this moisture on their luv-side, resulting in a pronounced orographic rainfall in the adjacent Ili and Issyk Kul Basins. The Tarim Basin and the Valley of Lakes experienced drier conditions due to the rain shadow effect on the lee-side of the Tien Shan and Altai Mountains. In course of this findings, the thesis highlights the crucial role the Tien Shan Mountains play and had been playing in former times as an orographic barrier for the distribution of atmospheric moisture across Central Asia.
This thesis addresses the reconstruction of the topographic evolution and the climate dynamics of the Early Cenozoic North American Cordillera through integrated geochronology, sedimentology, stable isotope, and clumped isotope thermometry studies. It encompasses the scientific disciplines of geochemistry, tectonics, and Earth surface processes.
Mongolia covers a huge area in Asia and provides excellent Palaeozoic successions although large regions still lack detailed information on fauna and flora in Palaeozoic rocks. Of special interest is the Central Asian Orogenic Belt (CAOB), one of the largest collisional complexes on Earth. The CAOB is composed of a large number of terranes, continental margins, island arcs, backarc/forearc basins and accretionary wedges (Badarch et al. 2002; Safonova et al. 2017). Many terranes and regions underwent strong metamorphism, such as areas north of the Main Mongolian Lineament. To the south, Palaeozoic rocks exhibit low-grade metamorphism, thrusting and folding. Two promising long successions of Palaeozoic rocks were studied, namely the Hushoot Shiveetiin gol section and the Bayankhoshuu Ruins section. The intention of the PhD was to study marine facies settings in Palaeozoic rocks of southern and southwestern Mongolia, in an area little is known in terms of biostratigraphy and events. In order to get a better understanding on events and what might have been the driving forces I studied sections in Mongolia which have not been in the focus of research in the last decades. In order to complement studies on Late Devonian events elsewhere, I decided to study sections in open ocean environments (CAOB), far away from mainly studied epicontinental areas.As stated in many publications, events are the driving force for evolution. They exhibit dramatical changes in the palaeontological record of organisms and they are often associated with dramatic extinctions (Walliser 1996) and anoxic sediments (but not always). Mass extinctions are episodes in which a large number of plant and animal species became extinct within a few thousand to a hundred thousand years. Most events (first and second order events) are traceable worldwide. For instance, in the Late Devonian, mass extinction events recognized at the Frasnian–Famennian (F/F) stage boundary and at the Devonian–Carboniferous (D/C) boundary (McLaren and Goodfellow 1990; Sepkoski 1996; Walliser 1996). Overall, 19% of all families, 50% of all genera and at least 70% of all species became extinct (Raup and Sepkoski 1982; Sepkoski 1996; McGhee et al. 2013), but extinctions also concerned palaeoecosystems and due to Late Devonian events whole coral/stromatoporoid reef ecosystems became extinct. What might be the reason(s) for these dramatical changes? Why did the carbonate factory brake down? There are several reasons which have been discussed. For instance, extraterrestrial bolide impacts (McLaren 1970), anoxia within the water column due to climate changes (House 1985; Becker and House 1994; Caplan and Bustin 1999; Bond and Wignall 2005), transgressions and regressions (Newell 1967; Hallam and Wignall 1999; Purdy 2008; Ruban 2010, 2013; Smith and Benson 2013), eutrophication and increased sediment transport (Joachimski et al. 1993; Schobben et al. 2016), explosive volcanism (Paschall et al. 2019) and/ or large igneous provinces (LIP’s, Ernst et al. 2019; Racki et al. 2020, among others) and much more has been considered. The main problem is that previous studies preferably have been done along former epicontinental margins between Laurassia and Gondwana. Less information is available in deep open oceanic successions and shallow-water areas around island arcs. Generally, events are characterized by bituminous rocks, such as black limestones and shales within marine realms, but they do not necessarily occur everywhere (see Carmichael et al. 2016). So, the question was: “Can we recognize Palaeozoic event layers or equivalents in the CAOB?” If so, is this comparable to already published data? What might be the main trigger, as there are many reasons still in discussion? And finally, what has happened in the aftermath of those events as it seems that the CAOB may have acted as a refugium for at least some groups, such as for crinoids (Waters and Webster 2009; Tolokonnikova and Ernst 2010). In this thesis, I will provide data from isolated ecosystems from a rather unstudied region, which will complement studies from other parts of the World.
