Refine
Year of publication
Document Type
- Doctoral Thesis (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
- Totalreflexionsröntgenfluoreszenzanalyse (4)
- Halbleiteroberfläche (3)
- Kontamination (3)
- Kraftmikroskopie (3)
- Silicium (3)
- Chemische Analyse (2)
- Monoschicht (2)
- Niob (2)
- Nitrid (2)
- Rapid Thermal Processing (2)
Institute
- Biochemie und Chemie (27)
- Pharmazie (2)
- Biochemie, Chemie und Pharmazie (1)
- Biowissenschaften (1)
Es ist gelungen, self-assembled Monolayers auf Wasserstoff-terminierten Germaniumoberflächen zu präparieren. Für die Charakterisierung wurden unterschiedliche Methoden herangezogen. Neben der Oberflächentopographie, die mit dem AFM untersucht wurde, konnten die Proben durch röntgenspektroskopische Methoden qualitativ und quantitativ vor, während und nach der Präparation analysiert werden. Im Zusammenspiel dieser Methoden war eine umfassende Interpretation der Ergebnisse möglich, die viele neue Erkenntnisse im Bereich der Grundlagenforschung auf dem Halbleitersubstrat Germanium (Ge) ermöglichten. Motivation für diese Arbeit war das Interesse, Ge als Substrat im Bereich der Halbleitertechnologie zu verwenden. Ge hat eine bessere Ladungsträgerbeweglichkeit und andere Vorteile gegenüber Silicium (Si). Der Einsatz scheitert momentan, da das ca. 1-2 nm dicke native Oxid auf der Oberfläche des Ge anders als beim Si wasserlöslich ist. Daher ist eine Renaissance der Grundlagenforschung auf diesem Gebiet zu verzeichnen. Auf der Suche nach einer definierten und passivierten Oberfläche lag der Gedanke nah, dieses Ziel durch das Self-Assembly thiolischer Alkane zu erreichen. Diese Methode ist auf Goldoberflächen sehr gut erforscht und man erhält aus einer entsprechenden Lösung durch einfachste nasschemische Präparation eine bei Laborbedingungen stabile Monolage. Um das Konzept der self-assembled Monolayers auf Ge zu übertragen, war es zunächst notwenig, die Oxidschicht des Substrats so zu entfernen, so dass eine Wasserstoff-terminierte Oberfläche zurückbleibt, die eine möglichst geringe Rauheit aufweist. Dies gelang letztendlich mit einem Tauchbad in verdünnter oder konzentrierter Fluorwasserstoffsäure (Flusssäure, HF) für 5 min bzw. 40 s. Die Rauheit der Proben wurde durch AFM-Aufnahmen bestimmt und liegt bei RMS=0,34 nm. Die chemische Beschaffenheit wurde durch XPS und Totalreflexionsröntgenfluoreszenz am Synchrotron (Sr-TXRF) untersucht. Die referenzfreie Quantifizierung zeigte, dass sich auf der Oberfläche noch Sauerstoff befand, der durch XPS auch dem auf der Oberfläche verbliebenem Wasser zugeordnet werden konnte. Durch Untersuchungen an der Absorptionskante des Sauerstoffs mit NEXAFS konnte diese These untermauert werden. In einem nächsten Schritt gelang die Präparation der SAMs mit Molekülen mit unterschiedlichen Kopfgruppen. Diese definierten die neuen Eigenschaften der Substratoberfläche und sind auch für die Verwendung des Substrats von großer Bedeutung. Es wurden die Kopfgruppen so gewählt, dass eine Detektion durch röntgeninduzierte Fluoreszenz möglich war. Daher fiel die Wahl auf ein fluoriertes Acetat und eine Phosphorsäure als Kopfgruppe jeweils eines Mercaptoundecans. Als Lösemittel diente schließlich wasserfreies Dichlorethan. Für die Abbildung der zunächst in Inseln wachsenden Monolage durch das AFM war die Kopfgruppe zwar unerheblich. Mit dieser Methode ließ sich der Einfluss der Kopfgruppe auf die Anordnung dokumentieren. Es war bei ausgewählten Proben möglich, eine Bedeckung der Oberfläche mit den Thiolen per AFM zu vermessen. Diese lag bei ca. 50 %. Ein Nachweis der Moleküle erfolgte unter anderem durch XPS. Durch diese Methode konnte allerdings noch nicht nachgewiesen werden, ob die Moleküle nur ungeordnet auf der Oberfläche adsorbiert sind, oder tatsächlich chemisch gebunden und aufgerichtet sind. Dies erfolgte durch Messungen an der Synchrotronstrahlenquelle. Durch referenzfreie TXRF konnte die Belegung des Substrats mit Fluor analysiert werden. Da das Fluor jedoch auch ein Rückstand des HF-Tauchbades hätte sein können, wurde durch NEXAFS nachgewiesen, dass bei den Proben, die lange in thiolischer Lösung waren, die Fluorspezies, die bei den frisch HF-getauchten Proben vorhanden ist, praktisch nicht mehr existiert. Im Umkehrschluss wurde auch eine auf Gold präparierte Monolage des gleichen Moleküls mit NEXAFS vermessen. Die Fluorspektren ähnelten sich trotz des unterschiedlichen Substrats. Bei der Röntgenfluoreszenz am Glanzwinkel (GIXRF) können Intensitätsmaxima ein stehendes Wellenfelds oberhalb des Substrats abhängig vom Winkel des einfallenden Strahls verändert werden. Diese Methode kam zum Einsatz um nachzuweisen, dass sich die Moleküle der Kopfgruppe oberhalb des Schwefels und oberhalb des Ge befinden. Durch mathematische Berechnungen ist man in der Lage, die Höhe der Monolage und den Verkippungswinkel der Moleküle zu ermitteln. Dieser lag bei ca. 45° und einer 1,4 nm hohen Monolage. Diese Aussagen wiederum stimmen mit den am AFM erzielten Ergebnissen in erster Näherung überein. Durch das Zusammenspiel fünf unterschiedlicher Methoden war es möglich, diese vielfältigen Erkenntnisse in dem Forschungsfeld der Ge-Oberflächen zu generieren.
