Refine
Year of publication
Document Type
- Doctoral Thesis (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Proteintransduktion (2)
- Brustkarzinom (1)
- EGF-Rezeptor (1)
- Krebstherapie (1)
- Peptid-Aptamer (1)
- Tumor (1)
- rekombinante Proteintherapeutika (1)
Institute
- Biowissenschaften (5)
- Biochemie und Chemie (3)
- Medizin (1)
- Pharmazie (1)
Survivin wird in einer Vielzahl von Tumoren überexprimiert, während es in normalem Gewebe bis auf einige Ausnahmen kaum detektierbar ist. In den Krebszellen vermittelt Survivin eine erhöhte Resistenz gegenüber der Apoptose-Induktion, was eine Therapie jedoch meist bezweckt. Durch sein differenzielles Expressionsprofil wird Survivin mittlerweile als ein interessanter Angriffspunkt in der Entwicklung einer neuen, zielgerichteten Behandlung von Krebs betrachtet. Aus diesem Grund wurde zu Beginn der vorliegenden Arbeit die Eignung des anti-apoptotischen und Zellzyklus-regulierenden Proteins Survivin als Zielstruktur für eine Krebstherapie im Vergleich zu den veröffentlichten Publikationen verifiziert. Die Analyse der Survivin-Expression in unterschiedlichen Zelllinien ergab, dass sich in Tumorzellen eine charakteristische Überexpression des Survivin-Proteins zeigte im Vergleich zu gesunden, nicht-transformierten Zelllinien. Eine Inhibition der Survivin-Proteinexpression wurde mittels der Methode der RNA-Interferenz erzielt, bei der die Zielzellen mit shRNA-kodierenden Lentiviren infiziert wurden, welche eine gegen die Survivin-mRNA gerichtete Sequenz beinhalteten. Während Survivin-positive Tumorzelllinien und gesunde Endothelzellen eine starke Reduktion in der Lebend-Zellzahl in vitro aufwiesen, waren die Survivin-negativen Kontrollzelllinien von einem Verlust der Survivin-Expression nicht beeinträchtigt. Anschließend erfolgten eine Analyse der Survivin-Abhängigkeit etablierter Tumorzelllinien und die Untersuchung eines Survivin-Verlusts auf die murine Brustdrüsenentwicklung in vivo. Bei einer Inhibition der Survivin-Expression in Krebszellen in einem Transplanationsmodell konnte ein deutlich verzögertes Tumorwachstum beobachtet werden. Dagegen hatte Survivin in der Entwicklung der murinen Brustdrüse keinen Einfluss auf die Rekonstitution des Gewebes und die Proliferation bzw. Differenzierung der Brustepithelzellen. Um einen direkten protein-basierenden Inhibitor des Survivin-Proteins zu entwickeln und das Repertoire an allgemeinen Survivin-Interventionsstrategien zu erweitern, wurde im zweiten Teil der Arbeit mittels des Hefe-Zwei-Hybrid-Systems ein neues Survivin-bindendes Protein isoliert. Nach dem Optimierungsprozess bestehend aus einer Fusion mit einem Trägerprotein zur erleichterten Proteinexpression, der Mutagenese eines Cysteins gegen Serin und der Fusion mit einer Proteintransduktionsdomäne konnte das Protein rekombinant in Bakterien hergestellt und durch Affinitätschromatographie in monomerer Form aufgereinigt werden. Anschließend wurde der Einfluss des artifiziellen, rekombinanten Survivin-inhibierenden Proteins (rSip) auf die Funktionen von Survivin bestimmt. rSip zeigte eine Stabilität von bis zu 14 Stunden im Zellkulturmedium und konnte durch seine C-terminale Proteintransduktionsdomäne in das Zytoplasma der Zielzellen aufgenommen werden. In einer Co-Immunpäzipitation konnte die Bindung von rSip an endogenes Survivin bestätigt werden. In Brustkrebszellen führte rSip in einer Konzentration von 1,5 µM zu einem schnellen Verlust des Survivin-Proteins, was möglicherweise auf eine proteosomale Degradation von Survivin zurückzuführen war. Die Analyse der Konsequenzen einer rSip-Behandlung auf die Funktionen von Survivin in der Apoptose-Inhibition und der Zellzyklus-Progression wurde im letzten Abschnitt der Arbeit durchgeführt. Eine viertägige Inkubation mit 1,5 µM rSip bewirkte eine deutliche Reduktion der Lebend-Zellzahl von bis zu 50% im Falle der Survivin-abhängigen Krebszelllinien. Bei den Survivin-negativen Zelllinien trat dagegen kein veränderter Phänotyp auf. Durch einen TUNEL-Test in Brustkrebszellen konnte gezeigt werden, dass die Ursache für die Abnahme der Zellzahl die Apoptose-Induktion durch rSip ist. In den Zellzyklus-Profilen von rSip-behandelten Krebszellen konnte ebenfalls ein starker Anstieg in der apoptotischen Zell-Population beobachtet werden. Abschließend lässt sich sagen, dass in der vorliegenden Arbeit neben der Methode der lentiviralen Applikation von Survivin-spezifischen shRNA-Sequenzen eine neue Möglichkeit der Interferenz mit der Survivin-Funktion in Krebszellen vorgestellt wurde. Die Entwicklung des Survivin-inhibierenden Proteins rSip steht zugegebenermaßen erst am Anfang. Die ersten hier präsentierten Ergebnisse zeigen jedoch klar ein Potential dieses vielversprechenden direkten Survivin-Inhibitors als ergänzende Wirkstoffklasse auf dem Gebiet der therapeutischen Proteine zu den bereits existierenden niedermolekularen Substanzen bzw. antisense-Oligonukleotiden, die auf Ebene der Transkription bzw. der Translation von Survivin wirken.
