Refine
Year of publication
Document Type
- Doctoral Thesis (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- microRNA (2)
- sRNA (2)
- 5-Lipoxygenase (1)
- 5-lipoxygenase (1)
- Angiogenese (1)
- Angiogenesis (1)
- Aptamer (1)
- Cyclooxygenase-2 (1)
- EMSA (1)
- Endothelial cells (1)
Institute
- Biowissenschaften (23)
- Biochemie und Chemie (5)
- Georg-Speyer-Haus (1)
Riboswitche – Vorbilder für die Konstruktion synthetischer RNA Schalter Riboswitche sind natürliche RNA Regulatorelemente. Sie sind in den nicht kodierenden Regionen von messenger RNAs (mRNAs) lokalisiert und beeinflussen die Expression nachfolgender Gene. Riboswitche bestehen aus zwei Domänen. Die Binde- oder Aptamerdomäne bildet eine Bindetasche, die einen Liganden ohne die Hilfe zusätzlicher Faktoren hoch spezifisch und affin binden kann. Die zweite Domäne, die sogenannte Expressionsplattform, interpretiert den Bindestatus der Aptamerdomäne und beeinflusst die Expression der nachfolgenden Gene. Liganden sind meist kleine, organische Moleküle wie Nukleotide, Aminosäuren oder Vitamine. Riboswitche regulieren Gene, die für die Synthese oder Verwertung ihres jeweiligen Liganden in der Zelle von Bedeutung sind. Kontrolliert wird die Genexpression meist durch Transkriptionstermination oder durch Maskierung der ribosomalen Bindestelle (SD = Shine Dalgarno Sequenz). Auch Eukaryoten nutzen das Prinzip der direkten RNA-Ligand-Interaktion zur Genregulation, wenn gleich in geringerem Ausmaß. In Pilzen und Pflanzen wird durch Ligandenbindung alternatives Spleißen von prä-mRNAs induziert, was entweder zur mRNA Degradation durch alternative Polyadenylierung oder der Repression der Translation durch alternative Leserahmen (uORFs) führt. Charakteristisch für eine Regulation über Riboswitche ist die direkte Wechselwirkung des niedermolekularen Liganden mit der RNA. In trans kodierte Proteinfaktoren sind aufgrund dieser direkten Bindung nicht notwendig. Dies macht natürliche Riboswitche zu geeigneten Vorbildern für die Entwicklung künstlicher RNA Schalter. Synthetische Riboswitche Aptamere sind kleine, synthetisch hergestellte, einzelsträngige RNA oder DNA Moleküle, die hochaffin und sehr spezifisch ein Zielmolekül binden können. Man kann Aptamere gegen nahezu jedes Molekül der Wahl über einen Prozess der in vitro Selektion gewinnen (SELEX = systematic evolution of ligands by exponential enrichment). Eine Eigenschaft der meisten Aptamere ist, dass sie ihre endgültige Struktur erst in Gegenwart des spezifischen Liganden ausbilden („induced fit“). Dies kann ausgenutzt werden, um RNA Aptamere als regulatorische Elemente einzusetzen. Hierzu inseriert man Aptamere in nicht translatierte Regionen einer mRNA. In Abwesenheit des Liganden bildet sich die Struktur nur teilweise aus und interferiert nicht mit zellulären Funktionen. Erst im Komplex mit einem Liganden kommt es zur effizienten Beeinflussung der Genexpression. Inseriert man ein regulatorisch aktives Aptamer in den 5’ nicht translatierten Bereich (5’UTR) einer eukaryotischen mRNA, erlaubt das Aptamer in der nicht ligandengebundenen Form die Translation nachfolgender Gene. Erst der Aptamer-Ligand-Komplex interferiert mit der Translationsinitiation. Ist das Aptamer nahe der cap-Struktur positioniert, behindert es die initiale Bindung des Ribosoms an die mRNA. Bei einer weiter stromabwärts gelegenen Insertion interferiert es mit dem Scannen der kleinen ribosomalen Untereinheit nach dem Startcodon. Die beste Regulationseffizienz wird hierbei bei einer Insertion direkt vor dem Startcodon erreicht. Es zeigte sich jedoch, dass nur eine sehr geringe Anzahl an Aptameren in der Lage ist, als RNA Schalter aktiv zu sein. Dies führte dazu, dass bis heute nahezu alle Systeme entweder auf dem Theophyllin oder dem Tetrazyklin Aptamer basieren. Ziele dieser Arbeit In dieser Arbeit sollte untersucht werden, warum nur wenige Aptamere regulatorisch aktiv sind und was diese von inaktiven Varianten unterscheidet. Dafür wurden ein Tetrazyklin und ein Neomycin Aptamer detailliert charakterisiert. Desweiteren wurden neue RNA-basierte Regulationssysteme aufgebaut und ihr regulatorischer Mechanismus analysiert. Innerhalb dieser Arbeit wurde dabei ein System zur aptamerabhängigen Regulation des prä-mRNA Spleißens in Hefe etabliert. Außerdem konnte das bekannte Translationssystem für die Regulation essentieller Gene in Hefe weiter entwickelt werden. Folgende Ergebnisse wurden in dieser Arbeit erhalten: 1.Das Tetrazyklin Aptamer – In vitro Charakterisierung eines synthetischen Riboswitches. Das Tetrazyklin Aptamer ist 69 Nukleotide lang. Es besteht aus drei Stämmen (P1, P2 und P3) sowie drei einzelsträngigen Bereichen (J1/2, J2/3 und die Schleife L3; siehe Abbildung 1, links). Die Domäne oberhalb von P2 ist nicht an der Ligandenbindung beteiligt und kann ausgetauscht werden. Die Stämme P1-P3 sind bereits vor Ligandenbindung ausgebildet. Tetrazyklin wird über die drei einzelsträngigen Bereiche gebunden (siehe Abbildung 1, rechts). Durch fluorimetrische und kalorimetrische Methoden