Als Ergebnisse der vorliegenden Arbeit kann man folgendes festhalten: • Die zuverlässige Bestimmung der leichten Elemente Phosphor und Schwefel mit TXRF ist im Konzentrationsbereich 30 mg/l bis 0,1 mg/l (600 ng bis 2 ng) grundsätzlich möglich. • Die Bestimmung von Schwefel in Proben, die dazu tendieren dicke, dichte Probenrückstände zu bilden (z.B. Alkalimetallsulfate) erfordert eine spezielle Probenpräparation. Hier können durch den Einsatz von geeigneten Glättungsmitteln gute Ergebnisse erzielt werden. • Für die Detektion von Phosphor ist die Verwendung von Saphirprobenträgern notwendig, da die Lage der Absorptionskante von Silizium, als Hauptbestandteil der üblicherweise verwendeten Quarzglasprobenträger, diese negativ beeinflußt. • Für Schwefelkonzentrationen ≤ 0,5 mg/l (≤ 10 ng) sollte mit dem dünnen Filter (Filter 1) gemessen werden. • Die berechneten Erfassungsgrenzen liegen für Schwefel, je nach Zusammensetzung der Probe, bei 0,29 bis 0,76 ng. Für Phosphor erhält man in anorganischen Proben auf Saphirträgern 0,34 ng und bei biologischen Proben 0,70 ng. Die erhaltenen Ergebnisse zeigen klar, daß die zuverlässige Bestimmung der Elemente Phosphor und Schwefel mit TXRF möglich ist. Die Möglichkeit diese leichten Elemente zu bestimmen, eröffnet der TXRF verschiedene neue Forschungsgebiete, wie beispielsweise Biologie und Biochemie. Durch den großen Vorteil der TXRF, der geringen Probenverbrauch kombiniert mit niedrigen Nachweisgrenzen, sind Screening von Proteinen, Enzymen oder auch von anderen Makromolekülen die Phosphor und Schwefel enthalten, möglich. Hier können Strukturfragen oder Mutagenese Schritte in Proteinen, Enzymen und Nucleinsäuren geklärt werden. Eine weitere Anwendung der TXRF ist die quantitative Proteinbestimmung. Die genaue Schwefelbestimmung macht es möglich ältere Methoden wie beispielsweise die Bestimmung nach Lowry zu ersetzen. Durch Kombination der TXRF mit weiteren analytischen Methoden (z.B. AAS) und oberflächenabbildenden Methoden (z.B. REM oder AFM) kann die Probenvorbereitung verbessert werden und somit die TXRF für weitere Gebiete der Elementanalytik in Zukunft als zuverlässige Standardmethode etabliert werden.