Rezeptortyrosinkinasen der Familie der epidermalen Wachstumsfaktorrezeptoren (EGFR) sind in vielen Krebsarten dereguliert und ursächlich an der malignen Transformation beteiligt. Da die Aktivierung vom Rezeptor ausgehender Signaltransduktionskaskaden auf spezifischen Protein-Protein-Interaktionen basiert, kann durch gezielte Interferenz mit diesen Interaktionen das proliferative Signal ausgeschaltet und das Tumorwachstum angehalten werden. Für diese gezielte Interferenz wurde in der vorliegenden Arbeit das Peptid-Aptamer-System eingesetzt, mittels dem Peptide, die in ein Gerüstprotein inseriert sind, aufgrund ihrer Affinität zu einem Zielprotein selektiert werden können. Drei Peptid-Aptamere (KDI1, KDI3, KDI4), die spezifisch mit dem EGF-Rezeptor interagieren, konnten isoliert werden. lntrazelluläre Expression von Peptid-Aptamer KDI1 oder Einbringung des bakteriell exprimierten Peptid-Aptamers KDI1 mittels einer Proteintransduktionsdomäne führte zu reduzierter EGF-abhängiger Proliferation und Transformation. Durch Interferenz des Aptamers mit dem EGF-Rezeptor war die EGF-induzierte Phosphorylierung von Tyrosin 845, 1068 und 1148, sowie die Aktivierung von p46 Shc und STAT3 reduziert. Daher wurde gefolgert, dass das Peptid-Aptamer die EGF-abhängige Rekrutierung der zytoplasmatischen Kinase c-Src an den Rezeptor inhibiert. Durch Fusion einer zusätzlichen Domäne wie der SOCS-Box-Domäne konnte den Peptid-Aptameren eine zusätzliche inhibitorische Funktion gegeben werden. Hierbei handelt es sich um eine Domäne, die spezifisch Kontakt mit E3-Ubiquitin-Ligasen aufbauen kann. Es konnte gezeigt werden, dass durch Transduktion eines solchen Peptid-Aptamers der Rezeptor spezifisch ubiquitinyliert und damit degradiert wird. Das Peptid-Aptamer-System eignet sich somit dazu, Inhibitoren für vorgegebene Zielmoleküle zu isolieren, die sowohl in der Grundlagenforschung als auch in der Tumortherapie Anwendung finden können.
Die Stat-Proteine liegen als latente Transkriptionsfaktoren im Zytoplasma vor, und spielen eine wichtige Rolle in der Übertragung von Zytokinsignalen von der Zellmembran in den Nukleus. Nach ligandeninduzierter Aktivierung der Zytokinrezeptoren phosphorylieren sich die assoziierten Jak-Kinasen selbst, die intrazellulären Donänen der Rezeptoren und die Mitglieder der Stat-Proteinfamilie. Nach Tyrosinphosphorylierung dimerisieren die Stat Proteine, indem sie Homo- oder Heterodimere bilden und wandern in den Zellkern. Dort können sie spezifische DNASequenzen von Zielgenen binden und deren Transkription steuern. Posttranslationale Modifikationen spielen eine wichtige Rolle in der Aktivierung von Proteinen, Interaktion mit Kofaktoren und in der Proteintranslokation. An einigen zytoplasmatischen und nukleäre Proteinen wie Transkriptionsfaktoren, RNA Polymerase II, Onkoproteinen, Kernporenproteinen und viralen Proteinen wurde eine O-Verknüpfung von einzelnen N-Acetylglukosamin Zuckerresten an Threoninen und Serinen nachgewiesen. Die Rolle dieser posttranslationalen Modifikation beinhaltet unter anderem den Schutz vor Proteolysis, Einfluß auf den Kerntransport, Regulation der Serin- und Tyrosin-Phosphorylierung und Transkriptionskontrolle. Ziel dieser Arbeit war es, eine Modifikation von Stat5a mit einem einzelnen Overknüpften N-Acetylglukosamin (O-GlcNAc) zu identifizieren, und die Funktion dieser Modifikation für Stat5 zu charakterisieren. Es wurde eine O-GlcNAc Modifikation von Stat5a nur im Zellkern nach Zytokinstimulation nachgewiesen. Es konnte auch gezeigt werden, daß andere Stat-Proteine, wie Stat1, Stat3, Stat5b und Stat6, mit O-GlcNAc modifiziert sind, und daß Stat5a auch in Krebs- und Leukämiezellinien glykosyliert vorliegt. Für die Analyse der Glykosylierungsstellen im Massenspektrum und für die weiteren funktionellen Experimente wurde phosphoryliertes, Stat5a rekombinant mit dem Baculovirussystem in Insektenzellen exprimiert. Hierfür wurden die Insektenzellen mit Jak2- und Stat5a-Baculoviren koinfiziert, und die Lysate anschließend chromatographisch aufgereinigt. Es konnte ein O-GlcNAc modifiziertes Peptid am N-Terminus von Stat5a identifiziert werden. Dieses Peptid trägt zwei potentielle Glykosylierungsstellen, Threonin 92 und Threonin 97. Die potentielle Glykosylierungstelle Threonin 92 wurde zu einem Alanin mutiert (Stat5a-T92A) und in funktionellen Experimenten mit glykosyliertem und nicht glykosyliertem Stat5a verglichen. Um den möglichen Einfluß der Stat5a-Glykosylierung auf den Kerntransport zu analysieren, wurden HC11-Zellen mit dem O-GlcNAcase Inhibitor PUGNAc und den Vorstufen von N-Acetylglukosamin, Glukose und Glukosamin, inkubiert. Dadurch wurde der allgemeine Glykosylierungsstatus der Proteine und auch von Stat5a erhöht, und die Kerntranslokation von Stat5a vor und nach Zytokinstimulation untersucht. Dabei konnte kein Unterschied in der Kerntranslokation von Stat5a im Vergleich von behandelten zu unbehandelten Zellen beobachtet werden. Da bekannt ist, daß die O-GlcNAc Modifikation die DNA-Bindung und die Protein-Protein Interaktionen von großen Proteinkomplexen beinflußt, wurde der Einfluß der Stat5-Glykosylierung auf die DNA-Bindung und auf bekannte Stat5a-Interaktionspartner, wie den Glukokortikoid Rezeptor, den Korepressor der Transkription N-CoR (nuclear corepressor receptor) und den Koaktivator der Transkription CBP (CREB binding protein), untersucht. Die in vitro DNA-Bindung am beta-Casein Oligomer zeigte keinen Unterschied hervorgerufen durch die Glykosylierung oder die Mutation von Threonin 92 von Stat5a auf. Die Interaktion mit N-CoR und mit dem Glukokortikoid Rezeptor wurde durch die Stat5a-Glykosylierung nicht beeinflußt, doch CBP interagierte bevorzugt mit glykosyliertem Stat5a. Die Interaktion mit CBP war nach Mutation der potentiellen Glykosylierungsstelle in Stat5a-T92A aufgehoben. In Luciferase-Experimenten konnte nachgewiesen werden, daß Stat5a-T92A keine Transaktivierungsaktivität im Vergleich zu Wildtyp Stat5a am β-Casein Promotor besitzt. Die Ergebnisse sprechen dafür, daß die Glykosylierungsstelle von Stat5a durch die Mutation des Threonins 92 am N-Terminus zerstört wurde, und daß die fehlende Interaktion mit CBP die Transkription von Zielgenen negativ beinflußt.