wurde eine Bindekonstante von Tetrazyklin an das Aptamer von 770 pM ermittelt. Diese Affinität ist außergewöhnlich hoch. Vergleichbare Aptamere und natürliche Riboswitche binden niedermolekulare Liganden 10- bis 1000-fach schlechter. Wir konnten zeigen, dass hohe Affinität eine Grundvoraussetzung für die regulatorische Aktivität ist, da Aptamermutanten mit verschlechterten Bindekonstanten keine in vivo Aktivität mehr aufweisen sind (Seiten 19-29). Durch Größenausschlußchromatographie konnte gezeigt werden, dass das Tetrazyklin Aptamer durch Ligandenbindung keine größeren globalen Konformationsänderungen erfährt. Dies weist auf eine weitgehende Vorformung der Bindetasche bereits ohne Tetrazyklin hin. Bei Ligandenbindung nimmt das Aptamer eine pseudoknotenähnliche Tertiärstruktur an, welche wahrscheinlich für die inhibitorische Wirkung auf das Ribosom verantwortlich ist (Seiten 19-29). Im Laufe dieser Arbeit wurde die Kristallstruktur des Aptamers im Komplex mit Tetrazyklin in der Arbeitsgruppe von A. R. Ferré-D’Amaré gelöst. Die Struktur zeigt, dass die Stämme P1 und P3 aufeinander gestapelt sind (Abbildung 1, rechts). Stamm P2 bildet die Verlängerung einer irregulären Helix, die aus den einzelsträngigen Bereichen J1/2 und J2/3 gebildet wird. Nukleotide der Schleife L3 interagieren mit dieser irregulären Helix und bilden mit ihr zusammen die Bindetasche für Tetrazyklin. Diese hochauflösende Struktur diente uns in weiteren Arbeiten als Ausgangspunkt für die detaillierte Charakterisierung von ligandeninduzierten Änderungen (siehe 6.). 2. Das Tetrazyklin Aptamer ist in der Lage, prä-mRNA Spleißen in Hefe zu inhibieren. Der Aptamer-Tetrazyklin-Komplex kann nicht nur mit der Translationsinitiation, sondern auch mit dem Spleißen der prä-mRNA in Hefe interferieren (Seiten 31-37). Dazu wurde ein Hefe-Intron in den Leserahmen von GFP inseriert. Nur bei korrektem prä-mRNA Spleißen wird die reife mRNA aus dem Kern transportiert und GFP exprimiert. Für eine RNA-basierte Regulation des Spleißens wurde die Konsensussequenz der 5’ Spleißstelle in den Stamm P1 des Tetrazyklin Aptamers integriert. Dieser ist nicht an der Ligandenbindung beteiligt und seine Sequenz daher variabel. Es konnte gezeigt werden, dass in Abwesenheit von Tetrazyklin das Intron vom Spleißosom erkannt und entfernt wird. Die Expression des Gens ist dann möglich. Durch die Zugabe von Tetrazyklin wird das Spleißen inhibiert und GFP nicht länger exprimiert. Biochemische Strukturkartierungen der RNA in An- und Abwesenheit von Tetrazyklin zeigten, dass der Stamm P1 durch Ligandenbindung verfestigt wird. Die Ligandenbindung beeinflusst also nicht nur die Struktur der Bindetasche, sondern wird auch auf angrenzende Stammbereiche übermittelt. Durch Stabilisierung des Stammes P1 wird die 5’ Spleißstelle für das Spleißosom maskiert. Somit konnten wir den Mechanismus für die Aptamer basierte Regulation des prä-mRNA Spleißens aufklären. 3. Die Tetrazyklin Aptamer basierte Inhibition der Translationsinitiation ermöglicht die Regulation essentieller Gene in Hefe. Frühere Arbeiten zeigten, dass die Insertion mehrerer Aptamerkopien in den 5’UTR zu einem effizienten Abschalten der Genexpression führt. Dies wurde genutzt, um ein neuartiges System für die konditionale Expression essentieller Gene in Hefe zu etablieren. In Zusammenarbeit mit der Arbeitsgruppe von Prof. K.-D. Entian wurden Insertionskassetten für eine PCR-basierte chromosomale Integration von Tetrazyklin Aptameren unter Kontrolle verschieden starker Promotoren konstruiert. Dafür wurden 1-3 Kopien des Tetrazyklin Aptamers unter Kontrolle des hoch exprimierenden TDH3-Promoters und des etwas schwächeren ADH1-Promoters gestellt. Außerdem wurde eines HA-tag angefügt, um die Genexpression mittels Westernblot verfolgen zu können. Zur Überprüfung der chromosomalen Insertion diente eine Kanamycin-Resistenz. Das neue System wurde erfolgreich an von fünf essentiellen Genen getestet. Es zeigte sich, dass die Zugabe von Tetrazyklin zu einem schnellen und effizienten Abschalten aller getesteten Gene führt. Die Vorteile dieses neuartigen konditionalen Genexpressionssystems in Hefe liegen in der einfachen Handhabung und der Unabhängigkeit vom verwendeten Stamm. Es müssen keine in transkodierten Proteinfaktoren coexprimiert werden. Durch dieses System konnte zum ersten Mal die Aptamer-basierte Regulation endogener, essentieller Gene gezeigt werden (Seiten 49-57). 