Während der letzten Jahrzehnte hat sich die Totalreflexions-Röntgenfluoreszenzanalyse (TXRF) als eine tragende Methode in der Elementanalytik etabliert. Sie ist eine universelle, auf vielen Gebieten einsetzbare, ökonomische Multielementmethode zur Mikro- und Spurenanalyse. Die Vorteile der TXRF mit ihrer hohenEmpfindlichkeit kombiniert mit einer einfachen Quantifizierung und einem geringen Probenverbrauch prädestinieren sie für Elementbestimmungen in verschiedenen biologischen Matrices - besonders auf dem Gebiet der Protein- und Enzymanalytik. Das Potential der TXRF für die Bestimmung von Übergangsmetallen in diesenMatrices wurde schon in der Literatur beschrieben. Eine bedeutende Rolle kommt hier auch der Analyse leichter Elemente zu, insbesondere der des Schwefels. Als Bestandteil der beiden Aminosäuren Cystein und Methionin erlaubt die quantitative Bestimmung des Schwefelgehaltes eine zur Metall-Cofaktoren-Bestimmung einfache und simultane Bestimmung der Enzym- oder Proteinkonzentration. Die Evaluation dieses Verfahrens mit seinen Möglichkeiten und Grenzen für die TXRF, sowie die Weiterentwicklung von Anwendungsgebieten auf diesem Gebiet waren die vorrangigen Ziele dieser Arbeit. Zuvor erfolgte eine Überprüfung der für die quantitative Auswertung notwendigen und wichtigen relativen Empfindlichkeitsfaktoren (Kalibrierfaktoren). Für die beiden untersuchten leichteren Elemente Schwefel und Phosphor ließen sich im Gegensatz zu den höheren Elementen Abweichungen von > ± 10 % zu den in der Spektrometer-Software bereits vorinstallierten Faktoren feststellen. Die Betrachtung der Matrix- und Konzentrationsabhängigkeit des relativen Empfindlichkeitsfaktors von Schwefel zeigte eine starke Matrixabhängigkeit des Faktors bei höheren Konzentrationen. Hier spielen vorrangig Absorptionseffekte der induzierten Fluoreszenzstrahlung des Schwefels in den unterschiedlich massiven Rückständen der untersuchten Verbindungen Al2(SO4)3, MgSO4 und Na2SO4 eine entscheidende Rolle. Im Zuge der Probenvorbereitung für die Analyse der Protein- und Enzymproben erwies sich die Trocknung an Luft bei Raumtemperatur als eine gut geeignete Methode im Vergleich zu herkömmlichen Verfahren (Trocknung unter Wärmezufuhr). Bei letzterem Verfahren besteht die Gefahr möglicher Elementverluste von flüchtigen Verbindungen z. B. beim Vorhandensein sulfidischer Bestandteile. Der Einfluss der Matrixbestandteile (Puffer/bio-organische Matrix der Enzyme selbst) und ihre systematischen Zusammenhänge auf die ausgebildeten Trocknungsrückstände zeigten sich deutlich in den zur Evaluation der Schwefelbestimmung durchgeführten Konzentrationsreihen mit schwefelhaltigen anorganischen Standardlösungen. Bei den beiden untersuchten Enzymen Diisopropylfluorophosphatase (DFPase) undCytochrom c Oxidase wurden über die durchgeführten Konzentrationsbereiche sehr gute Wiederfindungen dokumentiert. Bei der Cytochrom c Oxidase trägt vor allem der im Vergleich zur DFPase deutlich höhere Anteil an Pufferkomponenten zur Ausbildung massiverer Trocknungsrückstände (max. 5 μm Dicke) bei. Dennoch traten erst bei der NADH:Q Oxidoreduktase (Komplex I) deutliche, reproduzierbare Minderbefunde bei der Schwefelbestimmung im Verlauf der Konzentrationsreihe auf. Anhand der topologischen Untersuchungen ließen sich hier für die Minderbefunde Schichtdickeneinflüsse und eine damit verbundene Absorption der emittierten Fluoreszenzstrahlung verantwortlich machen. Der Einsatz von sogenannten Filmbildnern zur Minimierung der Schichtdicken von Trocknungsrückständen und der damit verbundenen besseren Elementwiederfindungen brachte dagegen keine deutlichen und reproduzierbaren Verbesserungen, insbesondere nicht für den Schwefel. Eine Erhöhung der Anregungseffizienz durch die Verwendung einer Cr-Kα-Strahlung zeigte in den untersuchten Proben (wässrige Matrix/Enzymmatrix: DFPase) keine deutlichen Vorteile in der Bestimmung des leichten Elementes. Die beiden, in herkömmlichen Spektrometern zur Verfügung stehenden, AnregungsmodenW-Lα und Mo-Kα, sind für die Anlayse von Enzymproben und einer vergleichenden Bestimmung der Enzymkonzentration gut geeignet. Dies zeigten auch Vergleiche mit den biochemisch bestimmten Protein- bzw. Enzymkonzentrationen. Kritische Schichtdicken im Rahmen von Schwefel-Bestimmungen wurden für die verwendeten Anregungsmoden auf etwa 20 μm (Mo-Kα), 3 μm (W-Lα) und rund 2 μm (Cr-Kα) kalkuliert. Eine Beeinträchtigung der Zuverlässigkeit der TXRF-Messungen für die höheren Elemente durch die Matrixbestandteile konnte nicht festgestellt werden. Somit wird in den meisten Fällen die einfache Probenpräparation auf hydrophoben oder hydrophilen (siliconisierten/unsiliconisierten) Probenträgern, ohne die Notwendigkeit eines Verfahrens zur vorherigen Matrixabtrennung, möglich sein. Jedoch muss bei allen künftig zu untersuchenden Protein- oder Enzymproben mit hohen Matrixanteilen mit dem Auftreten von Schichtdickeneffekten und damit verbundenen Absorptionseffekten von leichten Elementen (Schwefel, Phosphor) gerechnet werden. Die in der Arbeit vorgestellten, unterschiedlichen Projekte zeigen deutlich das Potential der TXRF als eine Standardmethode auf diesem Anwendungsgebiet.