Die phylogenetisch hochkonservierte Jak/Stat‐Signaltransduktionskaskade repräsentiert eines der zentralen Säulen zellulärer Signalübertragung eukaryotischer Organismen. Ubiquitär im Organismus exprimiert und über eine Vielzahl von Zytokinen, Hormonen und Wachstumsfaktoren aktiviert, sind Stat‐Transkriptionsfaktoren maßgeblich an dem Erhalt der Physiologie und Homöostase von Organen und Geweben beteiligt. So sind die Mitglieder Stat5A und Stat5B (als homologe Proteine im Verbund als Stat5 bezeichnet) entscheidende Regulatoren des Immunsystems und der Hämatopoese, der Funktion und Entwicklung des Prostata‐ und Brustdrüsengewebes (Mammogenese) oder bestimmter Funktionen der Leber. Wie auch Stat3, konnten Stat5 Proteine in aberrant aktiver Form in verschiedensten Typen und Stadien humaner Tumore nachgewiesen werden, wo sie über die Expression ihrer Zielgene sowie über weitere nicht‐kanonische Funktionen im Zytoplasma und im Zellkern einer fortschreitend malignen Entartung entscheidend beitragen. Als Folge der Unterstützung essentieller Tumorgenese‐
Mechanismen, wie gesteigertes Zellwachstum, Apoptosehemmung, Migration und Metastasierung, Sauerstoff‐unabhängiger Energiestoffwechsel, Angiogenese oder Umgehung der Immunabwehr, entwickeln Tumore häufig eine Abhängigkeit gegenüber der gesteigerten Aktivität dieser Vertreter der Stat‐Proteinfamilie und reagieren mit einem Wachstumsstopp und Apoptoseinduktion auf ihre Inhibierung. Perspektivisch stellt die gezielte Interferenz mit aberranten, Tumortyp‐spezifischen Stat5‐Aktivitäten einen relevanten Ansatz in der personalisierten Therapie Stat5‐abhängiger Tumore, vorrangig leukämischen Ursprungs, dar. ...
Die Beobachtung, dass Tumorzellen häufig eine Abhängigkeit gegenüber einer einzelnen und treibenden Mutation entwickeln, obwohl sie zahlreiche Mutationen aufweisen, bildet die Grundlage der mittlerweile etablierten, zielgerichteten Tumortherapie (Weinstein, 2002). Mit der Identifikation verantwortlicher Signalwege sowie beteiligter Signalkomponenten, sind Ansatzpunkte für diese Therapieform geschaffen worden, die bereits zu einigen Erfolgen in der Leukämie-, Brustkrebs- oder Lungenkrebsbehandlung geführt haben (Druker et al., 2001; Slamon et al., 2001; Kwak et al., 2010) . In vielen Fällen stellt sich jedoch ein Rückfall aufgrund der Ausbildung von Resistenzen ein oder auch das Nichtanschlagen der Therapien wird beobachtet (Ramos & Bentires-Alj, 2015).
Verschiedenste Mechanismen kommen dabei in Frage, doch häufig werden kompensatorische Veränderungen in den Signalwegen beobachtet, die schließlich zur Umgehung der Inhibition führen (Holohan et al., 2013). Grundlage hierfür ist die Redundanz und Verknüpfung der Signalwege mit- und untereinander, die es der Zelle im Sinne der Homöostase ermöglichen sich flexibel an ihre Umgebung anzupassen (Rosell et al., 2013; Sun & Bernards, 2014) . Daher ist es von äußerster Wichtigkeit, die Mechanismen der Inhibition im Hinblick auf die Signalwege der Zellen genauer zu verstehen, und dabei nicht nur die direkten, sondern auch die indirekten Effekte der Inhibition zu analysieren. So lassen sich Rückschlüsse auf den Einsatz zielgerichteter Medikamenten ziehen, die in besseren Therapiekombinationen resultieren und dadurch die Entstehung von Resistenzen verhindern.
Eine Hyper-Aktivierung von STAT3 sowie das dadurch induzierte Genmuster sind als starkes onkogenes Signal identifiziert worden, und spielen darüber hinaus an der Vermittlung von Resistenzen gegenüber Tumortherapien eine entscheidende Rolle. Durch seine Rolle in diversen zellulären Prozessen, beeinflusst STAT3 die Proliferation und das Überleben von Tumorzellen, ihr migratorisches und invasives Verhalten sowie ihre Kommunikation mit Stroma- und Immunzellen. (Bromberg et al., 1999; Wake & Watson, 2015) Sehr selten ist die aberrante Aktivierung des Transkriptionsfaktors auf eigene Mutationen zurückzuführen, vielmehr sorgen Treiber überhalb für diese (Johnston & Grandis, 2011; Kucuk et al., 2015).
In der vorliegenden Arbeit wurden verschiedene STAT3-Inhibitionen in unterschiedlichen Modellen verglichen um darüber Rückschlüsse auf Kriterien einer Therapie zu ziehen. In einem Gliommodell aus der Maus, dem eine v-SRC-Expression als Treiber zu Grunde liegt (Smilowitz et al., 2007), wurde eine indirekte, BMX-vermittelte STAT3-Inhibition mit einer zielgerichteten STAT3-Hemmung verglichen. BMX, die zur TEC-Kinase-Familie gehört, wird als STAT3-aktivierende Kinase beschrieben. In letzter Zeit wurde ihr Einfluss bei der Tumorentwicklung immer deutlicher (Dai et al., 2006; Hart et al., 2011; Holopainen et al., 2012). Unter anderem konnte in Glioblastom-Stammzellen eine BMX-vermittelte STAT3-Aktivierung als Treiber für die Selbsterneurungskapazität und das tumorigene Potential identifiziert werden (Guryanova et al., 2011). Mit dem Tyrosinkinase-Inhibitor Canertinib ist es gelungen, in den murinen Tu-2449-Gliomzellen eine BMX-vermittelte STAT3-Aktivierung nachzuweisen und zu inhibieren. Dies ist damit die erste Arbeit, in der Canertinib als BMX-Inhibitor in einem endogenen Zellsystem getestet wurde. Die einmalige Canertinib-Gabe resultierte in einem Zellzyklusarrest der G1-Phase und die Aufrechterhaltung der Inhibitorwirkung im Zelltod. Im Vergleich dazu konnte eine RNAivermittelte STAT3-Stilllegung nicht das Absterben dieser Zellen induzieren. Mit der Suche weiterer Zielstrukturen von Canertinib, die die Grundlage dieser unterschiedlichen Phänotypen bilden, konnte eine zusätzliche AKT-Inhibition identifiziert werden. Sehr wahrscheinlich wird die AKT-Inhibition ebenfalls durch BMX vermittelt, da keine Inhibition der ERBB-Familie bestätigt werden konnte. Um die Effekte weiter abzugleichen wurden Canertinib-Versuche mit einem humanen Brustkrebsmodell durchgeführt, das als Treiber eine Überexpression des EGFR aufweist.