4. Die Kombination von in vitro Selektion und in vivo Screening ermöglicht die Identifikation neuer regulatorisch aktiver Aptamere – ein Neomycin Riboswitch. Nur wenige in vitro selektierte Aptamere sind als synthetischer Riboswitch aktiv. In unserer Arbeitsgruppe wurde daher ein in vivo Screeningsystem zur Identifizierung neuer Aptamere in Hefe entwickelt. Eine Bibliothek in vitro selektierter Aptamere wurde hierzu in den 5’UTR des GFP Gens kloniert und die Aktivität einzelner Kandidaten durch Vergleich der Fluoreszenz in An- und Abwesenheit des Liganden überprüft. Wir verwendeten eine Bibliothek aus Neomycin-bindenden Aptameren und analysierten 5000 Hefeklone. Hierbei konnten zehn Sequenzen isoliert werden, die abhängig von Neomycin die Initiation der Translation inhibieren. Das 33 Nukleotid lange Aptamer N1 zeigt eine 7,5-fache Regulation und wurde näher charakterisiert. Es besteht aus einer internen asymmetrischen und einer terminalen Schleife, die durch zwei GC Basenpaare getrennt sind. Enzymatische Strukturkartierung und Mutationsanalyse zeigten, dass beide einzelsträngigen Bereiche für die Ligandenbindung wichtig sind. Der abschließende Stamm ist nicht an der Ligandenbindung beteiligt und hat geringen Einfluss auf die regulatorische Aktivität. N1 kann außerdem gegen andere Aminoglykosidantibiotika diskriminieren (Seiten 39-47). Interessanterweise sind die regulatorisch aktiven Aptamere in der in vitro selektierten Bibliothek stark unterrepräsentiert und konnten durch zufälliges Sequenzieren nicht identifiziert werden. Dieses Beispiel verdeutlicht eindrucksvoll die Notwendigkeit eines Screenings in vivo. 5. Regulatorisch aktive Neomycin Aptamere unterscheiden sich von inaktiven durch eine größere thermische Stabilisierung bei Ligandenbindung. Durch weitere Mutationsanalysen von N1 konnte ein aktivitätsvermittelndes Element im Neomycin Riboswitch identifiziert werden. Dazu wurde entweder die terminale oder die interne asymmetrische Schleife mutiert. Es konnte gezeigt werden, dass die Sequenz der terminalen Schleife nur einen modulierenden Einfluss auf die Aktivität hat, wobei die Asymmetrie der internen Schleife (aber nicht deren exakte Sequenz) ausschlaggebend für die regulatorische Aktivität ist. Für weitere Analysen wurde N1 mit fünf mutierten Varianten und dem inaktiven Neomycin bindenden Aptamer R23 verglichen. Alle sieben Aptamer haben eine ähnliche Sekundärstruktur und Ligandenaffinität, zeigen aber unterschiedliche Aktivität in vivo. Durch Bestimmung des Schmelzpunktes der verschiedenen Aptamere in An- und Abwesenheit von Neomycin zeigte sich, dass aktive Aptamere thermisch deutlich mehr durch Ligandenbindung stabilisiert werden als inaktive. Dabei ist die thermische Stabilität der Aptamer-Neomycin-Komplexe ähnlich. Jedoch ist die Stabilität ohne Ligand bei aktiven Aptameren gegenüber inaktiven Varianten deutlich erniedrigt. Durch NMR spektroskopische Untersuchungen in Zusammenarbeit mit Prof. J. Wöhnert konnte bestätigt werden, dass aktive Aptamere weniger stark vorgeformt sind als inaktive. Das in den Mutationsanalysen identifizierte Element nimmt nicht an der Ligandenbindung teil, sondern dient als Schalter, der den freien Zustand das Aptamers destabilisiert. Damit sorgt es für den großen Unterschied in der thermischen Stabilität des freien und des gebundenen Zustandes aktiver Aptamere. Dies zeigt, dass Unterschiede in der Stabilität die regulatorische Aktivität vermitteln (Seiten 73-102). Laufende Arbeiten sollen nun klären, ob thermische Stabilisierung durch Ligandenbindung ein allgemeingültiger Vermittler von regulatorischer Aktivität ist. Dazu werden weitere Aptamere überprüft, welche in Abwesenheit des Liganden unterschiedlich stark strukturiert sind und eventuell durch Ligandenbindung unterschiedlich stabilisiert werden. Außerdem werden wir testen, ob es die gewonnen Erkenntnisse erlauben, durch rationelles Design synthetische Riboswitche zu verbessern oder inaktive Aptamere in aktive zu verwandeln. 6. Was macht ein Aptamer zu einem regulatorisch aktiven Riboswitch? Für das Tetrazyklin Aptamer konnten wir zeigen, dass zum einen eine extrem hohe Bindekonstante und zum anderen eine hoch komplexe Bindetasche für die regulatorische Aktivität entscheidend sind. Dabei ist die Bindetasche in Abwesenheit des Liganden stark vorstrukturiert und erfährt keine globalen strukturellen Änderungen (Seiten 19-29). In Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Wachtveitl untersuchen wir den Einfluss von Bindekinetik und Lebensdauer des Aptamer-Tetrazyklin-Komplexes auf die regulatorische Aktivität. Dafür vergleichen wir das Tetrazyklin Aptamer mit drei regulatorisch inaktiven Mutanten. Für die Messungen nutzen wir die Eigenfluoreszenz des Tetrazyklins. Diese ist in wässriger Lösung geqenched und steigt bei Bindung an die RNA deutlich an. Erste Ergebnisse zeigen große Unterschiede zwischen den Aptameren in der Geschwindigkeit der Ligandenbindung. Außerdem zeigen sich geringe Unterschiede in der Lebensdauer der verschiedenen Komplexe. Durch NMR spektroskopische Untersuchungen in der Arbeitsgruppe von Prof. J. Wöhnert können die Veränderungen einzelner Basen bei Ligandenbindung untersucht werden. Hierbei zeigen erste Messungen am Tetrazyklin Aptamer, unterschiedliches Verhalten einzelner an der Bindung beteiligter Nukleotide. Eine detaillierte Aufklärung der ligandeninduzierten Veränderungen gewährt uns weitere Einblicke, warum das Tetrazyklin Aptamer als Riboswitch aktiv ist. Die regulatorische Aktivität Neomycin abhängiger Riboswitche wird durch thermische Stabilisierung bei Ligandenbindung vermittelt. Dabei zeigte sich, dass durch Neomycin neue Basenpaare