Paläobotanische Untersuchungen an Euramerischen Kohlenbecken haben an der Westfal/Stefan-Grenze in früheren Arbeiten einen deutlichen, weitgehend klimatisch gesteuerten Florenwechsel erkennen lassen. Desweiteren wurden in Kohlen aus dem Saar/Nahe-Becken beginnend mit dem obersten Westfal D erstmals Diageneseprodukte von Isoarborinol bzw. Fernen/Fernenol nachgewiesen, für die Koniferen, Cordaiten oder Farnsamer als mögliche Bioproduzenten vorgeschlagen wurden. Im Rahmen der vorliegenden Arbeit konnten die Arboran-/Fernanderivate MAPH, MATH, DAPH 1 und DAPH 2 in den Gesamtextrakten von Kohlen und Sedimenten aus dem Stefan des Saar/Nahe-Beckens durchgängig identifiziert werden, während die Verbindungen im Westfal lediglich in Proben aus dem obersten Westfal D auftraten. Folglich sind die Arboran-/Fernanderivate tatsächlich in besonderem Maße dazu geeignet, den Florenwechsel an der Westfal/Stefan-Grenze auf molekularer Basis zu beschreiben. Um einzugrenzen, zu welcher Pflanzengruppe die Bioproduzenten der Ausgangsverbindungen der Arboran-/Fernanderivate gehören, wurden isolierte Makrofossilien verschiedener Pflanzengruppen aus verschiedenen Euramerischen Kohlenbecken organisch-geochemisch analysiert. Dabei konnten MATH, MAPH, DAPH 1 und DAPH 2 in nahezu allen Gesamtextrakten fossiler Cordaiten-Reste identifiziert werden. In den Extrakten von Sediment-Vergleichsproben, die in unmittelbarer Nähe der Cordaiten-Reste entnommen wurden, konnten die Verbindungen dagegen nicht bzw. nur in vergleichsweise geringen Konzentrationen identifiziert werden. Ebenso waren die Arboran-/Fernanderivate in den Gesamtextrakten fossiler Koniferen-Reste sowie in den Extrakten verschiedener Farnsamerarten (Alethopteris, Dicroidium, Lescuropteris, Macroneuropteris, Neuropteris) nicht enthalten. Lediglich in der extrahierbaren organischen Substanz einiger fossiler Odontopteris-Reste aus dem Blanzy-Montceau-Becken (Frankreich) konnten MAPH und MATH (sowie teilweise DAPH 1 und DAPH 2) identifiziert werden. Allerdings ist das Auftreten der Verbindungen in diesen Odontopteris-Extrakten wahrscheinlich auf eine Überprägung des Pflanzenmaterials durch das umgebende Sediment zurückzuführen, da die Verbindungen in den Sediment-Vergleichsproben in höheren bzw. ähnlichen Konzentrationen enthalten sind. Insgesamt sind daher in den oberkarbonischen Kohlenbecken die Cordaiten als einer, möglicherweise sogar als „die“ Bioproduzenten der Ausgangsverbindungen der Arboran-/Fernanderivate MATH, MAPH, DAPH 1 und DAPH 2 anzusehen. Die deutlich negativere Kohlenstoffisotopie (-31,68 ‰) einer Sedimentprobe aus der Bohrung Wemmetsweiler-Nord, die gleichzeitig die höchsten Arboran-/Fernanderivat-Konzentrationen enthält, weist auf eine verstärkte mikrobielle Überarbeitung des organischen Materials hin. Fluoreszenz- und Auflichtmikroskopie-Untersuchungen zeigen zudem einen erheblichen, ebenfalls auf bakterielle Aktivität hindeutenden Bituminitanteil, während Relikte von höheren Landpflanzen nur geringfügig vertreten sind. Dies legt den Schluß nahe, daß die Arboran-/Fernanderivate in dieser Probe nicht von Cordaiten, sondern alternativ von Bakterien (oder Algen) abstammen. In diesem Fall ist Isoarborinol als biologischer Vorläufer anzunehmen und es tritt eine deutliche Verschiebung der Kohlenstoffisotopie-Werte zu negativeren Werten auf. Bei den Cordaiten ist eine derartige Isotopenverschiebung dagegen nicht zu beobachten, so daß für MATH, MAPH, DAPH 1 und DAPH 2 Fernen bzw. Fernenol als biologische Vorläufer anzunehmen sind.
