Refine
Document Type
- Doctoral Thesis (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Thermus thermophilus (1)
- Transformation (1)
- Typ 4 Pilus (1)
Institute
I. Untersuchung der Transformationsmaschinerie in Acinetobacter baylyi ADP1 durch Analyse der subzellulären Lokalisation von Kompetenzproteinen, Mutantenstudien und In-vivo-Detektion des DNA-Translokators in der lebenden Zelle. 1. Durch Komplementationsstudien konnte gezeigt werden, dass die Markerinsertionen in den Mutanten T843 (comM::nptII) und T840 (comL::nptII) keine polaren Effekte auf stromabwärts gelegene Gene des comM-Q Clusters haben. Hieraus kann geschlossen werden, dass ComM und ComL essentiell sind für die natürliche Transformation. 2. Mit Hilfe der sacB-nptII Selektionskassette wurde eine markerlose und somit nichtpolare Mutation in comN erzeugt. Diese Mutante war nicht mehr transformierbar, woraus eindeutig geschlossen werden kann, dass ComN ebenfalls essentiell ist für die natürliche Transformation. 3. Western-Blot-Analysen subzellulärer Fraktionen von A. baylyi ergaben, dass die Kompetenzproteine ComL und ComN in der inneren Membran lokalisiert sind. 4. Mutantenstudien führten zu dem Schluss, dass ComL in der comM-, der comN- und der comO-Mutante weder im Rohextrakt, noch in subzellulären Membranfraktionen nachzuweisen ist. Auch ComN ist in der comM- und der comO-Mutante weder im Rohextrakt, noch in subzellulären Membranfraktionen nachzuweisen. Daraus lässt sich folgern, dass die Proteine entweder die Expression der entsprechende Gene beeinflussen oder dass durch Interaktionen von ComM, ComN, ComL und ComO die Stabilität der Proteine erhöht wird. 5. Die Kompetenzproteine ComEA und ComP wurden translational mit GFPuv fusioniert (C-terminale Fusion). Die Expression der Gene comEA-gfp und comP-gfp, die auf dem Plasmid pRK415 unter der Kontrolle eines lac-Promotors vorlagen, führte nach Induktion mit IPTG zur Detektion der Fusionsproteine in A. baylyi. Über Komplementationsstudien konnte nachgewiesen werden, dass die ComEA-GFP- und ComP-GFP-Fusionsproteine funktionsfähig sind. 6. Fluoreszenzmikroskopische Analysen zeigten, dass die Verteilung von ComEA und ComP in der Zellmembran von A. baylyi abhängig ist von der Wachstumsphase und der Kompetenz: Während die Kompetenzproteine in der lag-Phase (zum Zeitpunkt maximaler Kompetenzinduktion) gleichmäßig über die gesamte Membran verteilt sind, finden sie sich im Laufe der exponentiellen Phase (mit abnehmender Kompetenz) in einer abnehmenden Zahl von separaten Foci, bis sie schließlich in der späten stationären Phase (zum Zeitpunkt minimaler Kompetenz) nur noch in 1 - 2 distinkten Foci lokalisiert sind. II. DNA-Transfer in marinen Bakterien 1. Vor der Auswahl geeigneter Selektionsmarker für DNA-Transferstudien in marinen Bakterien wurde eine Analyse der spontanen Resistenzen mariner Bakterien durchgeführt. Diese Analysen ergaben, dass 72 % von 116 marinen Isolaten sensitiv gegenüber einer Kombination von je 100 μg Kanamycin und 100 μg Streptomycin pro ml Medium sind. 2. Es wurde ein Transformationsprotokoll für das Screening mariner Bakterien auf die Fähigkeit zur DNA-Aufnahme durch natürliche Transformation etabliert. Es wurden drei Vektoren pM1, pM2 und pM3 konstruiert, die eine Übertragung und stabile Insertion von Antibiotikaresistenz-Markergenen und dem zur Detektion eingesetzten gfp-Gen durch homologe Rekombination flankierender rDNA-Bereiche mit dem rDNA-Operon des Rezipienten ermöglichten. 3. Unter Einsatz dieser Vektoren wurde die Transformierbarkeit von 83 marinen Isolaten überprüft. Diese Analysen führten zur Identifizierung von vier transformierbaren Isolaten. Bei diesen Isolaten handelt es sich um Marinobacter sp., K. rosea, P. phosphoreum und P. marincola Stämme.