Despite mounting evidence of the anthropogenic influence on the Earth's climate, underlying mechanisms of climate change often remain elusive. The investigation of periods of rapid climate change from geological archives may provide crucial information about magnitude, duration, teleconnections of and regional responses to global and hemispheric scale climate perturbations. Thus, paleoclimate reconstructions may help in mitigating and adapting to the challenges of the coming decades. The '8.2 kyr B.P. climatic event' has previously been proposed as a possible analogue for the future climatic scenario of a reduced Atlantic Meridional Overturning Circulation (AMOC). The catastrophic drainage of the Laurentide meltwater lakes through the Hudson Bay and into the Labrador Sea, that occurred ca. 8.47 kyr B.P., caused the slowdown of the AMOC around 8.2 kyr B.P.. Subsequently, reduced heat transfer towards Europe triggered a substantial decline in (winter) temperature and pronounced changes in atmospheric circulation patterns in many regions of the northern hemisphere, especially the North Atlantic realm and Europe. Among the regions affected by the 8.2 kyr B.P. climatic event, the Eastern Mediterranean region is of particular interest for both past and future climate developments. Traditionally characterized as a region highly sensitive to variations in the climate systems of the high and low latitudes, abrupt climate changes have the potential to strongly alter atmospheric circulation patterns and thus precipitation distribution in the region that may have severe socioeconomical consequences. The analysis of stable hydrogen (δD) and oxygen isotopes (δ18O) in precipitation is an excellent tool to trace changes in atmospheric circulation. Here, we present a comparative study of δD and δ18O in precipitation from the Eastern Mediterranean region both in a present day scenario and during the 8.2 kyr B.P. climatic event. We analyze the influences of topography, air mass trajectory, climate and seasonality among others the stable isotopic compositions of meteoric waters from the Central Anatolian Plateau (CAP), Turkey, in order to create a first-order template which may serve as a reference against which paleoenvironmental proxy data may be more accurately interpreted and tested. Further, we employ a multiproxy approach on the early Holocene peat deposits of the classical site of Tenaghi Philippon (TP), NE Greece, to investigate paleoenvironmental responses to northern hemisphere cooling during the 8.2 kyr B.P. climatic event and aim to determine changes atmospheric circulation from δD of leaf wax n-alkanes (δDwax).
Based on δD and δ18O data from more than 480 surface water samples from the CAP, we characterize moisture sources affecting the net isotopic budget of precipitation, manifesting in a systematic north-south difference in near-sea level moisture compositions. Rainout, induced by the major orographic barriers of the plateau, the Pontic Mountains to the north and the Taurus Mountains to the south, strongly shape the modern patterns of δD and δ18O. Stable isotope data from the semi-arid plateau interior provide clear evidence for an evaporitic regime that drastically affects surface water compositions. Strong evaporative enrichment contrasts rainfall patterns along the plateau margins, in part obfuscating the effects of topography and air mass trajectory.
Consequently, in order to address possible influences of evaporation on δD and δ18O in paleoprecipitation from TP, we analyze n-alkane abundances and distributions along with stable carbon isotope compositions of total organic carbon (δ13CTOC) and palynological data to estimate surface moisture conditions during the early Holocene (ca. 8.7 - 7.5 kyr B.P.) and especially during the 8.2 kyr B.P. climatic event. A period of relatively dry surface conditions from ca. 8.7 to 8.2 kyr B.P., indicated by low values of the 'aquatic index' (Paq ) and by elevated Average Chain Length (ACL) values, in concert with elevated δ13CTOC values, precedes the 8.2 kyr B.P. climatic event. The event itself is characterized by slightly wetter, more humid conditions, as suggested by an increase in Paq values as well as reduced ACL and δ13CTOC values between ca. 8.2 and 7.9 kyr B.P.. In the upper section of the core, a distinct change in paleohydrology becomes. A steep increase in Paq and a decrease in ACL values as well as variations in δ13CTOC from 7.9 kyr B.P. onwards imply considerably elevated surface moisture levels, likely caused by the increased activity of the karstic system of the surrounding mountains. Collectively, the biomarker proxies presented here, reveal a concise picture of changing moisture conditions at TP that is consistent with palynological data and provide detailed paleoenvironmental information for the analysis of δDwax as a paleoprecipitation proxy. The long-term decline in δDwax values characterizes the lower section of the core until ca. 8.2 kyr B.P.. The 8.2 kyr B.P. climatic event itself is connected to two distinct positive hydrogen isotope excursions: a minor shift in δDwax around 8.2 kyr B.P. and a major shift in δDwax between ca. 8.1 and 8.0 kyr B.P.. The upper part of the section shows a progressive trend towards higher δDwax values. With no indication of increased evaporitic conditions at TP during the 8.2 kyr B.P. climatic event, as evident in biomarker proxies and pollen data, we link shifts in δDwax to changes in Mediterranean air mass trajectories supplying precipitation to northeastern Greece, with variations in the relative contributions of northerly derived, D-depleted moisture and southerly-derived, D-enriched moisture. Possible control mechanisms include changes in the influence of the Siberian High and differences in the influence of the African and Asian monsoon circulations on anticyclonic conditions in the Mediterranean region as well as regional inflow of moist air from the Aegean Sea.