In the present study possible sources and pathways of the gasoline additive methyl tertiary-butyl ether (MTBE) in the aquatic environment in Germany were investigated. The objective of the present study was to clarify some of the questions raised by a previous study on the MTBE situation in Germany. In the USA and Europe 12 million t and 3 million t of MTBE, respectively, are used as gasoline additive. The detection of MTBE in the aquatic environment and the potential risk for drinking water resources led to a phase-out of MTBE as gasoline additive in single states of the USA. Meanwhile there is also an ongoing discussion about the substitution of MTBE in Europe and Germany. The annual usage of MTBE in Germany is about 600,000 t. However, compared to the USA, significant less data exists on the occurrence of MTBE in the aquatic environment in Europe. Because of its physico-chemical properties, MTBE readily vaporizes from gasoline, is water soluble, adsorbs only weakly to the underground matrix and is largely persistent to biological degradation. The toxicity of MTBE remains to be completely investigated, but MTBE in drinking water has low taste- and odor thresholds of 20-40 microgram/L. The present study was conducted by collecting water samples and analyzing them for their MTBE concentrations through a combination of headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The detection limit was 10 ng/L. The method was successfully tested in the framework of an interlaboratory study and showed recoveries of reference values of 89% (74 ng/L) and 104% (256 ng/L). The relative standard deviations were 12% and 6%. The investigation of 83 water samples from 50 community water systems (CWSs) in Germany revealed a detection frequency of 40% and a concentration range of 17-712 ng/L. The detection of MTBE in the drinking water samples could be explained by a groundwater pollution and the pathway river - riverbank filtration - waterworks. Rivers are important drinking water sources. MTBE is emitted into rivers through a variety of sources. In the present study, potential point sources were investigated, i.e. MTBE production sites/refineries/tank farms and groundwater pollutions. For this purpose, the spatial distribution of MTBE in three German rivers with the named potential emission sources located close to the rivers was investigated by analyzing 49 corresponding river water samples. The influence of the potential emission sources groundwater pollution and refinery/tank farm was successfully demonstrated in certain parts of the River Saale and the River Rhine. Increasing MTBE concentrations from 24 ng/L to 379 ng/L and from 73 ng/L to 5 microgram/L, respectively, could be observed in the parts investigated in these two rivers. The identification of such emission sources is important for future modeling. Further sources of MTBE emission into surface water are industrial (non-petrochemical) and municipal sewage plant effluents. In the present study long-term monitoring of water from the River Main (n=67 samples), precipitation (n=89) and industrial (n=34) and municipal sewage plant effluents (n=66) was conducted. The comparison of the data sets revealed that maximum MTBE concentrations in the River Main of up to 1 microgram/L were most possibly due to single industrial effluents with MTBE concentrations of up to 28 microgram/L (measured in this study). The average MTBE content of 66 ng/L in the River Main most probably originated from municipal sewage plant effluents and further industrial effluents. Background concentrations of <30 ng/L could be related to the direct atmospheric input via precipitation. A certain aspect of the atmospheric MTBE input is represented by the input of MTBE into river water or groundwater through snow. In the present study 43 snow samples from 13 different locations were analyzed for their MTBE content. MTBE could be detected in 65% of the urban and rural samples. The concentrations ranged from 11-613 ng/L and were higher than the concentrations in rainwater samples formerly analyzed. Furthermore, a temperature dependency and wash-out effects could be observed. The atmospheric input of MTBE was in part also visible in the analyzed groundwater samples (n=170). The detection frequencies in non-urban and urban wells were 24% and 63%, respectively. The median concentrations were 177 ng/L and 57 ng/L. In wells located in the vicinity of sites with gasoline contaminated groundwater, MTBE concentrations of up to 42 mg/L could be observed. The MTBE emission sources and the different pathways of MTBE in the aquatic environment demonstrated in the present study and other works raise the question whether the use of MTBE in a bulk product like gasoline should be continued in the future. Currently, possible substitutes like ethyl tertiary-butyl ether (ETBE) or ethanol are being discussed.