1. Der Abgleich der Genprodukte von PA0119, PA0120 und PA0121 ergab, dass PA0119 68%ige Ähnlichkeit mit dem DctA-Transporter von S. meliloti besitzt. Das Genprodukt PA0120 zeigt eine 46%ige Ähnlichkeit mit dem Transkriptionsregulator LctR von E. coli und trägt konservierte Domänen der GntR- sowie der FCDSuperfamilie. Das Genprodukt PA0121 weist eine 44%ige Ähnlichkeit mit einem hypothetischen Transkriptionsregulator von Streptomyces ambofaciens auf. 2. Es konnte gezeigt werden, dass die drei offenen Leserahmen (ORFs) PA0119, PA0120 und PA0121 von P. aeruginosa in mRNA transkribiert werden und somit Gene sind. In den späten CF-Isolaten M25 und M26 ist deren Transkriptmenge im Vergleich zum frühen CF-Isolat M1 sowie zum Referenzstamm P. aeruginosa PAO1 um das 14fache erhöht. 3. Mit Hilfe von RT-PCR Analysen konnte gezeigt werden, dass die drei Gene PA0119, PA0120 und PA0121 eine Transkriptionseinheit bilden und somit in einem Operon P0119-PA0121 organisiert sind. Die angrenzenden ORFs PA0118 und PA0122 konnten dieser Transkriptionseinheit nicht zugeordnet werden. 4. Analysen der Promotor-Reportergenfusion führten zu dem Schluss, dass die Strukturgene PA0119, PA0120 und PA0121 des Operons von einer stromaufwärts von PA0119 lokalisierten Promotorsequenz transkribiert werden. Der Promotor liegt ca. 237 bp vor dem Start von PA0119. Darüber hinaus konnte eine FadR-ähnliche Bindestelle in der Promotorregion P119-121 abgeleitet werden. 5. Der Promotor P119-121 zeigt in mit Dicarboxylaten supplementiertem Minimalmedium M9 eine 2-3fach erhöhte Promotoraktivität gegenüber dem mit Glukose supplementierten Minimalmedium M9. In Gegenwart von Dicarboxylaten erfährt der Promotor P119-121 somit eine Induktion bzw. durch Glukose eine Repression. 6. Der Promotor P119-121 wird wachstumsphasenabhängig reguliert. Die Abhängigkeit der Promotoraktivität von RhlI, RhlR und RpoS indiziert eine Quorum Sensingsowie RpoS-abhängige Regulation des Promotors P119-121. 7. Eine mit PA0119 durchgeführte heterologe Komplementation einer DctA-Mutante von S. meliloti führte zu einer partiellen Wiederherstellung der Fähigkeit der DctAMutante, auf den Dicarboxylaten Succinat und Fumarat wachsen zu können. Dieser Befund indiziert zusammen mit den vier konservierten Motiven, die bisher in charakterisierten Dicarboxylat-Transportern gefunden wurden, dass PA0119 potentiell einen Dicarbonsäure-Transporter in P. aeruginosa darstellt. 8. Mutantenstudien mit den generierten Mutanten ΔPA0119Ω, PA0120Ω und ΔPA0121Ω zeigten im Vergleich zum Wildtyp allerdings kein abweichendes Kulturwachstum; weder in den nährstoffreichen Medien ASM und LB noch im Minimalmedium M9, das jeweils mit 40 mM Succinat bzw. Glutamat supplemiert wurde. Dies wurde durch MicroArrayTM-Analysen mit den Biolog-Platten PM1 und PM2 bestätigt. Daraus wird deutlich, dass keine der hier angebotenen C-Quellen (siehe Anhang) ausschließlich von PA0119 transportiert wird. Auch die Verwertung dieser C-Quellen wird nicht durch die in den Mutanten PA0120::Ω und ΔPA0121::Ω ausgeschalteten Genprodukte beeinflusst. 9. In der Biolog-Platte PM10a schien ΔPA0119::Ω gegenüber PAO1 in den Kavitäten C1 (pH5.5, Methionin) und C10 (pH 5.5, Ornithin) eine leicht abweichende Stoffwechselaktivität zu besitzen. Dies indiziert eine mögliche pH-Abhängigkeit des potentiellen PA0119-Transporters. 10. Im Minimalmedium M9, supplemiert mit Glutamat, zeigt die Mutante ΔPA0119::Ω unter unter erhöhten osmotischen Bedingungen gegenüber dem Wildtyp PAO1 eine reduzierte Wachstumsrate. Dies indiziert, dass PA0119 unter erhöhten osmotischen Bedingungen am Transport von Dicarboxylaten, wie Glutamat, in die Zelle beteiligt sein könnte. 11. Biofilmbildung stellt die bevorzugte Wachstumsform von P. aeruginosa in der CF-Lunge dar. Das Genprodukt PA0120 zeigt zudem eine Ähnlichkeit mit dem Regulator LctR, und es wurde gezeigt, dass eine LctR-Mutante von E. coli in ihrer Fähigkeit zur Biofilmbildung beeinträchtigt ist. Die Untersuchung der ΔPA0119::Ω- und der PA0120::Ω-Mutanten zeigt im Vergleich zum Wildtyp im LB-Medium eine Beeinträchtigung in der Anheftung an Mikrotiterplatten. Dies indiziert, dass sowohl der potentielle Transporter PA0119 als auch der potentielle Transkriptionsregulator PA0120 an der Biofilmbildung von P. aeruginosa beteiligt sind. 12. Die Messung der Promotoraktivität in der ΔPA0119::Ω-Mutante zeigt eine Repression des Promotors an. In der PA0120::Ω-Mutante dagegen findet sich eine zweifache Induktion des Promotors vor PA0119-PA0121. Dies Ergebnis wird durch die Ergebnisse der Real-Time-PCR-Analysen untermauert, da in der PA0120::Ω-Mutante signifikant erhöhte Transkriptmengen des PA0119-Gens detektiert wurden. Bei der ΔPA0121::Ω-Mutante liegt die Promotor-Aktivität im Bereich von PAO1. Diese Ergebnisse lassen den Schluss zu, dass das Genprodukt von PA0119 auf den Promotor P119-121 aktivierend wirkt, während das PA0120-Genprodukt die P119-121- Promotoraktivität negativ reguliert. 13. Zur Identifizierung weiterer PA0120-regulierter Gene wurde eine Transkriptomanalyse der PA0120::Ω-Mutante durchgeführt. Diese ergab, dass neben PA0119 vier weitere Gene, und zwar PA0656, PA0810, PA1852 und PA5261, signifikant hoch reguliert wurden. Vermutlich sind diese Genprodukte zusammen mit dem Regulator PA0120 Teile eines regulatorischen Netzwerks zur Anpassung von P. aeruginosa an die CF-Lunge.