und Basenstapelungen entstehen. Durch weiterführende strukturelle Untersuchungen sollen nun ligandeninduzierte Veränderungen in N1 detailliert geklärt werden. Größere globale Änderungen konnten bereits durch EPR Spektroskopie in Zusammenarbeit mit der Arbeitsgruppe von Prof. T. F. Prisner ausgeschlossen werden. Hierzu wurden in der Arbeitsgruppe von Prof. J. W. Engels spinmarkierte Neomycin Aptamere hergestellt und die Abstände der Sonden in An- und Abwesenheit von Neomycin bestimmt. Es zeigte sich, dass sich der Abstand der Spinmarkierungen durch Zugabe von Neomycin (oder anderen Aminoglykosiden) nicht ändert (Seiten 59-72). Dies weist auf eher lokale Änderungen in der Bindetasche hin. Durch NMR Spektroskopie in Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Wöhnert werden im Moment die Strukturen verschiedener N1-Aminoglykosid-Komplexe gelöst. Dabei zeigt sich, dass in vivo aktive und inaktive Liganden eine ähnliche Struktur im Aptamer induzieren. Was die einzelnen Komplexe unterscheidet und damit die verschiedene Aktivität begründet ist Ziel der Analyse. Insgesamt konnte in dieser Arbeit ein Regulationssystem für die Aptamer-basierte Kontrolle des prä-mRNA Spleißens in Hefe entwickelt und das bestehende Translationssystem für die Applikation auf essentielle Gene angewendet werden. Außerdem wurden wichtige Punkte, warum Aptamere als Riboswitch funktionieren aufgeklärt. Damit legt diese Arbeit einen wertvollen Grundstein für die Weiterentwicklung RNA-basierter Genregulationselemente für die Anwendung in der synthetischen Biologie.
Dicer and Drosha are the major enzymes involved in microRNA processing. Using siRNA targeting Dicer and Drosha, thereby downregulating a substantial number of microRNAs in EC, we demonstrate a crucial role of both enzymes in angiogenic processes. Interestingly, Dicer inhibition exerts more profound effects on processes like migration and viability of EC in comparison to Drosha inhibition. Moreover, Dicer effects in vivo angiogenesis, a process which is unaffected by Drosha. This discrepancy might be partially due to the involvement of Dicer in other cellular processes like heterochromatin formation and to the fact that Dicer and Drosha target mainly different subsets of microRNAs. In addition, we identified miR-92a as a novel endogenous repressor of the angiogenic program in EC, which impairs their angiogenic functions in vitro and in vivo. Consistent with these data, blocking miR-92a by systemic infusion of antagomirs enhances neovascularization and functional recovery after ischemia in vivo. At first sight, the anti-angiogenic function of miR-92a in EC appears to contradict the previously identified anti-apoptotic and pro-angiogenic activities of the miR-17~92 cluster in tumor cells. However, this apparent discrepancy might be well rationalized by a predominant function of miR-18a and miR-19a in tumor cells, which are responsible for the tumorigenic and non-cell autonomous pro-angiogenic functions of the miR-17~92 cluster. Instead, miR-92a expression is specifically upregulated in ischemic tissues and appears to cell-autonomously repress the angiogenic potential of EC. Among the various targets and verified regulated genes identified by microarray, we confirmed the downregulation of Integrin a5 in vitro and in vivo. The relevance of this miR-92a target is evidenced by severe vascular defects in the absence of Integrin a5. In addition, endothelial miR-92a interferes with the expression pattern of genes controlling key EC functions at various levels, some of which, e.g. eNOS, might be secondarily affected by directly targeted genes. Obviously, our data do not formally exclude effects of antagomir-92a on perivascular and other cell types, but surely include effects on EC. Regardless of this, the capacity of miR-92a to target various downstream effectors might be an advantage of miRNA-based therapeutic strategies and may overcome the limited therapeutic capacity of single growth factor or single gene therapies in ischemic diseases, since the highly organized process of vessel growth, maturation and functional maintenance is well known to require the fine-tuned regulation of a set of genes.
Obwohl zahlreiche zelluläre Funktionen von RNAs in direktem Zusammenhang mit Proteinen stehen, wurde auch eine Vielzahl von, unter anderem regulatorischen, RNA-Motiven identifiziert, die ihre Funktion ohne eine initiale Beteiligung von Proteinen ausüben. Das detaillierte Verständnis der zu Grunde liegenden Regulationsmechanismen beinhaltet die Charakterisierung von beteiligten RNA-Architekturen und deren funktionaler Stabilitäten, von dynamischen Aspekten der RNA-Faltungsprozesse sowie die Korrelation dieser Charakteristika mit zellulären Funktionen. Im Rahmen dieser Arbeit wurden strukturelle, thermodynamische und kinetische Aspekte der Ligand-bindenden Guanin Riboswitch-RNA Aptamerdomäne des xpt-pbuX Operons aus B. subtilis und eines Cofaktor-abhängigen katalytischen RNA-Motivs, des 'Adenin-abhängigen Hairpin Ribozyms', untersucht. ...