Analytik von Kontaminationen auf Siliciumoberflächen : Möglichkeiten und Grenzen des VPD-Verfahrens
(2004)
In der Halbleiterindustrie führen in der Massenproduktion von Mikroelektronik-Bauelementen bereits geringfügige Mengen an metallischen Verunreinigungen zu einer erheblichen Verminderung der Ausbeuten und setzen die Zuverlässigkeit der Bauelemente drastisch herab. Deshalb müssen nicht nur die als Ausgangsmaterial verwendeten Siliciumscheiben bezüglich des Kontaminationsgrades durch Fremdatome höchsten Ansprüchen genügen, sondern auch die einzelnen Fertigungsschritte für die Produktion von elektronischen Bauelementen. Für die Detektion der Oberflächenverunreinigungen kommt in der Halbleiterindustrie die Totalreflexions-Röntgenfluoreszenz-Spektrometrie (TXRF) mit einer Empfindlichkeit von 1010 Atomen/cm2 zum Einsatz. Mittlerweile liegen die Anforderungen deutlich unterhalb dieser Nachweisgrenze. Durch Anwendung des Aufkonzentrierungsverfahrens VPD (Vapour-Phase-Decomposition) in Kombination mit etablierten Analysemethoden wie TXRF oder GF-AAS (Graphitrohr-Atom- Absorptions-Spektrometrie) können die in der Halbleiterindustrie notwendigen Nachweisgrenzen zur Detektion der Metalloberflächenbelegungen erreicht werden. VPD ist ein Verfahren, das thermische, chemische oder native Oxide auf Siliciumscheiben durch HFDampf ätzt. Metallische Verunreinigungen, die sich auf oder in der Oxidschicht befinden, können anschließend durch Abscannen der hydrophoben Oberfläche mit einem Tropfen eingesammelt werden. Zwei wichtige Begriffe, die unmittelbar im Zusammenhang mit dem VPD-Verfahren stehen, sind die Einsammelrate (Collecting Efficiency CE) und die Wiederfindungsrate (Recovery Rate RR) des Analyten. Die vorliegende Arbeit beschäftigt sich mit der Bestimmung der beiden Größen am Beispiel des Mangans und des Eisens. Dabei spielt die Frage nach der Zuverlässigkeit und Reproduzierbarkeit der verwendeten Analysemethode eine wichtige Rolle. Inwiefern beeinträchtigt das Silicium, das aus der SiO2-Schicht in Lösung geht und nach einem Trocknungsprozess im Rückstand verbleibt, die mittels TXRF erhaltenen Wiederfindungsraten des Analyten. Da die Antworten auf diese Fragen nur in Verbindung mit anderen Analyseverfahren gefunden werden konnten, kamen neben TXRF, GF-AAS und Photometrie auch radiochemische Methoden zum Einsatz. Im Rahmen der vorliegenden Arbeit wurde zunächst das Adsorptionsverhalten des Mangans auf der Silicium (100)-Oberfläche in verdünnter ammoniakalischer Wasserstoffperoxid- Lösung (SC1) untersucht. Zwischen der Mangan-Konzentration in der SC1-Lösung und der Oberflächenbelegung auf den Siliciumscheiben besteht ein deutlicher Zusammenhang. Mit zunehmender Konzentration in der Lösung steigen die mit TXRF ermittelten Oberflächenbelegungen an. Eine Sättigung der Manganbelegung war im untersuchten Konzentrationsbereich nicht nachweisbar. XPS-Spektren zufolge handelt es sich bei der adsorbierten Mn-Spezies um Mn(III)- und/oder Mn(IV)-Oxide. Winkelabhängige TXRF-Untersuchungen dokumentieren die Filmeigenschaften der Mn- Kontaminationen der aus SC1-Lösungen präparierten Siliciumscheiben. Erst ab hohen Mangankonzentrationen von 15 ppmw im SC1-Bad sinkt der Filmanteil der Adsorption auf 42 %. Auch die aus wässrigen sauren Mn-Lösungen kontaminierten Proben zeigen überwiegend einen filmartigen Charakter der Metalladsorption. VPD-TXRF Analysen wurden zunächst mit SC1 behandelten Siliciumscheiben durchgeführt, deren Mn-Oberflächenbelegungen im Bereich von 1 10 x 1012 Atomen/cm2 lagen. Die ermittelten Mn-TRR-Werte (TRR (totale Wiederfindungsrate) = CE X RR) zeigten deutliche Differenzen zum Maximalwert von 1 und dehnten sich über einen Bereich von 0,55 0,68 aus. Durch den Vergleich mit AAS und TXRF (Gerät EXTRA IIA) konnten die Ursachen für die Minderbefunde der TRR-Werte u.a. auf die direkten TXRF-Messungen (Gerät 8010) zurückgeführt werden, welche die Mn-Ausgangsbelegungen um etwa 20 % überbewerten. Wie sich herausstellte, führt die Quantifizierung von filmartigen Oberflächenbelegungen mit Hilfe eines externen Partikelstandards zu einer Überbewertung der Kontamination. Diese Feststellung wird durch den Vergleich zwischen TXRF 8010 und radiochemischen Messmethoden untermauert. Generell kann es bei der Quantifizierung der Oberflächenbelegungen mittels TXRF 8010 zu Fehlinterpretationen kommen, wenn der Analyt und der Standard ein unterschiedliches Fluoreszenzverhalten in Abhängigkeit des Einfallswinkels aufweisen. Es kommt dadurch