Refine
Year of publication
Document Type
- Doctoral Thesis (15)
- Master's Thesis (6)
- diplomthesis (1)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- point process (4)
- firing patterns (2)
- phase coding (2)
- spike train (2)
- Approximation (1)
- Bayesian Inference (1)
- Branching particle systems (1)
- Brownian motion (1)
- Genealogical construction (1)
- Genealogische Konstruktion (1)
Institute
- Mathematik (15)
- Informatik und Mathematik (6)
- keine Angabe Institut (1)
In der folgenden Arbeit werden Eigenschaften von Verzweigungsprozessen in zufälliger Umgebung (engl. branching processes in random environment, kurz BPREs) untersucht. Das Modell geht auf Smith (1969) und Athreya (1971) zurück. Ein BPRE ist ein einfaches mathematisches Modell für die Entwicklung einer Population von apomiktischen (d.h. sich ungeschlechtlich fortpflanzenden) Individuen in diskreter Zeit, wobei die Umgebungsbedingungen einen Einfluß auf den Fortpflanzungserfolg der Individuen haben. Dabei wird angenommen, dass die Umgebungsbedingungen in den einzelnen Generationen zufällig sind, und zwar unabhängig und identisch verteilt von Generation zu Generation. Man denke z.B. an eine Population von Pflanzen mit einem einjährigen Zyklus, die in jedem Jahr anderen Witterungsbedingungen ausgesetzt sind, wobei angenommen wird, dass diese sich unabhängig und identisch verteilt ändern. In Kapitel 1 wird eines der wichtigsten Hilfsmittel zur Beschreibung von BPREs, die sogenannte zugehörige Irrfahrt, eingeführt und die Klassifizierung von BPREs beschrieben. In Kapitel 2 werden bekannte Resultate, insbesondere zu kritischen, schwach subkritischen und stark subkritischen Verzweigungsprozessen, wiederholt. In Kapitel 3 wird der sogenannte intermediär subkritische Fall behandelt. Mithilfe von funktionalen Grenzwertsätzen für bedingte Irrfahrten wird die genaue Asymptotik der Überlebenswahrscheinlichkeit des Prozesses, die bereits in Vatutin (2004) bewiesen wurde, unter etwas allgemeineren Voraussetzungen gezeigt. Anschließend wird untersucht, wie häufig der Prozess, bedingt auf Überleben, nur noch aus einem Individuum besteht. Im letzten Teil des Kapitels wird ein funktionaler Grenzwertsatz für die zugehörige Irrfahrt, bedingt aufs Überleben des Prozesses, gezeigt. Diese konvergiert, richtig skaliert, gegen einen Levy-Prozess, der darauf bedingt ist, sein Minimum am Ende anzunehmen. In Kapitel 4 werden große Abweichungen von BPREs untersucht. Die Ratenfunktion des BPRE wird sowohl für den Fall mindestens geometrisch schnell abfallender Tails, als auch für den Fall von Nachkommenverteilungen mit schweren Tails bestimmt. Wie sich herausstellt, hängt die Ratenfunktion von der Ratenfunktion der zugehörigen Irrfahrt, der exponentiellen Abfallrate der Überlebenswahrscheinlichkeit sowie, bei Nachkommenverteilungen mit schweren Tails, auch von den Tails derselben ab. In der Ratenfunktion spiegeln sich die wahrscheinlichsten Wege, um Ereignisse der großen Abweichungen zu realisieren, wider, was in Kapitel 4.3 beschrieben wird. In Kapitel 4.4 wird im speziellen Fall von Nachkommenverteilungen mit gebrochen-linearer Erzeugendenfunktion die Ratenfunktion für Ereignisse bestimmt, bei denen ein superkritischer BPRE überlebt, aber klein im Vergleich zum Erwartungswert bleibt. In Kapitel 4.5 werden die großen Abweichungen, bedingt auf die Umgebung untersucht (engl. quenched). In diesem Fall können unwahrscheinliche Ereignisse nur über den Verzweigungsmechanismus und nicht mehr über eine außergewöhnliche Umgebung realisiert werden. Zum Abschluss der Dissertation werden Verzweigungsprozesse in zufälliger Umgebung, bedingt auf Überle-ben, simuliert. Dazu wird eine Konstruktion nach Geiger (1999) angewendet. Diese erlaubt es, Galton-Watson Bäume in variierender Umgebung, bedingt auf Überleben, entlang einer Ahnenlinie zu konstruieren. Der Fall geometrischer Nachkommenverteilungen, auf den wir uns in Kapitel 5 beschränken, erlaubt die explizite Berechnung der benötigten Verteilungen. Als Anwendung des Grenzwertsatzes aus Kapitel 3.1 können nun intermediär subkritische Verzweigungsprozesse, bedingt auf Überleben, wie folgt simuliert werden: Zunächst wird die Umgebung zufällig bestimmt, und zwar als Irrfahrt, bedingt darauf ihr Minimum am Ende anzunehmen. Anschließend wird, der Geiger-Konstruktion folgend, ein Verzweigungsprozess in dieser Umgebung, bedingt auf Überleben, simuliert. Zum Abschluss wird in einem kurzen Ausblick auf aktuelle Forschung verwiesen. Im Anhang befinden sich einige technische Resultate.