RNA hat neben der Rolle als Informationsüberträger wichtige Aufgaben in regulatorischen Prozessen. Sie kann komplexe Strukturen ausbilden und ähnlich wie Proteine Liganden binden oder enzymatische Reaktionen katalysieren. Im Rahmen dieser Arbeit sollten zwei Beispiele von RNA-Liganden-Interaktionen untersucht werden. Im ersten Abschnitt wurde die Interaktion des TetR-bindenden Aptamers 12-1 mit dem Tetracyclin-Repressorprotein (TetR) biochemisch charakterisiert. Über Gelverzögerungs- experimente wurde gezeigt, dass das Aptamer 12-1K delta A TetR mit hoher Affinität und Spezifität bindet. Es wurde ein KD von 22 nM bestimmt. Die Bindung ist dabei ebenso stark wie die Bindung von TetR an die Operatorsequenz tetO. In Anwesenheit von Tetracyclin (Tc) nimmt die Affinität des TetR/Aptamer-Komplexes um das sechsfache ab. Des Weiteren konnten die Bindeepitope des Aptamers durch eine Analyse von verschiedenen TetR-Mutanten im DNA-Bindebereich bestimmt werden. Die Aminosäuren T27, N47 und K48 sind dabei essentiell für die RNA-Bindung und führen bei einem Austausch zum Verlust der RNA-Bindung. Der Bindebereich des Aptamers überlappt mit Aminosäureresten, die für die tetO-Bindung essentiell sind. Die Stöchiometrie der TetR/Aptamer-Bindung wurde durch LILBID-Messungen auf eine molare Verteilung von 2:1 festgelegt. Ein TetR-Dimer bindet dabei ein Aptamermolekül. Durch die umfassende biochemische Analyse der TetR/Aptamer-Bindung kann das Aptamer 12-1 nun als Expressionssonde für RNAs in bakteriellen Zellen genutzt werden. Des Weiteren kann das Aptamer als alternativer, artifizieller Transkriptionsregulator im tet on / tet off-System verwendet werden. Im zweiten Teil der Arbeit sollten miRNAs identifiziert werden, die an der posttrans- kriptionellen Regulation der 5-Lipoxygenase (5-LO) und der Cyclooxygenase-2 (COX-2) beteiligt sind. Mit bioinformatischen Vorhersageprogrammen wurden die 3’-UTR- Bereiche von 5-LO und COX-2 nach putativen Bindestellen abgesucht. Im Fall der 5-LO wurden durch eine zusätzliche Microarray-Expressionsanalyse miRNAs ausgewählt, welche in 5-LO positiven Zellen hoch exprimiert sind und Bindestellen im 3’-UTR aufweisen. Es konnten verschiedene miRNAs detektiert werden, jedoch keine Regulation der 5-LO Aktivität beobachtet werden. Für COX-2 wurde neben der Suche nach putativen miRNA-Bindestellen zudem die Stabilität des 3’-UTR untersucht. Mit Hilfe des auf Perl basierenden Programms SignificanceScoreAssignment (Florian Groher, Diplomarbeit 2011) konnte der 3’-UTR von COX-2 als generell destabilisierend analysiert werden. In Colonkarzinom- spezifischen HT-29-Zellen wurden miRNAs untersucht, welche Bindestellen im 3’-UTR von COX-2 aufweisen. In diesem Kontext sollte der Einfluss einer Interaktion von HT- 29-Zellen mit aktivierten Thrombozyten sowie daraus isolierten Bestandteilen wie Mikropartikeln und PDGF analysiert werden. MiR-16, miR-26b, miR-199a und miR- 199a* konnten in HT-29-Zellen nachgewiesen werden. Bei einer Stimulation von HT-29- Zellen mit PDGF-BB werden miR-16 und miR-26b konzentrationsabhängig stärker exprimiert, während die Expression von miR-199a und miR-199a* signifikant abnimmt. Eine direkte Regulation von COX-2 durch die untersuchten miRNAs konnte durch Überexpressions- und Reportergenanalysen jedoch nicht festgestellt werden. Die Analysen der 5-LO- und COX-2-Regulation durch miRNAs stellen Vorarbeiten dar. Die etablierten Methoden können nun für eine detaillierte Betrachtung weiterer miRNAs verwendet werden.
Streptomyces coelicolor ist der Modellorganismus der GC reichen, Gram+ Actinomyceten, die mehr als zwei Drittel aller bekannten Antibiotika produzieren. Phänotypisch zeichnet er sich durch die Bildung eines Substrat- und eines Luftmyzels aus, welches im Laufe der weiteren Differenzierung Sporen bildet. Streptomyceten produzieren neben Antibiotika noch eine Vielzahl biotechnologisch interessanter Metaboliten. Der komplexe Lebenszyklus und Stoffwechsel erfordern eine genaue Regulation der Genexpression. Die letzten Jahre haben gezeigt, dass neben Proteinen auch die RNA eine regulatorische Funktion hat. Verschiedene regulatorisch aktive RNA Elemente wie Riboswitche, RNA-Thermometer und kleine nicht kodierende RNAs (small noncoding RNAs – sRNAs) wurden identifiziert. sRNAs wirken meist als antisense Riboregulatoren, indem sie ihre Ziel-mRNA binden und dadurch die Translation hemmen oder fördern. In dieser Arbeit wurden verschiedene bioinformatische Methoden verwendet, um sRNAs im Genom von S. coelicolor vorherzusagen. Es wurden Terminatorstrukturen und konservierte Sekundärstrukturen in den intergenen Regionen vorhergesagt, die keinem Gen zuzuordnen waren. In einem weiteren Ansatz wurden Bindestellen des Regulatorproteins DasR vorhergesagt, um DasR kontrollierte sRNAs zu identifizieren. Zusätzlich wurde mittels 454 Sequenzierung erstmalig das Transkriptom von S. coeliocolor analysiert. Auf diese Weise konnten etwa 500 sRNAs vorhergesagt werden. Eine der beiden charakterisierten sRNAs, sc32, ist 139 nt lang. Ihr Promoter liegt im kodierenden Bereich des Gens bldC und sie wird spezifisch durch Kälteschock induziert. Die zweite charakterisierte sRNA, sc1, ist 159 nt lang und in allen sequenzierten Streptomyceten konserviert. Ihre Expression wird nur bei Stickstoffmangel in der Stationärphase reprimiert. Durch molekularbiologische Analysen konnte ein Zielgen von sc1 identifiziert werden, die extrazelluläre Agarase DagA. Es konnte gezeigt werden, dass sc1 an die dagA-mRNA bindet und dadurch die Translation inhibiert. Als zweites mögliches Ziel von sc1 konnte die Histidinkinase SCO5239 identifiziert werden. Hier wurde gezeigt, dass Koexpression von sc1 die Expression einer SCO5239 Reportergenfusion um den Faktor acht steigert. Durch Analyse des Proteoms von sc1 Mutanten, konnte die differenzierte Expression von elf weiteren Proteinen gezeigt werden. Sc1 scheint als Regulator zu agieren, indem es auf die Stickstoffversorgung der Zelle reagiert und den Sekundärmetabolismus deaktiviert.