1. Die Deletionsderivate der Kompetenzproteine PilN und PilQ wurden als Fusionsproteine mit dem Maltosebindeprotein überproduziert, über eine Amylosesäule aufgereinigt und in nativer Form für die Generierung von polyklonalen Kaninchen-Antikörpern eingesetzt. 2. Unter Einsatz der spezifischen alpha-PilN- und alpha-PilQ-Antikörpern konnte das PilN-und PilQ-Kompetenzprotein im Rohextrakt von T. thermophilus HB27 detektiert werden. 3. Die Überprüfung bereits vorliegender Antikörper gegen die Kompetenzproteine PilM, PilW und PilA4 ergaben, dass es sich hier ebenfalls um spezifische Antikörper handelt. 4. Mittels Western-Blot-Analysen unterschiedlicher Mutanten konnte gezeigt werden, dass die Markerinsertion in den Genen pilM, pilN, pilO und pilW zu keinem polaren Effekt der jeweils stromabwärts gelegenen Gene führt. 5. Analysen der subzellulären Lokalisation der Kompetenzproteine ergaben, dass PilM und PilN ausschließlich in der inneren Membran lokalisiert sind, während PilW, PilQ und PilA4 sowohl in der inneren als auch äußeren Membran detektiert wurden. Die größte Menge an PilQ wurde allerdings in der äußeren Membran gefunden. 6. Mutantenstudien ergaben, dass eine pilQ-Mutantion zur Abwesenheit von PilW und PilA4 in der äußeren Membran führte. Ebenso führte eine pilW-Mutantion zu Abwesenheit von PilQ und PilA4 in der äußeren Membran. Diese Ergebnisse indizieren Interaktionen zwischen PilW, PilQ und PilA4. 7. In der pilD-Mutante wurde kein PilA4 mehr in der äußeren Membran detektiert. Dieser Befund untermauert den Schluss, dass es sich bei PilD um eine PilA4 prozessierende Präpilin-Peptidase handelt. 8. Western-Blot-Analysen der gereinigten Pili führen zu dem Schluss, dass das Kompetenzprotein PilA4 die strukturelle Untereinheit der Pilus-Struktur repräsentiert. Das Sekretin-ähnliche Kompetenzprotein PilQ wurde ebenfalls in der gereinigten Pilus-Fraktion detektiert und könnte Teil der globulären Struktur an den Pilusenden sein. 9. Elektronenmikroskopische Aufnahmen von Dünnschnitten durch T. thermophilus HB27 Zellen ließen den ungewöhnlichen Aufbau der Zellperipherie erkennen. Zwischen der inneren Membran (8 nm dick) und der äußeren Membran (8 nm dick) befand sich neben dem dünnen Peptidoglykan (8 nm dick) eine 40 nm dicke kontrastarme Schicht, die radial von Fäden durchzogen schien. 10. Die Dünnschnitte wurden für Immunogoldmarkierungen mit alpha-PilQ-Antikörpern eingesetzt, um PilQ zu detektieren. Allerdings konnte in den elektronenmikroskopischen Analysen keine spezifische Goldmarkierung nachgewiesen werden. Ursache hierfür könnte die Unzugänglichkeit des nativen PilQ in den Dünnschnitten sein. 11. Die Immunogoldmarkierung des Gefrierbruchs von ganzen Thermus-Zellen mit alpha-PilQ-Antikörpern führte zur Detektion von PilQ-haltigen Ring-ähnlichen Strukturen in der äußeren Membran. Der Durchmesser des PilQ-Komplexes mit 17 - 18 nm ist mit denen der aus Sekretinen bestehenden Ringsystemen anderer Organismen vergleichbar. 12. In den T. thermophilus HB27 Membransolubilisaten wurde ein >669 kDa PilW-PilQ-Komplex identifiziert. Dieser Komplex ließ sich optimal mit n-Dodecyl-beta-D-maltosid (1 mg Detergenz pro mg Membranprotein) aus der Membranfraktion solubilisieren. Stabilitätsuntersuchungen ergaben, dass dieser Komplex bei 4 °C einige Tage, bei Raumtemperatur und bei Anwesenheit von 1 M NaCl einige Stunden stabil ist. 13. Mittels einer DEAE-Austausch-Chromatographie konnte der PilW-PilQ-Komplex angereichert werden. Die Western-Blot-Analysen ergaben, dass das Kompetenzprotein PilM mit dem PilW-PilQ-Komplex koeluiert. 14. In der MALDI-TOF-Massenspektrometrie konnte das Kompetenzprotein PilQ und Untereinheiten der DNA-gerichteten RNA-Polymerase, ein Membran-Lipoprotein sowie Energie-Stoffwechsel-Proteine in der angereicherten PilW-PilQ-haltigen Fraktion nachgewiesen werden. Diese Proteine müssen auf die Beteiligung an der Transformation untersucht werden. 15. Immunelektronenmikroskopische Analysen des angereicherten PilW-PilQ-Komplexes führten zur Identifizierung von Ringstrukturen mit einem Durchmesser von 17 nm. Dieser Durchmesser entspricht den Sekretin-Komplexen von P. aeruginosa (18,3 ± 1,2 nm) bzw. N. gonorrhoeae (15,5 - 16,5 nm) und dem Durchmesser der über Immunogoldmarkierung detektierten PilQ-haltigen Strukturen in T. thermophilus HB27.