We consider the long-time behaviour of spatially extended random populations with locally dependent branching. We treat two classes of models: 1) Systems of continuous-time random walks on the d-dimensional grid with state dependent branching rate. While there are k particles at a given site, a branching event occurs there at rate s(k), and one of the particles is replaced by a random number of offspring (according to a fixed distribution with mean 1 and finite variance). 2) Discrete-time systems of branching random walks in random environment. Given a space-time i.i.d. field of random offspring distributions, all particles act independently, the offspring law of a given particle depending on its position and generation. The mean number of children per individual, averaged over the random environment, equals one The long-time behaviour is determined by the interplay of the motion and the branching mechanism: In the case of recurrent symmetrised individual motion, systems of the second type become locally extinct. We prove a comparison theorem for convex functionals of systems of type one which implies that these systems also become locally extinct in this case, provided that the branching rate function grows at least linearly. Furthermore, the analysis of a caricature model leads to the conjecture that local extinction prevails generically in this case. In the case of transient symmetrised individual motion the picture is more complex: Branching random walks with state dependent branching rate converge towards a non-trivial equilibrium, which preserves the initial intensity, whenever the branching rate function grows subquadratically. Systems of type 1) and systems of type 2) with quadratic branching rate function show very similar behaviour. They converge towards a non-trivial equilibrium if a conditional exponential moment of the collision time of two random walks of an order that reflects the variability in the branching mechanism is finite almost surely. The equilibrium population has finite variance of the local particle number if the corresponding unconditional exponential moment is finite. These results are proved by means of genealogical representations of the locally size-biased population. Furthermore, we compute the threshold values for existence of conditional exponential moments of the collision time of two random walks in terms of the entropy of the transition functions, using tools from large deviations theory. Our results prove in particular that - in contrast to the classical case of independent branching - there is a regime of equilibria with variance of the local number of particles.
Gleichgewichte auf Überschussmärkten : Theorie und Anwendbarkeit auf die Regelenergiezone der RWE
(2003)
Diese Version entspricht im wesentlichen der begutachteten Version bis auf die Kürzung von Satz 3.3.1 um einen für den Rest unbedeutenden Teil. Das Ziel folgender Arbeit ist es, mit einem intuitiven Ansatz eine spezielle Wettbewerbsform zweier interagierender Märkte zu modellieren und anschließend zu analysieren. Abschließend werden die theoretischen Ergebnisse mit den Beobachtungen an einem existierenden Markt - dem deutschen Energiemarkt - verglichen. In dieser behandelten Wettbewerbsform wird ein nicht lagerbares Gut an zwei aneinander gekoppelten Märkten gehandelt. Während Handel und Preisfindung am ersten Markt den üblichen Gepflogenheiten folgen, müssen alle Teilnehmer sämtliche Güter, welche nicht unmittelbar nach Lieferung verbraucht werden, am zweiten Marktplatz (dem Überschussmarkt) gegen ein gewisses Entgelt zur Verfügung stellen. Alle Teilnehmer, welche nicht genügend Güter am ersten Markt geordert haben, werden auf dem Überschussmarkt zu einem gewissen Preis mit der noch benötigten Menge versorgt. Einem Marketmaker auf dem zweiten Marktplatz fällt die Aufgabe zu, einen Preis festzustellen, zu dem diejenigen entschädigt werden, welche ihre Überschüsse zur Verfügung stellen müssen bzw. den diejenigen zu bezahlen haben, deren Gütermangel ausgeglichen wird. Weiterhin stellt dieser sicher, dass zu jedem Zeitpunkt genügend Güter vorhanden sind, so dass der Bedarf aller Teilnehmer zu jedem Zeitpunkt sichergestellt ist. Ziel ist es nun herauszufinden, welche gewinnmaximierenden Einkaufsstrategien die Marktteilnehmer verfolgen sollten und welche Konsequenzen sich daraus auf den deutschen Energiemarkt ableiten lassen.