Das Burkitt Lymphom ist ein aggressives B-Zelllymphom, das in tropischen Regionen Afrikas und in Neu Guinea endemisch auftritt und vor allem bei Kindern vorkommt. Die sporadische Form des Burkitt Lymphoms tritt weltweit in geringerer Häufigkeit auf und betrifft alle Altersschichten. In nahezu allen endemischen Fällen ist das Epstein-Barr Virus in den Tumorzellen nachweisbar, jedoch nur in ca. 20 % der sporadischen Fälle. Der Beitrag von EBV zur Entstehung EBV-positiver Burkitt Lymphome ist seit über 50 Jahren EBV-Forschung ungeklärt. Im Jahr 2004 wurden im Genom des Epstein-Barr Virus eine Reihe von microRNAs entdeckt, die potentiell für die Pathogenese des EBV-positiven Burkitt Lymphoms relevant sein könnten. Da die Expression der viralen microRNAs seither für das Burkitt Lymphom nur unvollständig beschrieben worden sind, wurden sie in dieser Arbeit systematisch analysiert und dadurch ein vollständiges Expressionsprofil erstellt. Es konnte dabei keine Unterscheidung zwischen endemischen und sporadischen Fällen erreicht werden, jedoch wurden hierbei erstmals Fälle identifiziert, die trotz nachgewiesener EBV-Assoziation keine viralen microRNAs enthielten. Neben den viralen microRNAs könnten im Burkitt Lymphom auch die zellulären microRNAs für die Tumorentstehung von Bedeutung sein. Deshalb wurde in dieser Arbeit auch die Expression der zellulären microRNAs aus Burkitt Lymphom-Biopsien charakterisiert. Durch hierarchisches „Clustering“ bildeten sich drei Gruppen, die hauptsächlich durch An- und Abwesenheit von zwei microRNAs (miR21 und miR92a) definiert wurden, denen onkogenes Potential zugeschrieben wird. Die Expressionsmuster der einzelnen Gruppen weisen auf zelluläre Mechanismen der Pathogenese des Burkitt Lymphoms hin.
Die genetische Charakteristik des Burkitt Lymphoms ist eine Chromosomentranslokation, welche das Protoonkogen c MYC unter die Kontrolle von regulatorischen Elementen der Immunglobulingene bringt. Durch die somit erhöhte Transkription von c-MYC entfaltet das Genprodukt sein onkogenes Potential. Mutationen im offenen Leserahmen können dieses Potential zusätzlich verstärken. Da c MYC ein pleiotroper Transkriptionsfaktor ist und somit auf eine ganze Reihe zellulärer Prozesse Einfluss hat, bewirkt die Translokation massive Veränderungen in der Zelle. Vorangegangene Untersuchungen der Arbeitsgruppe zeigten, dass die antivirale Interferonantwort durch hohe c MYC-Expression unterdrückt wird. Diese Beobachtung liefert eine mögliche Erklärung für die Immunevasion von Burkitt Lymphom-Zellen, trotz Anwesenheit des EBV-Genoms. In Zelllinien, die aus Burkitt Lymphom-Biopsien generiert wurden, konnte gezeigt werden, dass EBV eine Interferoninduktion auslöst, die durch c-MYC unterdrückt wird. In dieser Arbeit konnte auch gezeigt werden, dass Epstein-Barr-virale Nukleinsäureprodukte durch den zytosolischen Rezeptor RIG-I Interferon induzieren, dieser aber durch die hohe c-MYC-Expression transkriptionell gehemmt wird. Neben RIG-I wurden weitere Rezeptoren und Mediatoren der Interferoninduktionskaskade identifiziert, die ebenfalls transkriptionell von c-MYC unterdrückt werden. Diese Ergebnisse stützen die Hypothese, dass c-MYC durch Unterdrückung der angeborenen Immunität die Immunevasion von Burkitt Lymphom-Zellen ermöglicht.
Im Rahmen dieser Arbeit wurden sRNAs des halophilen Archaeons Haloferax volcanii hinsichtlich ihrer biologischen und ihrer regulatorischen Funktion charakterisiert.
Um einen Überblick über die biologischen Funktionen archaealer sRNAs zu erhalten, wurde eine umfassende phänotypische Charakterisierung von 27 sRNA-Deletionsmutanten im Vergleich zum Wildtyp ausgewertet. Im Zuge dieser phänotypischen Charakterisierungen wurden zehn verschiedene Wachstumsbedingungen, morphologische Unterschiede und Veränderungen in der Zellmotilität untersucht. Hierbei zeigten nahezu alle Deletionsmutanten unter mindestens einer der getesteten Bedingungen phänotypische Unterschiede. Durch den Verlust von sRNAs wurden sowohl sogenannte Gain-of-function als auch Loss-of-function Phänotypen beobachtet. Haloarchaeale sRNAs spielen eine wichtige Rolle beim Wachstum mit verschiedenen Salzkonzentrationen, mit verschiedenen Kohlenstoffquellen und beim Schwärmverhalten, sind jedoch weniger in die Adaptation an diverse Stressbedingungen involviert.