Acinetobacter baumannii is a worldwide opportunistic pathogen responsible for nosocomial infections. One of the main factors contributing to multidrug resistance in A. baumannii is the upregulation of various chromosomally encoded or acquired efflux pumps, which expel toxic compounds out of the cells with high efficiency.
The resistance-nodulation-cell division (RND)-type efflux pump gene deletion strains ∆adeAB, ∆adeFG or ∆adeIJ and the major facilitator superfamily (MFS) chloramphenicol efflux pump gene deletion strain ∆craA of A. baumannii ATCC 19606 were created and a differential gene expression study was conducted via RT-qPCR. The expression of efflux pump genes adeB, adeG, adeJ, craA, and the outer membrane protein ompA were examined in the absence and presence of chloramphenicol. No significant up- or downregulation of these genes for any of these deletion strains in comparision to the wild-type strain in absence of the drug chloramphenicol.
In contrast, craA was significantly up-regulated in A. baumannii exposed to chloramphenicol, emphasizing the importance of CraA in chloramphenicol resistance. CraA is widely present in clinical isolates of A. baumannii. It is homologous to the well-studied multiple-drug efflux transporter MdfA from Escherichia coli (61% similarity), but surprisingly reported to be acting as a specific chloramphenicol transporter of A. baumannii (Roca et al., 2009).
The drug susceptibility assay done with A. baumannii ATCC 19606 ΔcraA showed that CraA could confer resistance towards phenicols (chloramphenicol, thiamphenicol, and florfenicol), which was in line with the previous report. CraA was heterologously overproduced in E. coli BW25113 ∆emrE∆mdfA and its substrate specificity was determined by drug susceptibility assays and whole cell fluorescent dye uptake experiments. We observed that the substrate specificity of craA overexpressed in E. coli was more diverse and resembling that of the E. coli MdfA homolog. Apart from resistance towards phenicols (chloramphenicol, thiamphenicol, and florfenicol), CraA also confer resistance towards monovalent cationic drugs (benzalkonium, TPP+, and ethidium), long dicationic drugs (dequalinium and chlorhexidine), fluoroquinolones (norfloxacin and ciprofoxacin) and anticancer drugs (mitomycin C). We showed that CraA is a drug/H+ antiporter by ACMA quenching in inverted CraA or CraA variant containing membrane vesicles.
To address the molecular determinants for multidrug binding and transport, 45 mostly single Ala-substitution variants of CraA were created. These include substitution variants for membrane-embedded proton-titratable residues (E38, D46, and E338) and residues predicted to be important for binding and transport of drug, as inferred from docking experiments on basis of a MdfA-derived CraA model. The combined results indicated a high degree of functional similarities between MdfA and CraA. The conserved titratable residues E26 and D34 (E38 and D46 in CraA) are important for transport in both these homologs. The CraA variant E38A is inactive against all tested drugs, but D46A is only inactive for some drugs, suggesting that only E38 is involved in H+-transport.
Another focus of this thesis is the three tetracycline transporters of A. baumannii strain AYE, TetA, TetG and TetA(A). Susceptibility assays involving tetracycline, minocycline, doxycycline and the last-resort antibiotic tigecycline were conducted on E. coli BW25113 ∆emrE∆mdfA overexpressing these transporters. TetA(A) was excluded from further study due to toxicity of the cells caused by protein overexpression. Both TetA and TetG confer resistance against tetracycline, minocycline and doxycycline. Although tigecycline was reported not to be recognized by tetracycline efflux pumps, we surprisingly found that TetA is able to transport tigecycline. The role of TetA in tigecycline efflux in A. baumannii was confirmed by conducting tigecycline susceptibility assays on A. baumannii.
We speculate that TetA embedded in the inner membrane acts in cooperation with RND-type tripartite systems that span the inner and outer membrane to extrude tigecycline from the periplasm across the outer membrane. A. baumannii ATCC 19606 ∆adeAB were indeed sensitive to tigecycline in comparison to wild-type strain. Deletion of adeIJ also leads to sensitivity to tigecycline, but less so compared to the DadeAB phenotype, while A. baumannii ATCC 19606 ∆adeFG did not show any difference compared to wild-type strain in tigecycline susceptibility. Differential gene expression analysis of the RND efflux pumps (adeB, adeG and adeJ) and tetA of A. baumannii strain AYE showed that the expression of tetA expression is significantly upregulated when tigecycline is present in the growth medium.
We conclude that craA encodes a broad-spectrum efflux pump rather than a specific chloramphenicol transporter. In A. baumannii, the synergistic effects with the outer membrane and/or the presence of other transporters could result in the discrepancy observed. Thus, the possibility of CraA in conferring multidrug resistance should not be overlooked, especially when it is up-regulated under antibiotic stress conditions.