Der Hoppe-Baum ist eine zufällig wachsende, diskrete Baumstuktur, wobei die stochastische Dynamik durch die Entwicklung der Hoppe Urne wie folgt gegeben ist: Die ausgezeichnete Kugel mit der die Hoppe Urne startet entspricht der Wurzel des Hoppe Baumes. In der Hoppe Urne wird diese Kugel mit Wahrscheinlichkeit proportional zu einem Parameter theta>0 gezogen, alle anderen Kugeln werden mit Wahrscheinlichkeit proportional zu 1 gezogen. Wann immer eine Kugel gezogen wird, wird sie zusammen mit einer neuen Kugel in die Urne zurückgelegt, was in unserem Baum dem Einfügen eines neuen Kindes an den gezogenen Knoten entspricht. Im Spezialfall theta=1 erhält man einen zufälligen rekursiven Baum.
In der Arbeit werden Erwartungswerte, Varianzen und Grenzwertsätze für Tiefe, Höhe, Pfadlänge und die Anzahl der Blätter gegeben.
Die Populationsgenetik beschäftigt sich mit dem Einfluss von zufälliger Reproduktion, Rekombination, Migration, Mutation und Selektion auf die genetische Struktur einer Population.
In dieser Arbeit mit dem englischen Titel "Ancestral lines under mutation and selection" wird das Zusammenspiel von zufälliger Reproduktion, gerichteter Selektion und Zweiwegmutation untersucht.
Dazu betrachten wir eine haploide Population in der jedes Individuum zu jedem Zeitpunkt genau einen von zwei Typen aus S:={0,1} trägt. Dabei sei 1 der neutrale und 0 der selektiv bevorzugte Typ. Im Diffusionslimes sehr großer Populationen modellieren wir den Prozess der Frequenz der Typ-0-Individuen durch eine Wright-Fisher-Diffusion X:=(X_t) mit Mutation und gerichteter Selektion.
Zu jedem Zeitpunkt s gibt es genau ein Individuum, dessen Nachkommen ab einem bestimmten zukünftigen Zeitpunkt t>s die gesamte Population ausmachen werden. Wir nennen dieses Individuum den gemeinsamen Vorfahren zum Zeitpunkt s, da alle Individuen zu allen Zeitpunkten r>t von ihm abstammen. Sei R_{s} dessen Typ zum Zeitpunkt s. Wir nehmen an, dass der Prozess X zum Zeitpunkt 0 im Gleichgewicht ist und definieren die Wahrscheinlichkeit, dass der gemeinsame Vorfahre zum Zeitpunkt 0 Typ 0 hat, durch h(x):= P(R_{0}=0|X_{0}=x). Eine Darstellung von h(x) wurde bereits von Fearnhead (2002) und Taylor (2007) gefunden und dort mit vorwiegend analytischen Methoden bewiesen. In dieser Arbeit entwickeln wir in Kapitel 3 ein neues Teilchenbild, den pruned lookdown ancestral selection graph (pruned LD-ASG), der für sich selbst genommen interessant ist und eine neue probabilistische Interpretation der Darstellung von h(x) liefert.
Durch Erweiterung des Teilchenbildes auf Nachkommenverteilungen mit schweren Tails und mit Hilfe einer Siegmund Dualität gelingt es uns in Kapitel 4 das Resultat für h(x) von klassischen Wright-Fisher-Diffusionen auf Lambda-Wright-Fisher-Diffuison zu erweitern.