zu einer Unterbewertung von partikelartigen Mangan- und Eisenkontaminationen, die nach eigenen Einschätzungen 10 % betragen kann. Weiterhin dokumentieren die Mn-TRR-Werte deutlich die Unterschiede zwischen externer und interner TXRF-8010 Kalibrierung. Die Differenzen der TRR-Werte von durchschnittlich 0,35 ergeben sich aus der verminderten Fluoreszenzstrahlung des internen Standards Rubidium. Die aus den TXRF-Spektren entnommenen Netto-counts des Rubidiums liegen deutlich unterhalb des Erwartungswertes der 1 ng entsprechenden Menge. Die TRR-Werte des Mangans von TXRF (Gerät EXTRA IIA) und AAS liefern vergleichbare und vor allem reproduzierbare Ergebnisse. Die Übereinstimmung der Ergebnisse zeigt deutlich, dass die beiden Analysemethoden als Vergleichsmethoden zu TXRF 8010 geeignet sind. Die Zuverlässigkeit der beiden Methoden dokumentiert sich auch in den übereinstimmenden Ergebnissen der Mn- und Fe-Wiederfindungsraten. Für diesen Vergleich wurden unterschiedlich konzentrierte Mn- und Fe-Lösungen in verschiedenen Matrices angesetzt. Die im Vergleich zu AAS und TXRF EXTRA IIA niedrigeren Wiederfindungsraten von TXRF 8010 sind u.a. auf die Kalibrierung mit dem 1 ng Ni-Standard zurückzuführen. Weiterhin konnte festgestellt werden, dass die TXRF-Messungen der in Siliciummatrix vorliegenden Mn- und Eisenproben noch deutlichere Minderbefunde aufweisen. Die Ursachen dafür sind Streueffekte, die durch die Siliciummatrix im Rückstand hervorgerufen werden (s.u.). Wie aus den radioaktiven Tracer-Experimenten hervorgeht, kann der überwiegende Teil der Gesamtkontamination des Mangans und des Eisens auf der Siliciumscheibe durch den ersten Abrollvorgang eingesammelt werden. Anhand der Mangan- und Eisenmengen, die im ersten DSE-Tropfen mittels ³-Messung detektiert werden, errechnen sich die durchschnittlichen Collecting Efficiencies von Mangan und Eisen zu 96,5 bzw. 98,5 %. Die Einsammelraten sind in dem untersuchten Konzentrationsbereich unabhängig von der Ausgangsbelegung. Collecting Efficiencies können auch ohne Kenntnis der Ausgangsbelegung bestimmt werden, wenn die Gesamtmenge der Kontamination durch die Analyse der VPD-Rückstände und der Restbelegung auf der Siliciumscheibe ermittelt wird. Die Bestimmung der Collecting Efficiency nach dieser Methode ist sinnvoll, da eine fehlerhafte Analyse der Ausgangsbelegung - wie am Beispiel der direkten TXRF-Messung gezeigt - zu verfälschten Resultaten führt. Die Anwendbarkeit beschränkt sich jedoch nur auf nichtflüchtige Analyten. Im Vergleich zur ³-Analyse zeigen die Mn-Wiederfindungsraten von TXRF 8010 deutliche Minderbefunde. Auch in diesem Beispiel liegen die Ursachen für die Unstimmigkeiten u.a. in der Kalibrierung durch den 1 ng Ni-Standard begründet. Beim Eisen deutet sich ein konzentrationsabhängiger Trend an. Die höchsten Fe-Wiederfindungsraten erhält man von den Proben mit den niedrigsten Ausgangsbelegungen. Ein Erklärungsansatz beruht auf der Annahme, dass hohe Konzentrationen an Kationen (>1015 Fe-Atome pro Siliciumscheibe) die Verflüchtigung des Siliciums als SiF4 verstärkt unterbinden und somit zu einer massiven Siliciummatrix im VPD-Rückstand führen. Daraus resultieren Streueffekte durch die Matrix, die ein vermindertes Fluoreszenzsignal des Analyten zur Folge haben. VPD-Experimente an SC1-gereinigten Siliciumscheiben belegen, dass der eingetrocknete Rückstand im Wesentlichen aus Silicium besteht. Die Summe der Metallverunreinigungen der SC1- gereinigten Proben liegt deutlich unterhalb 1015 Atomen pro Siliciumscheibe. Wie am Beispiel des Mangans und des Eisens gezeigt werden konnte, liegt die Zuverlässigkeit des VPD-Verfahrens in den hohen und vor allem reproduzierbaren Einsammelraten. Die festgestellten Differenzen der TRR-Ergebnisse sind ausschließlich auf die unterschiedlichen Wiederfindungsraten der eingesetzten Analysemethoden zurückzuführen. Radiochemische Messmethoden wurden bis auf wenige Ausnahmen für derartige Untersuchungen noch nicht angewendet. Die übereinstimmenden Ergebnisse mit den etablierten Analysemethoden und die hohe Empfindlichkeit der ²- und ³-Analyse zeigen ihr Potenzial als Ergänzungsmethode auf diesem Anwendungsgebiet. Die chemischen Wechselwirkungen zwischen Flusssäure und der SiO2-Schicht während des Ätzprozesses im VPD-Reaktor sind abhängig von der relativen Luftfeuchtigkeit. Anhand der Siliciummengen, die nach dem Ätzprozess mit Hilfe unterschiedlicher DSE-Lösungen eingesammelt wurden, konnten viele neue Informationen erarbeitet werden. Das entwickelte qualitative Modell beschreibt in Abhängigkeit von der relativen Luftfeuchtigkeit, in welcher Phase (fest/flüssig/gasförmig) das aus der SiO2-Schicht geätzte Silicium vorliegt.