This thesis describes the adaptation of Acinetobacter species to dry environments with the soil bacterium A. baylyi and the opportunistic hospital pathogen A. baumanii in its focus. The adaptation of A. baylyi and A. baumannii to osmotic stress was investigated. Compatible solutes that were uptaken from the environment or synthesized de novo to cope with the loss of water at high salinity were identified. The corresponding transporters and enzymes involved were characzerized. In addition, the desiccation resistance of A. baumannii was analyzed to elucidate its survival in hospital environments. The usage of compatible solutes during desiccation stress was analyzed and proteins that were produced were identified.
The availability of water is essential for bacterial life and if environmental conditions are awkward, bacteria have to cope with high salinitiy to prevent loss of water. In this thesis it was shown that A. baylyi synthesizes glutamate and mannitol de novo as compatible solutes in response to osmotic stress to balance the osmotic potential. The pathway for mannitol biosynthesis from Fructose-6-Phosphate (F-6-P) via Mannitol-1-Phosphate (Mtl-1-P) was elucidated and the isolation and characterization of a novel type of biofunctional enzyme was described. Interestingly, the unique bifunctional enzyme MtlD, acting as dehydrogenase and phosphatase, mediates both steps of the mannitol biosynthesis pathway. This enzyme catalyzes the reduction of F-6-P to Mtl-1-P with NADPH as reducing equivalent. The dehydrogenase activity of MtlD was salt dependent and the phosphatase activity was dependent on Mg2+ as cofactor. Phylogenetic analyses revealed that MtlD is broadly distributed among other Acinetobacter strains but not in other phylogenetic tribes.
In this thesis it is also described that, besides de novo synthesis of compatible solutes, A. baylyi takes up glycine betaine (GB) or its precursor choline by different transport systems and uses this solutes as osmoprotectants. The uptake of GB occurs via a secondary transporter (ACIAD3460) of the BCCT family. Choline is taken up as precursor and oxidized to GB by two dehydrogenases. The uptake and use of choline as GB precursor involves two transporters, whose genes are encoded in the bet cluster (BetT1, BetT2), two dehydrogenases (BetA, BetB) and a regulatory protein (BetI). Both transporters differ from each other in structure and function: BetT1 is osmo-independent and active independently of osmotic stress. BetT2 contains - in contrast to BetT1 - a long C-terminal domain for osmo-sensing and its activity highly increases in the presence of high osmolarity. The oxidation of choline occurs independently of the osmolarity of the medium but in the absence of salt stress, GB is exported. In contrast, in the presence of high salinity, GB is accumulated in the cytoplasm to balance the osmotic potential in order to prevent loss of water. The regulation of both transporters, the uptake of choline independently of the osmolarity and the export of GB under isoosmotic conditions are regulated by the transcriptional regulator BetI.
A. baumannii ATCC 19606 was also shown to cope with high salinity. Analogously to A. baylyi, A. baumannii ATCC19606 synthesizes glutamate and mannitol de novo in response to osmotic stress. The genes for the synthesis of these compatible solutes are identical to those found in A. baylyi. This suggests that the solute biosynthesis pathways of A. baumannii and A. baylyi are identical. A. baumannii was also able to take up GB and choline in response to osmotic stress and growth at high salinity was restored upon addition of GB and its precursor choline. The bet cluster was also present in the genome A. baumannii and also contains the two different choline transporters BetT1 and BetT2.
Our suggestion that choline or GB or the utilization of phosphatidylcholine as carbon source led to an increase in the survival under desiccation stress was not confirmed. However, 2D analysis of proteins produced during desiccation stress in A. baumannii led to elevated amounts of proteins implicated in biofilm formation, regulation, cell morphology and general stress response, such as Hsp60 or superoxide dismutase, both might play a role in general stress protection.
Im Rahmen dieser Arbeit wurden verschiedene metabolische Anpassungsmechanismen des humanpathogenen Bakteriums Acinetobacter baumannii an seinen Wirt untersucht. Im ersten Teil wurde die Rolle von verschiedenen Trimethylammoniumverbindungen (Cholin, Glycinbetain und Carnitin) und den zugehörigen Aufnahmesystemen, sowie ihren Stoffwechselwegen während dieses Prozesses analysiert. Für die Analyse der Transportsysteme wurde eine markerlose Vierfachmutante (Δbcct) von A. baumannii generiert, sodass alle bekannten Transportsysteme für die genannten Verbindungen deletiert vorlagen. Wachstumsversuche mit dieser Mutante zeigten, dass es in A. baumannii keine weiteren Transporter für die Aufnahme von Cholin gibt, jedoch weitere primär aktive oder sekundär aktive Transporter für die Aufnahme von Glycinbetain. Weiterhin konnten innerhalb dieser Arbeit die KM-Werte der Transporter bestimmt werden. Verschiedene Virulenz- und Infektionsanalysen führten zu dem Schluss, dass die Transporter keine Rolle bei der Virulenz von A. baumannii spielen. In Genomanalysen konnten die Gene, die für die Enzyme des Oxidationsweges von Cholin zu Glycinbetain kodieren identifiziert werden (Cholin-Dehydrogenase (betA), GlycinbetainAldehyd-Dehydrogenase (betB) und ein potenzieller Regulator (betI)). Es wurden Deletionsmutanten innerhalb dieses Genclusters generiert, mit dessen Hilfe gezeigt werden konnte, dass Cholin unter Salzstress ausschließlich als Vorläufer für das kompatible Solut Glycinbetain fungiert und nicht als kompatibles Solut von A. baumannii genutzt werden kann. Virulenz- und Infektionsstudien mit den Deletionsmutanten zeigten, dass der Cholin-Oxidationsweg keine Rolle bei der Virulenz von A. baumannii spielt.