In MDA-MB-468-Zellen, in denen keine BMX-Aktivierung vorliegt, resultierte eine Canertinib-Behandlung in der sehr prominenten Inhibition des ERK-Signalweges und in einer weniger ausgeprägten Verminderung der STAT3- und AKT-Aktivierung. Auch in diesen Zellen führte die Canertinib-Behandlung zum Zelltod. Diese Effekte werden sehr wahrscheinlich durch die Inhibition des EGFR induziert, da Canertinib als pan-ERBBInhibitor beschrieben ist (Slichenmyer et al., 2001; Djerf Severinsson et al., 2011) .
Resultate die früher in der Arbeitsgruppe gewonnen wurden, beweisen, dass eine Herunterregulation von STAT3 in der Brustkrebszelllinie MDA-MB-468 ausreicht um ein Absterben der Zellen zu induzieren (Groner et al., 2008).
Die Ergebnisse dieser Arbeit zeigen, dass eine Canertinib-Behandlung über die Inhibition unterschiedlicher Signalwege den Zelltod in beiden Zelllinien induziert. Obwohl beide Zelllinien Treiber-vermitteltes, konstitutiv aktives STAT3 aufweisen, stellt nur in den Brustkrebszellen seine Inhibition eine ausreichende Therapiebedingung dar. Somit sind die Unterschiede zwischen den beiden Zelllinien essentiell für ein Überleben der Zellen nach einer STAT3-Inhibition. In Zukunft ist es wichtig, diese Unterschiede zu identifizieren um damit zu definieren, in welchen Patientengruppen eine STAT3-Inhibition zum Erfolg führt.
Cancer is a disease characterized by uncontrolled cell growth and the capacity to disseminate to distant organs. The properties of cancers are caused by genetic and epigenetic alterations when compared to their normal counterparts. Genetic mutations occur in oncogenes and tumor suppressor genes and are the initial drivers of cellular transformation (Lengauer et al., 1998; Vogelstein and Kinzler, 2004). In addition, epigenetic alterations, which influence the expression of oncogenes and tumor suppressor genes independently from sequence alterations, are also involved in the transformation process (Esteller and Herman, 2001; Sharma et al., 2010). Genetic alterations and epigenetic regulatory signals cooperate in tumor etiology. Glioblastoma multiforme (GBM) is a frequent and aggressive malignant brain tumor in humans. The median survival of GBM patients is about 15 months after diagnosis. Like in other cancers, genetic and epigenetic alterations can be detected in GBM. Genetic alterations in GBM affect cell growth, apoptosis, angiogenesis, and invasion; however, epigenetic alterations in GBM also affect the expression of oncogenes or tumor suppresser genes that increase tumor malignancy (Nagarajan and Costello, 2009).
Reprogramming is a cellular process in which somatic cells can be induced to assume the properties of less differentiated stem cells. This process can be mediated through epigenetic modifications of the genome of somatic cells by the action of four defined transcription factors (Oct4, Sox2, Klf4 and Myc) or by the action of the miR 302/367 cluster (Anokye-Danso et al., 2011; Takahashi and Yamanaka, 2006; Takahashi et al., 2007) and result in the generation of induced pluripotent stem cells (iPS cells). Reprogramming of somatic cells by the miR 302/367 cluster can generate nontumorigenic iPS cells through the inhibition of the epithelial to mesenchymal transition (EMT), cell cycle regulatory genes and epigenetic modifiers (Lin and Ying, 2013).
Ziel der vorliegenden Promotionsarbeit war die Herstellung und Charakterisierung einer neuen Stat5 Reportermaus zur Analyse der transkriptionellen Aktivität von STAT5 in verschiedenen Entwicklungsstadien, Zelltypen und Organen auf Einzelzellebene in vivo. Die Zusammenfassung dieser Promotionsarbeit gibt im Folgenden einen Überblick über den JAK/STAT Signalweg und seine einzelnen Komponenten. Das Hauptaugenmerk liegt hierbei auf STAT5, da es eine wichtige Rolle in der zellulären Entwicklung, Differenzierung und Proliferation spielt. Anschließend werden die Klonierung des Stat5 Reportergenkonstruktes und die Herstellung der Reportermaus durch DNA-Mikroinjektion besprochen und die Ergebnisse sowie Schlussfolgerungen der funktionellen in vivo Analyse dieses neuen Reportermausmodells dargestellt. Signal transducer and activator of transcription (STAT) Proteine gehören zu einer Familie von Transkriptionsfaktoren, die latent im Zytoplasma vorkommen. Diese Proteinfamilie besteht aus sieben Mitgliedern: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b und STAT6. Alle STAT Proteine weisen eine konservierte Struktur auf, bestehend aus einer N-terminalen Domäne (NTD), einer Coiled-Coil-Domäne (CCD), einer DNA-Bindedomäne (DBD), einer Linkerdomäne (LD), einer src-homology 2- Domäne (SH2) und einer Transaktivierungsdomäne (TAD). Eine Vielzahl löslicher, extrazellulärer Signalmoleküle wie zum Beispiel Hormone, Zytokine und Wachstumsfaktoren binden an ihre spezifischen Oberflächenrezeptoren und Aktivieren so die JAK/STAT Signalkaskade. Dabei führt die Ligandenbindung an den entsprechenden Rezeptor zunächst zur Dimerisierung des Rezeptors und anschließend zur Transphosphorylierung von Janus Kinasen (JAKs). Aktivierte JAKs phosphorylieren dann den Rezeptor an spezifischen Tyrosinresten. An diese können STAT Proteine über ihre SH2 Domäne binden. Die gebundenen STAT Proteine werden anschließend durch JAKs an einem Tyrosinrest (und Serinrest) in der TAD phosphoryliert und dimerisieren im Zytoplasma. Dimerisierte STAT Proteine translozieren anschließend in den Nukleus und binden an spezifische DNA-Sequenzen, die sogenannten GAS (gamma-IFN-aktivierende Seite) Elemente in der Promotorregion ihrer Zielgene. GAS Elemente sind