One of the most important events in human history occurred during the Early Pleistocene: the dispersal of early hominins out of Africa and into Europe and Asia. In Western Europe, the earliest evidences of the genus Homo have been found in the Baza Basin, at the sites of Orce in the SE of the Iberian Peninsula. These sites contain fossils and lithic industry dated approximately as 1.4–1.3 Ma.While hominin remains and artifacts at Orce, as well as the accompanying fauna, have been extensively studied, the properties and evolution of the Early Pleistocene vegetation in the basin remain unknown. The general effect of climate change on the expansion of early hominins from Africa into Eurasia still remains unclear. It is not known if the Early Pleistocene climate changes and the development of glacials periods led to the extirpation of European communities, or if those communities were able to endure and persist through such adverse climatic periods. This open question highlights the need for climate and environmental analyses for the time before, during and after the first presence of Homo in Europe. This PhD thesis contributes to that need by the presentation of the first long pollen record of the Baza Basin, where the oldest hominin sites in Western Europe are found.
This Ph.D. thesis demonstrates i) the highly precise performance of refined and new analytical setups for clumped isotope analysis (Δ47 and Δ48) and ii) the applicability of clumped isotope analyses to biogenic and abiogenic carbonated apatite (Δ47) and abiogenic carbonates (Δ47 and Δ48) for research related to paleothermophysiology and paleoclimatology, whereas the overall analytical precision has been increased.
A comprehensive Δ47 dataset with 122 replicate analyses is provided from which the temperature dependence of Δ47 for (bio)apatite (Δ47-1/T2) is calculated between 1 °C and 80 °C. The temperature dependence of oxygen isotope equilibrium fractionation between carbonated synthetic apatite and water (1,000ln(αCHAP-H2O)) is experimentally determined. When applied to tooth enameloid from a modern Greenland shark (Somniosus microcephalus), a Late Miocene megatooth shark (Carcharodon megalodon), and an Upper Cretaceous Tyrannosaurus rex, reconstructed Δ47-based temperatures and δ18OH2O are in line with previously published data.
An analytical setup for highly precise clumped isotope analysis is described that allows for the simultaneous measurement of ∆47 and ∆48 in CO2 with external reproducibilities close to the respective shot-noise limits. The analyte gases originate from pure carbonates that were digested in hypersaturated orthophosphoric acid and purified using a fully automated device. Δ47 data sets with 117 replicate analyses in total on 22 pedogenic carbonate nodules from two Spanish Middle Miocene sections reveal the continental Southern European thermal structure during the end of the Middle Miocene Climatic Optimum (MCO) and the complete Middle Miocene Climatic Transition (MMCT; from 15.33 to 12.98 Ma).
This thesis is focusing on the impact of Paratethys and Mediterranean water bodies over the Eurasian climate and the interplay between climate, tectonics and biosphere during the late Miocene. This target was the interval between 12.7 and 7.65 Ma for Paratethys, following the Eastern Paratethys restriction and isolation, and 7.2−6.5 Ma (the early Messinian) in Mediterranean, zooming on the effects of gateway restrictions over the eastern Mediterranean and the new born Aegean domain. In both cases restriction is overlapping with large scale climatic changes and tectonic reconfiguration, leading a sort of symbiotic relationship.