Die Cholin-Dehydrogenase BetA wurde zusätzlich in E. coli produziert und anschließend mittels NiNTA-Affinitätschromatographie aufgereinigt. Die biochemische Charakterisierung des Enzyms zeigte, dass BetA membranständig ist und die höchste Aktivität bei einem pH-Wert von 9,0 hat. Salze wie NaCl oder KCl hatten keinen Effekt auf die Aktivität des Enzyms, während Glutamat die Aktivität stimulierte.
Weiterhin konnte FAD als Cofaktor identifiziert werden und der KM-Wert ermittelt werden. Zudem konnte gezeigt werden, dass die Oxidation von Cholin zu Glycinbetain unter isoosmotischen Bedingungen zu einem Anstieg der ATP-Konzentration in A. baumannii-Zellsuspensionen führt und damit, dass Cholin als alternative Energiequelle genutzt wird. Das Phospholipid Phosphatidylcholin konnte als natürliche Cholinquelle identifiziert werden. Eine Rolle der Phospholipasen D bei der Abspaltung der Cholin-Kopfgruppe des Phosphatidylcholins konnte ausgeschlossen werden. Die Gene für die Oxidation von Cholin zu Glycinbetain werden ausschließlich in Anwesenheit von Cholin exprimiert, jedoch unabhängig von der extrazellulären Salzkonzentration. Diese Studien zeigten, dass der Cholin-Oxidationsweg eine Rolle in der metabolischen Adaptation von A. baumannii an den Wirt spielt. Phosphatidylcholin kann hier als natürliche Cholinquelle im Wirt genutzt werden, da die Wirtsmembranen aus bis zu 70 % Phosphatidylcholin bestehen. Transportstudien mit Carnitin führten zu dem Schluss, dass der Transporter Aci01347 aus A. baumannii neben Cholin ebenfalls Carnitin transportiert. Wachstumsversuche mit einer aci01347-Mutante bestätigen, dass Aci01347 essenziell für die Aufnahme und anschließende Verwertung von Carnitin als Kohlenstoffquelle ist. Es konnte weiterhin gezeigt werden, dass das Transportergen mit essenziellen Genen für den Carnitin-Abbau in einem Operon liegt. Für die Analyse des Abbauweges von Carnitin wurden markerlose Deletionsmutanten innerhalb des Operons generiert. In Wachstumsstudien mit diesen Mutanten konnte der Abbauweg aufgeklärt werden und der Regulator des Operons identifiziert werden. Carnitin wird hier über Trimethylamin und Malat-Semialdehyd zu D-Malat umgewandelt und anschließend über Pyruvat in den TCA-Zyklus eingespeist. Der Regulator wurde zusätzlich in E. coli produziert und mittels Ni-NTA-Affinitätschromatographie aufgereinigt. Mithilfe von EMSA-Studien konnte die Bindestelle des Regulators auf eine 634 Bp lange DNA-Sequenz stromaufwärts des CarnitinOperons eingegrenzt werden. Durch Transkriptomanalysen konnte gezeigt werden, dass bei Wachstum mit Acetylcarnitin, Carnitin und D-Malat die Expression des Carnitin-Operons induziert wurde. Darüber hinaus wurden die Gene konservierter Aromatenabbauwege wie z. B. des Homogentisatweges, des Phenylacetatweges und des Protocatechuat-Abbaus, verstärkt exprimiert. In G. mellonellaVirulenzstudien konnte eine Rolle des Abbaus von Carnitin bei der Virulenz von A. baumannii nachgewiesen werden. Zusätzlich konnte dieser Effekt dem entstehenden Trimethylamin zugesprochen werden...
Der DNA-Translokator von T. thermophilus HB27, ebenso wie Typ-IV-Pili (T4P), sind Multiproteinkomplexe, die die Membranen und das Periplasma durchspannen. Sie sind ähnlich aufgebaut und enthalten identische Proteine. Der DNA-Translokator vermittelt Transport von DNA in das Zellinnere während der natürlichen Transformation. T4P sind filamentöse Zellorganellen, die an der inneren Membran assembliert werden und bis zu mehrere Mikrometer aus der Zelle hinausragen. Sie dienen der Anhaftung und Fortbewegung der Zellen auf Oberflächen.
Das Ziel dieser Arbeit war es, die Funktionen einzelner Komponenten der Komplexe und ihrer Proteindomänen bei der natürlichen Transformation, der T4P-Assemblierung und den durch T4P vermittelten Funktionen Adhäsion und „twitching motility“ aufzuklären.
Es sind neun Proteine bekannt, die eine duale Rolle als Komponenten des DNA-Translokators und des T4P spielen. Eines dieser Proteine ist die Assemblierungs-ATPase PilF, die Hexamere bildet. Diese cytoplasmatischen ATPase-Komplexe stellen die Energie für die Assemblierung der T4P bereit, ebenso wie für die Aufnahme freier DNA. Es ist jedoch bisher nicht geklärt, wie die durch PilF bereitgestellte Energie auf die anderen Komponenten des DNA-Translokators/T4P übertragen wird.