kurze palindromische DNA Regionen mit einer TTTCCNGGAAA Konsensussequenz. Nach Bindung der aktivierten, phosphorylierten STAT Proteine an die GAS Elemente werden weitere Kofaktoren, wie zum Beispiel das CREB Bindeprotein p300/CBP rekrutiert, die gemeinsam als Transkriptionsfaktoren wirken und die Transkription ihrer Zielgene anschalten. Die Identifizierung von STAT5 erfolgte im Rahmen von Promotorstudien am β-Casein Milchgen in der murinen Brustepithelzelllinie HC11 (Schmitt-Ney et al., 1991). Kurz darauf wurde STAT5 auch im Brustgewebe von laktierenden Mäusen, Ratten und Kühen gefunden. Bevor eine Sequenzhomologie zu Proteinen der STAT Genfamilie festgestellt wurde, wurde STAT5 zunächst MGF – „mammary gland factor“ genannt (Schmitt-Ney et al., 1992b; Wakao et al., 1992). Es sind zwei Stat5 Gene bekannt, Stat5a und Stat5b, die eine Sequenzhomologie von 96 % aufweisen und ihren größten Unterschied in der TAD Domäne zeigen. Da keine STAT-ähnlichen Proteine in Hefezellen identifiziert wurden, ist der JAK/STAT Signalweg nur für multizelluläre Organismen von Bedeutung, vermutlich weil diese auf komplexe Zell-Zell Kommunikationen angewiesen sind, um im Zellverband auf Signale in der Umgebung reagieren zu können. STAT5 im Speziellen reguliert neben der Entwicklung des Brustgewebes während der Schwangerschaft, die Produktion von Blutzellen in der fötalen Leber sowie die Zellproliferation während der adulten Hämatopoese. Im Embryo ist die fötale Leber der Ort der Hämatopoese, bevor hämatopoetische Stammzellen im Knochenmark kolonialisieren und sich die Leber zu einem metabolischen Organ entwickelt. In der Maus gelangen ab dem Embryonaltag E12 hämatopoetische Stammzellen aus der Aorta, den Gonaden und dem Mesonephros (Urniere), der sogenannten AGM Region, sowie aus der Plazenta durch den Blutstrom in die fötale Leber. Die Zellen proliferieren hier und migrieren etwa zwei Tage vor der Geburt (E18) ins Knochenmark, wo die Hämatopoese nach der Geburt erfolgt. Durch die Übermittlung einer Vielzahl von Zytokinsignalen reguliert STAT5 die Differenzierung der pluripotenten Zellen in reife Blutzellen und sorgt zusätzlich für die Generierung von Zellen, die anschließend in der Lage sind, das Knochenmark zu repopulieren. Ein STAT5 Verlust führt aufgrund einer auftretenden Anämie zu einer pränatalen Letalität. Während der adulten Hämatopoese fördert STAT5 hingegen die Zellproliferation und den Zellzyklus sowie die Apoptose in hämatopoetischen Stammzellen. Im Brustgewebe ist STAT5 sowohl in der Mammogenese als auch in der Laktogenese involviert. Die Aktivierung von STAT5 erfolgt hierbei durch eine Vielzahl von Faktoren, wie zum Beispiel Prolaktin und Erythropoietin. Der Phosphorylierungsstatus von STAT5 im virgin Stadium ist hierbei gering, steigt aber während der Schwangerschaft und Laktation stetig an und führt zur Aktivierung von einer Reihe von Zielgenen wie Milchproteinen, aber auch Zellzyklusregulatoren wie CyclinD1 und negativen Regulatoren des JAK/STAT Signalweges, wie zum Beispiel SOCS3. Nach der Laktation nimmt die Phosphorylierung von STAT5 hingegen ab und aufgrund von Apoptose kommt es zu einer Rückbildung des alveolaren Gewebes. Die Regulation der Apoptose erfolgt durch eine erhöhte STAT3 Phosphorylierung. Eine Deregulierung des JAK/STAT Signalweges wird in einer Vielzahl von Tumoren beobachtet. Hier liegt STAT5 typischerweise konstitutiv aktiv vor, führt dadurch zu einer verstärkten Zellproliferation und Angiogenese und verhindert gleichzeitig die Apoptose der mutierten Zellen und eine Immunantwort, was zusammen die Tumorentstehung begünstigt. Konstitutiv aktives STAT5 spielt vor allem bei der Entstehung von soliden Tumoren wie Brustkrebs sowie verschiedenen Leukämieformen wie zum Beispiel akute und chronische myelogene Leukämien eine wichtige Rolle. Neben diesen bereits bekannten STAT5 Funktionen ist die Funktion von aktivem, phosphoryliertem STAT5 im Kontext der Mausentwicklung und in adultem Gewebe noch unklar. Um die Rolle von STAT5 während der Entwicklung näher zu charakterisieren, wurden bereits verschiedene Mausmodelle generiert. Seit dem ersten Gentransfer in Mäuse im Jahre 1980 bieten transgene Tiere eine Möglichkeit, detaillierte Einblicke in zelluläre Prozesse im Rahmen der Entwicklung, des Stoffwechsels und der Entstehung von (Krebs-) Erkrankungen zu erlangen. Transgene Mäuse wurden somit zu einem wichtigen Modellsystem, das in der Lage ist, die Mechanismen, die hinter diesen Prozessen stehen, näher zu beleuchten. STAT5a und STAT5b knock out Mäuse sind überlebensfähig, zeigen jedoch phänotypische Unterschiede. Da eine Signalweiterleitung nach Prolaktininduktion in Brustgewebszellen von STAT5a knock out Mäusen nicht erfolgt, sind diese nicht in der Lage während der Schwangerschaft zu Proliferieren und zu Differenzieren. Die Deletion von STAT5a und STAT5b hingegen ist pränatal letal und die Embryos zeigen schwere Anämien aufgrund einer erhöhten Apoptoserate der erythroiden Zellen in der fötalen Leber. Zusätzlich zu den knock-out und gain-of-function Mäusen wurde die Generierung von Reportermäusen immer wichtiger, um spezifische Signalwege im Kontext des gesamten Organismus zu untersuchen. Das Ziel dieser Promotionsarbeit war somit die Herstellung und funktionelle Analyse einer neuen Stat5 Reportermaus. Hierfür wurde zunächst ein neues Stat5 Reporterkonstrukt kloniert. Dieses Reporterkonstrukt sollte eine Vielzahl spezifischer Eigenschaften aufweisen, um speziell durch phosphoryliertes STAT5 aktiviert zu werden: (i) ein LacZ Reportergen, (ii) Stat5 Responsive-Elemente und (iii) einen minimalen Promoter. Das LacZ Reportergen wurde hierbei gewählt, um die transktiptionelle Aktivität von STAT5 in Gewebeschnitten direkt durch Blaufärbung der Zellen zeigen zu können. Bei dem gewählten Promoter handelt es sich um einen Minimalpromoter, für die Bindung genereller Transkriptionsfaktoren. Eine Aktivierung des LacZ Reportergens erfolgt jedoch nur nach vorheriger Bindung eines Transaktivators. Damit STAT5 diese Funktion übernimmt wurden zusätzliche Responsive-Elemente aus dem β-Casein Gen in das Konstrukt eingefügt. Nach erfolgreicher Klonierung von insgesamt sieben verschiedenen Stat5 Reporterkonstrukten, wurde ihre spezifische Induzierbarkeit nach STAT5 Phosphorylierung mittels transienter Transfektionsstudien in vitro analysiert und bestätigt. Das p(Stat5RE)4-CMVmin-LacZ Konstrukt wurde anschließend zwischen humane matrix attachment regions (MAR) kloniert, die als sogenannte Insulatoren fungieren. Diese sollen in der transgenen Maus verhindern, dass entfernt bindende Faktoren die Expression der Reportergenkassette positiv (enhancer) oder negativ (silencer) beeinflussen. Zusätzlich zu den sieben hier generierten Stat5 Reporterkonstrukten, wurde das p(Stat5RE)4-CMVmin-LacZ Reportergenkonstrukt im Rahmen einer Diplomarbeit in einen lentiviralen Gentransfervektor kloniert. Dieser erlaubt die stabile Transduktion von Krebszellen und Primärzellen, so dass eine ineffiziente Transfektion dieser Zellen umgangen werden kann (Gäbel, 2009). Zur Herstellung der transgenen Stat5 Reportermaus wurde das linearisierte und aufgereinigte Stat5 Reporterkonstrukt mittels DNA-Mikroinjektion in den Pronukleus von 470 Eizellen von FVB und C57BL/6 Mäusen injiziert. Die Eizellen wurden anschließend in Ammenmäuse transplantiert. Von den 470 Eizellen kamen 57 Mäuse auf die Welt. Die Integration des Transgens wurde anschließend mittels PCR und Southern Blot analysiert und die Integration des kompletten Transgens konnte in zwei der 57 Mäuse festgestellt werden. Bei beiden transgen-positiven Mäusen handelte es sich um C57BL/6 Mäuse, die anschließend mit Wildtyp C57BL/6 Mäusen verpaart wurden. Nachkommen der F2 Generation wurden dann auf die spezifische Induzierbarkeit des Stat5 Reportergenkonstruktes durch phosphoryliertes STAT5 in vivo untersucht. Da der Phosphorylierungsstatus von STAT5 im Brustgewebe bereits eingehend untersucht wurde und bekannt ist, erfolgte zunächst die Analyse der Reportergenaktivität im murinen Brustgewebe. Hierfür wurde das Brustgewebe isoliert, fixiert und über Nacht gefärbt. Anschließend wurden Paraffinschnitte hergestellt und im Detail analysiert. Im Vergleich zu Wildtyp-Kontrollmäusen konnte die Aktivierung des Reportergens im Brustgewebe in verschiedenen Entwicklungsstadien, vor allem während der späten Schwangerschaft und der Laktation, durch Blaufärbung einzelner Zellen, gezeigt werden. Eine Korrelation der Blaufärbung mit der Phosphorylierung von STAT5 in diesen Zellen wurde anhand von immunhistologischen Färbungen von Paraffinschnitten mit Antikörpern gegen Stat5 und P-Stat5 gezeigt. Zusätzlich zu der hormonell induzierten STAT5 Phosphorylierung bedingt durch eine Schwangerschaft, wurde die Aktivierung des Reportergens durch das Verabreichen von LPS gezeigt. Eine Behandlung der Stat5 Reportermäuse mit LPS führt zu einer Phosphorylierung von STAT5 in Zellen des hämatopoetischen Systems, speziell Granulozyten und Makrophagen, und sollte anschließend das LacZ Reportergen in diesen Zellen aktivieren. Dies konnte durch die Färbung von Blut- und Knochenmarkzellen mit spezifischen Oberflächenmarkern, sowie einer Färbung mit FDG (Fluoresceindi-β-D-galactopyranoside) mittels FACS Analysen bestätigt werden. Das nicht-fluoreszierende FDG wird hierbei von der exprimierten β-Galaktosidase zunächst zu Fluoreszein-monogalactosid (FMG) und anschließend zum hoch fluoreszierenden Fluoreszein hydrolysiert, was eine messbare Erhöhung der Fluoreszenz nach sich zieht. Zusammenfassend konnte das Stat5-Reportergen sowohl durch endogene Signale als auch durch extern zugeführte Signale induziert werden. Anschließend erfolgte die Analyse der Reportergenaktivierung in anderen Organen der Stat5 Reportermaus. Hierbei konnte die Aktivierung des LacZ Reportergens sowohl in der Leber (Hepatozyten), Milz (Pulpa) und Niere (Mark und Rinde) als auch im Thymus (Lymphozyten und antigen präsentierende Zellen) und im Uterus (endometrisches Epithel) bestätigt werden. Diese Ergebnisse korrelieren mit zuvor durchgeführten Western Blot Analysen, die eine Phosphorylierung von STAT5 in eben diesen Organen gezeigt haben. Zusätzlich wurde phosphoryliertes STAT5 auf Proteinebene im Herz und im Gehirn gefunden, jedoch nicht in Gewebsschnitten der β-Galactosidase gefärbten Organe. Dies deutet darauf hin, dass das Reportergen trotz der Anwesenheit von phosphoryliertem STAT5, nicht immer eingeschaltet wird und somit weitere Faktoren für die transkriptionelle Aktivität von STAT5 notwendig sind. Western Blot Analysen sind somit alleine nicht ausreichend, um eine Aussage über die transkriptionelle Aktivität von phosphoryliertem STAT5 zu treffen, so dass die im Rahmen dieser Arbeit generierte Stat5 Reportermaus einen wichtigen Beitrag zum Verständnis von aktivem STAT5 bietet. Das generierte Stat5 Reportermausmodel wurde dann im Rahmen dieser Arbeit genutzt, um die Beteiligung von aktivem STAT5 in der Entwicklung von ΔTrkA induzierter akuter myeloischer Leukämie näher zu untersuchen. Hierfür wurden lineage negative Knochenmarkszellen aus den Stat5 Reportermäusen isoliert. Dabei werden sogenannte „Lin“ Antigene (z.B. CD3, CD4, CD8, Gr-1, Ter-119) genutzt, um reife murine Blutzellen zu identifizieren. Zellen, die diese Oberflächenmarker nicht oder nur in sehr geringen Mengen exprimieren, werden als lineage negativ bezeichnet. Ein Mix monoklonaler Antikörper gegen lineage Antigene kann somit zur Isolation lineage negativer Knochenmarkszellen genutzt werden. Diese negative Selektion führt letztendlich zur Anreicherung hämatopoetischer Stammzellen oder früher Progenitorzellen, die diese Marker (noch) nicht exprimieren. Diese Progenitorzellen wurden dann retroviral mit einem ΔTrkA Konstrukt transduziert und anschließend in bestrahlte Rag-1-/- Mäuse transplantiert und repopulierten in diesen das Knochenmark. Durch die ΔTrkA Transduktion wurde in den Rag-1-/- Mäusen myeloische Leukämie induziert. Jedoch konnte im Rahmen dieser Arbeit keine Aktivierung des Stat5 Reportergenkonstruktes beobachtet werden. Dies deutet darauf hin, dass STAT5 in ΔTrkA induzierten Leukämien keine Rolle spielt und bestätigt die Annahmen von Meyer et al. Durch die hier vorgestellten Ergebnisse bestätigt sich sowohl die Generierung eines neuen Stat5 Reportermausmodels als auch ihre spezifische Induzierbarkeit sowohl durch endogene hormonelle Prozesse (Schwangerschaft) als auch durch externe Manipulation (LPS Behandlung). Diese neue Stat5 Reportermaus wird in Zukunft als wichtiges und effizientes Modell fungieren, um die Rolle von transkriptionel aktivem STAT5 näher zu beleuchten. Hierbei wird sich der Fokus nicht nur auf die Rolle einzelner Zellen bei der normalen Entwicklung von Organen während verschiedener Entwicklungsstadien beschränken, sondern sich mehr und mehr in Richtung Tumorinitiierung und Tumorentwicklung bewegen. Anhand des hier generierten Stat5 Reportermausmodels können in Zukunft weitere Brustkrebs- und Leukämie-Tumormodelle herangezogen werden, um die Rolle und Funktion von STAT5 in der Tumorentwicklung in vivo detailliert analysieren zu können. Auf diesen Ergebnissen aufbauend wird dann die Möglichkeit bestehen, dieses neue Stat5 Reportermausmodell als Plattform zu nutzen, um zahlreiche neue Krebsmedikamente zu entwickeln und zu evaluieren.
In einer Vielzahl von Tumoren begründet sich die maligne Transformation der Zellen in einer Überexpression der ErbB2-Rezeptortyrosinkinase. Aufgrund der erhöhten ErbB2-Rezeptordichte auf der Zelloberfläche wird durch die Aktivierung des Rezeptors eine starke Proliferation der Zellen ausgelöst, welche invasiv in gesundes Gewebe eindringen. Dieses starke Wachstum wird über die Aktivierung ErbB2-vermittelter Angiogenese sichergestellt und lässt sich durch die Verwendung von Chemotherapeutika nicht aufhalten. Auf diese Weise können sich diese malignen Zellen durch Metastasierung im ganzen Körper verteilen, was sich in einer 5 Jahres-Überlebensrate der Patienten von 5 % widerspiegelt. Die Inhibition der ErbB2-Rezeptor-Tyrosinkinase stellt somit durch ihre Rolle in der Tumorprogression, ein relevantes Ziel der modernen Tumormedizin dar. In der vorliegenden Arbeit wurde die ErbB2-Tyrosinkinasedomäne in einem Hefe Zwei-Hybrid System verwendet, um spezifische Interaktionspartner zu isolieren, die mit der Funktion der Kinase interferieren. Bei den potentiellen Inhibitoren handelt es sich um Peptid-Aptamere. Dies sind randomisierte Peptide aus 12 bis 42 Aminosäuren, die in einer konstringierten Konformation in ein Gerüstprotein eingebaut sind. Als Gerüstprotein wurde das intrazelluläre Protein Thioredoxin verwendet, dessen aktives Zentrum als Schleife aus der Proteinstruktur ragt. In dieses aktive Zentrum wurden die randomisierten Peptide inseriert und für die Interaktion mit der Tyrosinkinase präsentiert. Durch die Klonierung einer optimierten PeptidAptamer Bibliothek gelang es einen Pool von 2 x 108 unterschiedlichen Peptiden zu konstruieren. Aus dieser Bibliothek konnten durch das Hefe Zwei-Hybrid System Peptid-Aptamere isoliert werden, die spezifisch mit dem ErbB2-Rezeptor interagierten. Diese in der Hefe gezeigte Interaktion wurde in vitro in GST-Pulldown und in vitro Co-IP Experimenten bestätigt. Damit die Funktion der Aptamere in Krebszellen analysiert werden konnte, wurden die Peptid-Aptamere über die lentivirale Transduktion und Proteintransduktion effizient in Zielzellen eingebracht. Mit Hilfe der Aptamer-Transduktion konnte die Rezeptor-Aptamer Interaktion durch Co-IP und Co-Lokalisationsuntersuchungen auch in ErbB2-exprimierende Zellen, wie SKBr3 und NIH#3.7, bestätigt werden. Zur Funktionsanalyse wurden die Aptamere ferner in MCF7 Zellen eingebracht und dort durch HRG die Aktivierung von ErbB2/ErbB3-Heterodimeren induziert. Diese Heterodimere übertragen über den PKB/AKT-Signalweg ein anti-apoptotischen Signal in die Zelle, welches zur Chemoresistenz-Entwicklung dieser Zellen beiträgt. Die ErbB2-induzierte Aktivierung des PKB/AKT-Signalweges konnte durch die Aptamer-Applikation verhindert werden. Im Folgenden wurden die Aptamere in MCF7 her2 Zellen transduziert. Bei MCF7 her2 Zellen handelt es sich um MCF7 Zellen, die stabil mit ErbB2 transfiziert wurden. Die daraus resultierende Überexpression des ErbB2 Rezeptors führt über die Induktion des AKT-Signalweges zur Resistenz der Zellen gegenüber Chemotherapeutika-Behandlung, wie Taxol. Durch Applikation der Aptamer wurden MCF7 her2 Zellen für die Taxol-Behandlung resensitiviert. Auf diese Weise wurden in der vorliegenden Arbeit Peptid-Aptamere isoliert, die mit der ErbB2-induzierter Chemoresistenz interferierten und damit in Kombination mit einer Taxol-Behandlung eine alternative Therapiemöglichkeit bieten.