Paratethys was a giant epicontinental sea that covered a large part of Eurasia since Paleogene. Due to the Eurasia-Afro-Arabia collision and formation of the Alpine-Himalayan belt (Rögl, 1999; Popov et al., 2006), the Paratethys was divided during the late Miocene in smaller basins that in time were isolated of each other. The protracted isolation and intense continentalisation of paratethyan realm led to changes in humidity distribution, basin connectivity, sediment sources and salinity. These changes had in turn major consequences over water circulation, water availability, vegetation cover and biota. These changes are more intense after 11.6 Ma, when the Eastern Paratethys lost any sustained marine connection, evolving into an enclosed system with endemic fauna (Harzhauser and Piller, 2007).
Mediterranean Sea is a Mezozoic oceanic relic squeezed between Africa, Europe, Anatolia and Arabia, as Africa continued to subduct beneath the European plate. As opposed to Paratethys, it maintained the open connection with the ocean until Messinian, when the two Atlantic gateways (Betic and Rifian corridors) closed for a short time, isolating the basin. The cut off resulted in a dramatic drop down and onset of evaporitic precipitation in marginal basins, the event receiving the name of Messinian Salinity Crisis (5.97−5.55). The restriction affected all marine ecosystems, due to changes in salinity and stratification of water column.
The main objectives of this thesis were:
(1) build valid paleo-temperatures records for both basins based on biomarkers;
(2) reconstruct the hydrology for the late Miocene time interval;
(3) identify vegetation composition and changes;
(4) identify paleo-fires in the late Miocene sediment records;
(5) identify the biotic response to the overall climate and tectonic changes.
All the above objectives were attained with results published in specific journals (Chapters 5−7).
Based on Panagia section (Taman Peninsula, Russia) the longest Paratethys temperature record was completed (~5 Myr), covering the interval between 12.7 and 7.65 Ma. A comprehensive SST and MAT records was obtained, as well as soil pH and carbon (δ13C) and hydrogen (δ2H) stable isotopic compositions on n-alkanes and alkenones. The main findings are concentrated around three prolonged periods with severe droughts affecting the late Miocene circum-Paratethys region peaking at 9.65, 9.4 and 7.9 Ma, associated with a transition towards open land vegetation, intensification of fire activity and enhanced evaporation and aridity.
The time intervals with dryer conditions recorded in Panagia coincide with periods of mammal turnover and dispersal in Eurasia indicating that major environmental changes occurred in the circum-Paratethys region and Paratethys fragmentation had a great impact on the terrestrial ecosystems, when periods of prolonged droughts generated biotic crises and animal displacements across the Eurasian continent. The δ13CC29n-alkane values and charcoal morphologies from Panagia indicate an increased contribution of C4 plants adapted to drier conditions at 9.66 Ma. Similarly high δ13CC29n-alkane values continue until 9.4 Ma, when in Western Europe increased seasonality accelerated the demise of the evergreen subtropical woodlands and expansion of grasslands from Anatolia and Middle East to Europe.
As a result of basin fragmentation and climatic stress, the Eastern Paratethys sub-basins progressively lost their marine properties and turned into brackish-fresh water bodies fed primarily by riverine input. The shallower areas became in time emerged, obstructing connections and isolating the biota, inducing rapid adjusting or extinctions. Thus, the Paratethys harbored a highly endemic fauna (Rögl, 1999), such as dwarf whales, dolphins, seals (among mammals), as well as fish and other taxa (mollusks, ostracods, diatoms, foraminifera, algae, etc.).
Collectively the data structured and analyzed in chapter five support a model in which the Eastern Paratethys evolved as a largely (en)closed system, registering paleoenvironmental signals that are governed by interbasinal connectivity (or lack of it) and regional climate changes in the basin catchment. Acting as an important source of humidity for Western and Central Asia, the size and areal extent of the Paratethys water body is likely to have had a major impact on hydroclimate patterns in the Eurasian interior, with the cumulative fluctuations in both hydrology and surface temperature enhancing the aridity and seasonality, with different partition of moisture over the year. Our combined data suggests a decoupling of Paratethys from the global system as isolation advanced, dominated by regional tectonics and ultimately the Paratethys volume and areal extent reduction.