In dieser Arbeit konnte gezeigt werden, dass PilF an das cytoplasmatische Protein PilM des T4P und DNA-Translokators bindet. Zudem konnten Proteinkomplexe bestehend aus den Proteinen PilM, PilN und PilO heterolog produziert und aus Zellmembranen koisoliert werden. PilF interagierte mit diesen PilMNO-Komplexen via PilM. Diese Interaktionen führt zur Stimulierung der ATPase-Aktivität von PilF. Dies deutet an, dass PilM ein Kupplungsprotein ist, welches die Assemblierungs-ATPase PilF physisch und funktionell mit dem T4P/DNA-Translokator über den PilMNO-Komplex verbindet.
Neben PilF standen Präpiline von T. thermophilus im Fokus dieser Arbeit. Präpiline sind Vorläuferproteine, die zu Pilinen prozessiert werden und als solche dann die Untereinheiten der Pilus-Strukturen bilden.
Zusammenfassend konnten die Rollen einzelner Präpilin-ähnlicher Proteine bei T4P-assoziierten Funktionen geklärt werden und es konnten erste Analysen zur Charakterisierung des weitestgehend unbekannten Proteins ComZ durchgeführt werden. Desweiteren liefert diese Arbeit Hinweise darauf, dass die membranassoziierten Proteine PilM, PilN und PilO Kupplungsproteine sind, die PilF mit den periplasmatischen Komponenten des T4P/DNA-Translokators verbinden und dadurch die ATPase-Aktivität von PilF stimulieren. Die Rollen einzelner Proteindomänen von PilF und PilM bei der Protein-Protein-Interaktion und der Bindung von Liganden wurden aufgeklärt, sowie ihre Funktionen bei den T4P-vermittelten Funktionen und der natürlichen Transformation.
Prokaryotische Organismen werden in ihrer natürlichen Umgebung mit schwankenden Umwelteinflüssen konfrontiert oder müssen gegebenenfalls extremen Bedingungen standhalten. Um sich an derartige Veränderungen anpassen zu können und damit ein weiteres Überleben zu sichern, ist es wichtig neue genetische Informationen zu akquirieren. Die molekulare Basis dieser Anpassung sind Genmutationen, Genverlust, intramolekulare Rekombination und/oder horizontaler Gentransfer. Der vorliegende Selektionsdruck der Umwelt begünstigt schlussendlich die Spezialisierung und damit die Erschließung neuer Standorte aufgrund des Erwerbs neuer metabolischer Eigenschaften, Resistenzgene oder Pathogenitätsfaktoren. Vergleichende Analysen bakterieller Genome, welche auf Analysen der GC-Gehalte, der Codon- und Aminosäurenutzung und der Genlokalisation beruhen, zeigten, dass bei diesem evolutiven Prozess bzw. der Weiterentwicklung der bakteriellen Genome der horizontale Gentransfer als treibende Kraft eine entscheidende Rolle spielt. So indizieren Genomstudien, dass 0-22% der gesamten bakteriellen und 5-15% der archaeellen Gene horizontal erworben wurden, wobei der DNA-Transfer nicht ausschließlich zwischen Vertretern einer Domäne, sondern ebenfalls zwischen Organismen unterschiedlicher Domänen stattgefunden hat. So sind z.B. 24 bzw. 16% der Gene von Genomen hyperthermophiler Organismen wie Thermotoga maritima oder Aquifex aeolicus archaeellen Ursprungs. Ebenso finden sich Gene für Chaperone und DNA-Reparaturenzyme im Genom des thermophilen Bakteriums Thermus thermophilus wieder, welche wahrscheinlich ebenfalls durch horizontalen Gentransfer aus hyperthermophilen und archaeellen Genomen erworben wurden um eine Anpassung an extreme Standorte zu ermöglichen. Durch vergleichende Genomstudien wurde ebenfalls festgestellt, dass die durch horizontalen Gentransfer erworbenen Gene oftmals zu einer Neuorganisation von Transkriptionseinheiten und zu einer veränderten Genomorganisation führten. Dennoch finden sich immer wieder Beispiele von horizontal erworbenen Operonen in den verschiedenen Organismen. Gut charakterisierte Vertreter horizontal übertragener Operone sind dabei z.B. das archaeelle H+-ATPase-Operon, das Operon der Na+-translozierenden NADH:Ubichitonoxidoreduktase oder das Nitratreduktase-Operon.