Zur näheren Charakterisierung der regulatorischen Funktion archaealer sRNAs wurden sRNA362, sRNAhtsf468 und sRNA479 mittels molekulargenetischer Methoden wie Northern Blot-Analyse und DNA-Mikroarray sowie bioinformatischer in silico-Analyse untersucht. Das Expressionslevel von sRNA362 konnte bestimmt und potentielle Zielgene für sRNAhtsf468 und sRNA479 identifiziert werden.
Eine vorangegangene Studie zeigte den Einfluss von sRNA30 unter Hitzestress und führte zur Identifikation differentiell produzierter Proteine in Abwesenheit der sRNA. In dieser Arbeit wurde mittels Northern Blot-Analysen die Expression der sRNA30 charakterisiert. Das Wachstum in An- und Abwesenheit von sRNA30 wurde bei 42°C und 51°C phänotypisch charakterisiert und der regulatorische Einfluss der sRNA auf die mRNA differentiell regulierter Proteine durch Northern Blot-Analyse überprüft. Eine Transkriptomanalyse mittels DNA-Mikroarray nach Hitzeschock-Induktion führte zur Identifikation differentiell regulierter Gene involviert in Transportprozesse, Metabolismus, Transkriptionsregulation und die Expression anderer sRNAs. Die differentielle Regulation des Proteoms nach Hitzeschockinduktion in An- und Abwesenheit von sRNA30 konnte bestätigt werden.
Desweiteren wurde in dieser Arbeit sRNA132 und deren phosphatabhängige Regulation der Ziel-mRNA HVO_A0477-80 näher charakterisiert. Eine Induktionskinetik nach Phosphatentzug bestätigte die Bedeutung von sRNA132 für die verstärkte Expression des Operons HVO_A0477-80 unter Phosphatmangel-Bedingungen und verwies auf die Existenz weiterer Regulationsmechanismen. Während vor und nach Phosphatentzug kein Unterschied bezüglich der Zellmorphologie von Wildtyp und Deletionsmutante zu erkennen war, führte das Wachstum mit einem starken Phosphatüberschuss von 5 mM zu einer Zellverlängerung der Deletionsmutante. Die Kompetition der nativen 3‘-UTR des Operons HVO_A0477-80 mit einer Vektor-kodierten artifiziellen 3‘-UTR legt eine Regulation über die Bindung von sRNA132 an die 3‘-UTR nahe. Der Transkriptomvergleich nach Phosphatentzug in An- und Abwesenheit von sRNA132 führte zur Identifikation des Phosphoregulons der sRNA. Zu diesem Phosphoregulon gehören unter anderem zwei Glycerinphosphat-Dehydrogenasen, Transkriptionsregulatoren, eine Polyphosphatkinase und eine Glycerolphosphodiesterase. Zudem waren die Transkriptlevel der beiden ABC-Transporter HVO_A0477-80 und HVO_2375-8 für anorganisches Phosphat und des Transporters HVO_B0292-5 für Glycerinaldehyd-3-Phosphat in Abwesenheit der sRNA verringert. Die beiden ABC-Transportsysteme für anorganisches Phosphat wurden im Rahmen dieser Arbeit deletiert und weiter charakterisiert. Es konnte gezeigt werden, dass das ABC-Transportsystem HVO_2375-8 bei geringen Phosphatkonzentrationen leicht induziert wird und das Transkriptlevel in Anwesenheit von sRNA132 erhöht ist. Wachstumsversuche der jeweiligen Deletionsmutante in direkter Konkurrenz mit dem Wildtyp zeigten, dass keiner der beiden ABC-Transporter den anderen vollständig ersetzen kann und der Wildtyp mit beiden intakten ABC-Transportern unter phosphatlimitierenden Bedingungen einen Wachstumsvorteil besitzt. In silico-Analysen der Promotorbereiche von sRNA und ABC-Transporter legen zudem die Existenz von P-Boxen nahe.
In der vorliegenden Arbeit konnte gezeigt werden, dass bestimmte neuronale microRNAs im Rückenmark und in den Spinalganglien konstitutiv exprimiert und nach peripherer Entzündung mit Formalin oder Zymosan differenziell reguliert werden. Bei der SNI-induzierten Neuropathie konnte indessen keine signifikante Regulation der untersuchten microRNAs nachgewiesen werden. Aufgrund der Lokalisation in den Neuronen der Schmerz-verarbeitenden Laminae I und II des Dorsalhorns des Rückenmarks und angesichts der Regulation in entzündlich stimulierten Neuronen und Mikroglia wurde der Fokus der Arbeit auf die Untersuchung von microRNA-124a gelegt. Anhand von Expressionsanalysen konnte gezeigt werden, dass eine periphere entzündliche Stimulation mit Formalin oder Zymosan microRNA-124a im Rückenmark inhibiert, die Expression pro-inflammatorischer und pro-nozizeptiver Gene hiernach ermöglicht und ein vermehrtes Schmerzverhalten bewirkt. Die funktionelle Relevanz von microRNA-124a wurde in vivo mittels intravenöser Applikation von microRNA-124a-Modulatoren bei einem Modell für entzündliche Schmerzen, dem Formalin-Modell untersucht. Dabei führte die Hemmung von microRNA-124a zu einem verstärkten Schmerzverhalten, welches mit einer Hochregulation verschiedener Entzündungsmarker einherging. Die Überexpression von microRNA-124a dagegen antagonisierte die Hochregulation entzündlicher Mediatoren und führte zu einer Schmerzhemmung. Darüber hinaus konnte in der vorliegenden Arbeit der antinozizeptive Effekt von microRNA-124a mit der Regulation der Epigenetik-regulierenden Targets MeCP2, HDAC5 und MYST2 assoziiert werden und u.a. über die Hemmung des neuromodulierenden, pro-inflammatorischen Peptids BDNF verifiziert werden. Die spezielle Darreichung von microRNA-124a könnte demzufolge einen vielversprechenden Ansatz zur Therapie chronisch-entzündlicher Schmerzen liefern. Zukünftig werden weitere Studien notwendig sein um die eindeutige Funktion, die individuelle Wirkung sowie die therapeutische Relevanz von microRNA-124a zu analysieren. Darüber hinaus müssten Dosis-Wirkungs-Beziehungen und Nebenwirkungsprofile für microRNA-124a erstellt werden, um potenzielle Risiken, Chancen und Vorteile der microRNA-Modulation hinsichtlich einer humanen Schmerztherapie bewerten zu können.