Die Brustdrüse (glandula mammaris) bietet ein einzigartiges Modellsystem zum Studium der adulten Stammzellen und der molekularen Signalwege, welche die Selbsterneuerung dieserZellen sowie die Proliferation und Differenzierung der Vorläuferzellen kontrollieren. Die Brustdrüse besteht aus dem Brustepithel und dem Stroma, das zum größten Teil aus dem Fettgewebe gebaut ist. Es enthält auch andere Zelltypen z. B. Fibroblasten und Makrophagen. Die Entwicklung der Brustdrüse findet hauptsächlich nach der Geburt, während der Pubertät, Schwangerschaft und Laktation statt. Ein funktionelles Brustepithel wird während der aufeinander folgenden Zyklen von Schwangerschaft, Laktation und Abstillen auf- und wieder abgebaut. Diese Regenerations-Kapazität kann für die Organrekonstitution genutzt werden. Die Transplantation der kleinen Anzahl von Brustepithelzellen oder des Drüsenfragments in das Fettgewebe einer Empfängermaus, deren eigenes Brustepithel entfernt wurde (cleared fat pad), führt zur vollständigen Epithelregeneration. Die zyklische Entwicklung und Regenerations-Fähigkeit des Epithelgewebes lässt auf die Existenz von Stammzellen schließen, die im Verbund der Epithelzellen überdauern. Diese gewebespezifischen Stammzellen sind in der Lage sich durch asymmetrische Zellteilung zu erneuern (self-renewal) und gleichzeitig die differenzierenden Vorläuferzellen zu bilden. Die während der Pubertät und Schwangerschaft erhöhten systemischen Hormone, lokalen Wachstumsfaktoren und Zytokine kontrollieren die Stammzellen-Proliferation und die Differenzierung der Vorläuferzellen in den verschiedenen Brustepithel-Zelllinien: Myoepithel-, Luminal- und Alveolarzellen. Aufgrund der Tatsache, dass die Entstehung von Brustkrebs mit aberranten Proliferations- und Differenzierungsprogrammen in malignanten Stamm-/ Vorläuferzellen (cancer stem cells) einhergeht, ist die Identifizierung der Signalwege, die diese Prozesse regulieren, für die Stammzellen- und Krebs-Forschung sehr bedeutend. Basierend auf diesen Erkenntnissen wurden im Rahmen des vorliegenden Projektes die Methoden zur genetischen Manipulation von nicht-angereicherten Brustdrüsen-Stammzellen entwickelt. Durch effiziente lentivirale Transduktion von adhärenten Primärzellen wurden nahezu 90% der Zellen, einschließlich der Stammzellen, transduziert. Diese Optimierung erfolgte durch 1) die Anwendung von konzentrierten Lentiviren mit hoher Qualität, 2) Passagierung der Primärzellen und Entfernung von Gewebeklumpen von den VIII Primärzellkulturen, und besonders 3) durch die Reduzierung der Zelldichte während der viralen Transduktion. Für Brust-Stammzellen sind keine spezifischen Oberflächen-Marker bekannt und daher ist ihre Isolierung deutlich erschwert. Man konnte sie bis jetzt nur anhand der moderaten Expression von CD24 (hitzestabilen Antigen) und hoher Expression von CD49f oder CD29 (α6- oder β1-Integrin) ungefähr 10-fach anreichern. Allerdings haben andere Studien gezeigt, dass die Transplantation der FACS-sortierten Stammzellen zu einer Schädigung der Stammzellen und folglich zu einer Reduktion der Repopulation-Frequenz führen kann. Aus diesem Grund wurden die genetisch modifizierten Stammzellen nicht sortiert. Durch die Transplantationen der transduzierten Primärzellen wurde ihr Stammzellen-Anteil in ihrer natürlichen Nische (cleared fat pad) selektiert. Die transplantierten Stammzellen sind in der Lage duktale Auswüchse zu entwickeln. Mit dieser Strategie konnten Transplantate mit homogener Expression von Fluoreszenz-Markergenen, wie z. B. GFP, erzielt werden. FACS Analysen der Zellen, die aus Transplantaten isoliert werden, haben gezeigt, dass alle drei Brustepithelzell-Populationen, nämlich Luminal-, Basal- und Stammzellen, transduziert waren und GFP exprimierten und daher aus transduzierten Zellen hervor gingen. Die Transplantationen einer Mischung der unterschiedlich fluoreszenzmarkierten Stammzellen ergaben einzelne verzweigte Auswüchse, in denen jeweils nur ein Fluoreszenz-Markerprotein exprimiert wurde. Sie stammen sehr wahrscheinlich von einzelnen transduzierten Stammzellen ab und wachsen jeweils in einem begrenzten Bereich des Brustfettgewebes aus. Die Immun-Antwort der Empfängermäuse gegen Fluoreszenz- Markerproteine könnte das Auswachsen der Transplantate inhibieren. Brustepithelium-Rekonstitutionen waren daher in den Rag2-/-γc-/- Empfängermäusen mit geschwächtem Immunsystem besonders effiziert. Die lentivirale Manipulation von Stammzellen und deren Einsatz in Brustepithelium-Rekonstitutionen kann als alternative Methode zur gewebsspezifischen Knockout-Technik angesehen werden. Für die Etablierung dieser Methode wurde im Rahmen dieser Arbeit ein zentraler Transkriptionsfaktor in der Brustentwicklung, signal transducer and activator of transcription 5 (Stat5), untersucht. (...)