Eine Verbindung zwischen Ideen von Taylor (2007), der den gemeinsamen Prozess (X,R) untersucht hat, und einem von Fearnhead (2002) betrachteten Prozess (R,V), der die Entwicklung des Typs R des gemeinsamen Vorfahren in einer Umgebung von V sogenannten virtuellen Linien beschreibt, stellen wir in Kapitel 6 her. Wir bestimmen die gemeinsame Dynamik des Tripels (X,R,V). In Kapitel 7 betrachten wir ein diskretes Bild mit endlicher Populationsgröße N und schlagen dort eine Brücke zu Resultaten von Kluth, Hustedt und Baake (2013).
Des Weiteren entwickeln wir in Kapitel 5 dieser Arbeit einen Algorithmus zur Simulation der Typen einer Stichprobe von m Individuen, die aus einer Wright-Fisher-Population mit Mutation und Selektion im Gleichgewicht gezogen wird. Mittels dieses Algorithmus illustrieren wir die Typenverteilung für verschiedene Parameterwerte und Stichprobengrößen.
The work presented in this thesis is devoted to two classes of mathematical population genetics models, namely the Kingman-coalescent and the Beta-coalescents. Chapters 2, 3 and 4 of the thesis include results concerned with the first model, whereas Chapter 5 presents contributions to the second class of models.
Die Arbeit befasst sich mit zwei funktionalen Grenzwertsätzen für skalierte Linienzählprozesse von anzestralen Selektionsgraphen. Dazu werden zwei Modelle aus der mathematischen Populationsgenetik betrachtet. Wir führen zuerst das Moran-Modell mit gerichteter Selektion mit konstanter Populationsgröße N in kontinuierlicher Zeit und den Linienzählprozess des anzestralen Selektionsgraphen (MASP) gemäß Krone und Neuhauser (Theor. Popul. Biol. 1997) ein. Die Hauptaussage dieser Abschlussarbeit besagt, dass der passend standardisierte MASP im Fall der moderaten Selektion für N gegen unendlich in Verteilung gegen einen Ornstein-Uhlenbeck-Prozess konvergiert. Das zweite betrachtete Modell ist das Cannings-Modell mit gerichteter Selektion in diskreter Zeit, das gemäß Boenkost, González Casanova, Pokalyuk und Wakolbinger (Electron. J. Probab. 2021) eingeführt wird. Für ein Teilregime der moderat schwachen Selektion wird bewiesen, dass die reskalierten Fluktuationen des Linienzählprozesses des anzestralen Selektionsgraphen im Cannings-Modell ebenfalls in Verteilung gegen einen Ornstein-Uhlenbeck-Prozess konvergieren.
We study exchangeable coalescent trees and the evolving genealogical trees in models for neutral haploid populations.
We show that every exchangeable infinite coalescent tree can be obtained as the genealogical tree of iid samples from a random marked metric measure space when the marks are added to the metric distances. We apply this representation to generalize the tree-valued Fleming-Viot process to include the case with dust in which the genealogical trees have isolated leaves.
Using the Donnelly-Kurtz lookdown approach, we describe all individuals ever alive in the population model by a random complete and separable metric space, the lookdown space, which we endow with a family of sampling measures. This yields a pathwise construction of tree-valued Fleming-Viot processes. In the case of coming down from infinity, we also read off a process whose state space is endowed with the Gromov-Hausdorff-Prohorov topology. This process has additional jumps at the extinction times of parts of the population.
In the case with only binary reproduction events, we construct the lookdown space also from the Aldous continuum random tree by removing the root and the highest leaf, and by deforming the metric in a way that corresponds to the time change that relates the Fleming-Viot process with a Dawson-Watanabe process. The sampling measures on the lookdown space are then image measures of the normalized local time measures.
We also show invariance principles for Markov chains that describe the evolving genealogy in Cannings models. For such Markov chains with values in the space of distance matrix distributions, we show convergence to tree-valued Fleming-Viot processes under the conditions of Möhle and Sagitov for the convergence of the genealogy at a fixed time to a coalescent with simultaneous multiple mergers. For the convergence of Markov chains with values in the space of marked metric measure spaces, an additional assumption is needed in the case with dust.