The importance of RNA in molecular and cell biology has long been underestimated. Besides transmitting genetic information, studies of recent years have revealed crucial tasks of RNA especially in gene regulation. Riboswitches are natural RNA-based genetic switches and known only for ten years. They directly sense small-molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within recent years, artificial riboswitches have been developed that operate according to user-defined demands. Hence, they represent powerful tools for synthetic biology.
This study focused on the development of engineered catalytic riboswitches for conditional gene expression in eukaryotes. A self-cleaving hammerhead ribozyme was linked to a tetracycline binding aptamer in order to regulate ribozyme cleavage allosterically with tetracycline. By integrating such a hybrid molecule into a gene of interest, mRNA cleavage and thereby gene expression is controllable in a ligand dependent manner. The linking domain between ribozyme and aptamer was randomised. Tetracycline inducible ribozymes were isolated after eleven cycles of in vitro selection (SELEX). 80% of the analysed ribozymes show cleavage that strongly depends on tetracycline. In the presence of 1 μM tetracycline, their cleavage rates are comparable to that of the parental hammerhead ribozyme. In the absence of tetracycline, cleavage rates are inhibited up to 333-fold. The allosteric ribozymes bind tetracycline with similar affinity and specificity as the parental aptamer. Ribozyme cleavage is fully induced within minutes after addition of tetracycline. Interestingly, the isolated linker domains exhibit structural consensus motives rather than consensus sequences.
When transferred to yeast, three switches reduced reporter gene expression by 30 - 60% in the presence of tetracycline; none of them controlled gene expression in mammalian cells. In vitro selected molecules do not necessarily retain their characteristics when applied in a cellular context. Therefore, high throughput screening and selection systems have been developed in mammalian cells. The screening system is based on two fluorescent reporter proteins (GFP and mCherry). 1152 individual constructs of the selected ribozyme pool were tested, but none of them reduced reporter gene expression significantly in the presence of tetracycline. The selection system employs a fusion peptide encoding two selection markers (Hygromycin B phosphotransferase and HSV thymidine kinase) facilitating both negative and positive selection. 6.5 x 104 individual constructs of the selected ribozyme pool are currently under investigation.
5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. Here, the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD) was investigated. In the present study, the identification of two truncated transcripts and four novel 5-LO splice variants containing premature termination codons (PTC) was reported. The characterization of one of the splice variants, 5-LOΔ3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΔ3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression.
RT-PCR analysis of different cell types revealed the existence of a large number of 5-LO splice variants. The most interesting splice variants were observed in BL41-E95A cells, which give a raise to novel 5-LO protein isoforms. This leads to the hypothesis of a novel regulatory mechanism in which the dimerization of 5-LO with 5-LO isoforms might regulate the 5-LO activity.
The 5-LO protein expression was reduced on translational level in UPF1 knock down cells, suggesting that UPF1 has a positive influence on 5-LO translation. Therefore, a mass spectrometry based proteomics study was started to identify compartment specific protein expression changes upon UPF1 knockdown in differentiated and undifferentiated MM6 cells. The proteomics analysis demonstrated that the knockdown of UPF1 results in numerous protein changes in the microsomal fraction (~ 21%) but not in the soluble fraction (< 1%). Western blot data confirmed the trend of the proteomics analysis. This data suggest that UPF1 is a critical gene expression regulator in a compartment specific way. During differentiation by TGFβ and calcitriol the majority of UPF1 regulated proteins was adjusted to normal level. It appears that that not only the NMD mechanism alters its composition during differentiation. Also the gene expression regulation on translational level by UPF1 seems to be also cell differentiation dependent. An interesting group of UPF1 target genes represent the downregulated proteins. qRT-PCR analysis of randomly chosen genes revealed no effect on mRNA expression upon UPF1 knockdown, suggesting that UPF1 positively influences the translation of these genes. Computational sequence analysis identified a conserved C-rich sequence which might be a hnRNP E2-binding site. hnRNP E2 has been characterized as a translational repressor in myeloid cells. Western blot analysis revealed a differentiation independent up regulation of hnRNP E2 by UPF1 knockdown. Additionally, microRNA-328 (miR-328) has been described as an RNA decoy modulating hnRNP E2 regulation. Due to this, stem loop qRT-PCR showed an up regulation of miR-328 in TGFβ and calcitriol differentiated MM6 cells. Based on this data we suggest a model in which downregulation of UPF1 increases hnRNP E2 expression, leading to translation inhibition. During differentiation, miRNA-328 is upregulated thereby competing with hnRNP E2 leading to an efficient translation