Man unterscheidet bei dem horizontalen Gentransfer zwischen drei Mechanismen der DNAAufnahme: Konjugation, Transduktion und Transformation. Die DNA-Übertragung durch Konjugation ist durch einen spezifischen Zell-Zell-Kontakt definiert, der durch einen von der Donorzelle ausgehenden, sogenannten F-Pilus hergestellt wird. Die Donorzelle überträgt schließlich Plasmid-kodierte genetische Informationen und oftmals Eigenschaften für die eigenständige Konjugation auf eine Rezipientenzelle. Die Transduktion hingegen beschreibt die DNA-Übertragung von Bakteriophagen auf eine Wirtszelle, wobei hier eine hohe Wirtsspezifität Voraussetzung ist. Die Übertragung der DNA von einer Bakterienzelle in eine andere erfolgt dabei ohne Kontakt der Zellen. Die natürliche Transformation ist definiert als Transfer von freier DNA und ermöglicht damit im Gegensatz zu den beiden ersten spezifischen Mechanismen der DNA-Übertragung ein größeres Spektrum der Verbreitung genetischer Informationen. Freie DNA, welche entweder durch Zelllyse oder Typ-IVSekretion ausgeschieden wird und aufgrund von Adsorption an mineralische Oberflächen über längere Zeiträume stabil in der Umgebung vorliegen kann, kann unter der Voraussetzung der Existenz eines speziellen Aufnahmesystems von Bakterien aufgenommen werden. Mittlerweile sind über 44 Bakterien aus unterschiedlichen taxonomischen Gruppen beschrieben, die eine natürliche Kompetenz ausbilden können. Die bekanntesten Beispiele für natürlich transformierbare Gram-negative Bakterien sind Heliobacter pylori, Neisseria gonorrhoeae, Pseudomonas stutzeri, Haemophilus influenzae, T. thermophilus und Acinetobacter baylyi. Auch unter den Gram-positiven Bakterien finden sich einige Vertreter, die natürlich kompetent sind, wie Deinococcus radiodurans, Bacillus subtilis und Streptococcus pneumoniae. Ungeachtet der relevanten Rolle der Transformation im horizontalen Gentransfer, ist über die Struktur und Funktion der komplexen DNA-Aufnahmesysteme wenig bekannt.
1. Die Deletionsderivate der Kompetenzproteine ComZ und PilO wurden als Fusionsproteine mit einem Maltosebindeprotein überproduziert, über eine Amylosesäule aufgereinigt und in denaturierter Form für die Generierung von polyklonalen Antikörpern in Kaninchen eingesetzt. Es konnten spezifische Antikörper gegen PilO generiert werden. 2. Mittels Western-Blot-Analysen subzellulärer Fraktionen des Wildtyps und der pilO::kat-Insertionsmutante konnte das PilO-Protein mit einer molekularen Masse von 21 kDa in der inneren Membran detektiert werden. 3. Mutantenstudien ergaben, dass in der pilO::kat-Mutante andere Kompetenzproteine in ihrer Lokalisation nicht beeinträchtigt sind und dass die Lokalisation des PilO-Proteins in anderen transformationsdefekten Mutanten nicht beeinträchtigt ist. Einzig eine verringerte Menge des PilF-Proteins in der inneren Membran der pilO::kat-Mutante wurde detektiert. Diese Ergebnisse indizieren eine Interaktion des PilO- und des PilFProteins. 4. Für die Analysen des DNA-Transports wurde ein Testsystem etabliert. 5. Durch DNase-Behandlung konnte zwischen gebundener und aufgenommener DNA differenziert werden. 6. Durch den Einsatz des Komplexbildners EDTA konnte gezeigt werden, dass die DNABindung bzw. auch die DNA-Aufnahme in Thermus von zweiwertigen Ionen beeinflusst wird. 7. Unterschiedliche DNA-Formen, wie z. B. lineare, zirkuläre Plasmid-DNA und chromosomale DNA, werden zu gleichen Mengen gebunden und aufgenommen. Die Transformationshäufigkeiten in unterschiedlichen DNA-Formen jedoch zeigen Unterschiede. Dabei wird lineares Plasmid um einen Faktor von ca. 100 schlechter transformiert als zirkuläres Plasmid. Nukleotide werden von Thermus nicht gebunden und aufgenommen. 8. Kinetische Analysen des DNA-Binde- und -Aufnahmeapparates in Thermus ergaben eine Geschwindigkeit der DNA-Akkumulation von 1,5 μg DNA pro mg Protein und min und einen Km-Wert von 48 μg DNA/ml. 9. Chromosomale DNA aus Vertretern der unterschiedlichen Domänen Archaeen, Bakterien und Eukarya werden von Thermus gleichermaßen gut gebunden und aufgenommen. 10. Entkoppler sowie ATPase-Inhibitoren verhindern DNA-Aufnahme. Dies führt zu dem Schluß, dass DNA-Aufnahme in Thermus energieabhängig ist. 11. Die aufgenommene DNA kann nicht als Kohlenstoff-, Stickstoff- oder Phosphatquelle genutzt werden, und die Nukleotide werden nicht als Vorstufen bei der Nukleinsäuresynthese weiterverwendet. 12. Durch DNA-Binde- und -Aufnahmestudien unterschiedlicher transformationsdefekter Mutanten konnte die Rolle einzelner Kompetenzproteine bei der DNA-Bindung und/oder -Aufnahme geklärt werden. Die Ergebnisse indizieren, dass PilQ an der DNA-Bindung und -Aufnahme beteiligt ist. 13. DNA-Binde- und -Aufnahmestudien mit comEA::kat-, pilA4::kat-, pilF::kat-, pilD::kat- und pilW::kat-Mutanten indizieren, dass die Proteine an dem DNA-Transport über die äußere Membran beteiligt sind. 14. Mutanten mit Defekten in den Kompetenzproteinen ComEC, DprA, PilA1, PilA2, PilA3, ComZ, PilM, PilN, PilO, PilC akkumulieren DNA im DNase-resistenten Zustand, vergleichbar dem Wildtyp. Dies indiziert eine Rolle dieser Proteine am DNA-Transport über das Periplasma und/oder die innere Membran.