Die Übergangsmetalle Vanadium und Niob wurden in einer neuartigen Thermowaage bzw. mit dem Rapid Thermal Processing (RTP) unter Verwendung von Ammoniak und Stickstoff als Prozessgas nitridiert. In der Thermowaage, die die in situ Aufzeichnung von Massenänderungen während der Reaktion möglich macht, wurde die Nitridierung hauptsächlich an pulverförmigen Proben durchgeführt. Es stellte sich heraus, dass sowohl Temperatur- und Druckerhöhung, als auch eine Verlängerung der Temperzeit zu größeren Massenzunahmen führten. Die Bildung der unterschiedlichen Nitridphasen war aber allein von der Temperatur während des Versuches und dem verwendeten Prozessgas abhängig. Die detektierten Massenzunahmen bei der Erhöhung von Temperzeit und Druck wurden nur von der vermehrten Einlagerung von Stickstoff bzw. Sauerstoff in das Metall verursacht, die keine neue Phasenbildung zur Folge hatte. Sauerstoff wurde in allen getemperten Proben gefunden, was die Untersuchung von dünnen Schichten in der Thermowaage verhinderte, da aufgrund des erhöhten Sauerstoffgehaltes die Schichten vollständig oxidierten. Der Sauerstoff wurde hauptsächlich von dem Glasreaktor geliefert. Ein dort abgelagerter Belag, der sich durch Korrosion der Edelstahlgasleitung gebildet hatte, wirkte vermutlich katalytisch. Aus diesem Grund war die Thermowaage in dieser Konfiguration nicht für Nitridierungsversuche geeignet und konnte ihren eigentlichen Zweck, die genaue Untersuchung des Reaktionsmechanismus mit Hilfe der Massenänderung und der anschließenden massenspektrometrischen Untersuchung des Prozessgases nach der Reaktion, nicht erfüllen. 200 nm und 500 nm Vanadium- und Niob-Schichten wurden im RTP nitridiert. Auch hier konnte man eine Bildung von Oxiden bzw. Oxynitriden beobachten, diese bildeten sich aber durch die Ausdiffusion von Sauerstoff aus dem Substrat in die Metallschicht, was anhand von SNMS- und TEM/EFTEM/EELS-Untersuchungen eindeutig belegt werden konnte. Um dieses Phänomen zu untersuchen wurden Schichten auch auf Saphir-Substrat, welches gegenüber der Ausdiffusion von Sauerstoff inert sein sollte, aufgebracht. Für die beiden verwendeten Metalle wurden unterschiedliche Ergebnisse gefunden. Während bei den Vanadium-Schichten nur aus dem SiO2-Substrat Sauerstoff ausdiffundierte, wurde dies bei den Niob-Schichten bei beiden Substraten festgestellt. Die Temperatur während der Versuche (V: 600 und 700°C; Nb: 800°C) scheint also auch einen Einfluss auf die Ausdiffusion von Sauerstoff zu haben. Dabei zeigt Saphir eine etwas größere Temperatur-Stabilität als SiO2. Ein Einfluss des Prozessgases auf die Reaktion an der Grenzfläche Metall/Substrat konnte nicht nachgewiesen werden. Zwar kam es bei der Verwendung von Wasserstoff zur Bildung von mehr und sauerstoffreicheren Phasen, was dafür spricht, dass die Substrate stärker angegriffen werden, aber auch beim Einsatz von Inert-Gas (N2) wurde eine Ausdiffusion von Sauerstoff aus den Substraten beobachtet. Allerdings wirkte sich die Schichtdicke der Probe auf die Ausdiffusion von Sauerstoff und die Bildung der Oxid-Phase aus. Da von der Oberfläche der Schicht eindiffundierender Stickstoff die Diffusion von Sauerstoff behindert, kann Sauerstoff mit zunehmender Schichtdicke weiter in das Metall vordringen. Bei dünneren Schichten wird er eher aufgestaut und es bilden sich Oxide mit höherem Sauerstoffgehalt. Ein Einfluss der unterschiedlichen Herstellungsverfahren (Elektronenstrahlverdampfung / Magnetronsputtern) für die Ausgangsschichten auf die Ausdiffusion von Sauerstoff aus dem Substrat konnte, trotz der größeren Kristallinität der gesputterten Proben, nicht nachgewiesen werden.
Die Reinigung von Siliciumoberflächen verbraucht große Mengen von hochreinen und teueren Chemikalien. Komplexbildner dienen der Maskierung von Metallionen in den Reinigungschemikalien mit dem Ziel, die vorhandenen Reinigungsverfahren zu vereinfachen, den Reinigungsvorgang zu beschleunigen und Chemikalien und Kosten zu sparen. Zur Beurteilung, ob ein Komplexbildner für diese Anwendung geeignet ist, bedarf es eines analytischen Verfahrens zur Bestimmung seiner Stabilität in Halbleitersilicium-Reinigungsbädern. In der vorliegenden Arbeit sollte untersucht werden ob die HPLC für diese Aufgabe eingesetzt werden kann. Zusätzlich sollte versucht werden, über die Detektion und die Identifizierung von Zersetzungsprodukten Informationen über die Zersetzungsreaktion zu gewinnen. Es wurden Untersuchungen zur Komplexbildnerstabilität in verschiedenen Reinigungsbädern und in 30% H2O2 durchgeführt. Vier strukturell unterschiedliche Komplexbildner wurden untersucht. Pyrinan (N, N´, N´´-Tris (3-hydroxy-6-methyl-2-pyridylmethyl) 1, 4, 7-Triazacyclononan), ABS-BAMTPH (N,N’,N’’-tris [2-(N-hydroxycarbamoyl) propyl]-1,3,5-benzentricarboxamid), Tiron (Dinatrium-1,2-Dihydroxybenzen-3,5-Disulfonsäure) und die Pyridinone (3-Hydroxy-4(1H)-pyridinone). Bei den Pyridinonen handelte es sich um eine Gruppe von Komplexbildnern mit dem gleichen Grundgerüst, welches mit unterschiedlichen Substituenten verbunden war. Das Verhalten der Pyridinone in 30% H2O2 zeigt, dass es möglich ist mit relativ geringen Modifikationen der Molekülstruktur die Stabilität dieser Komplexbildner gegen Zersetzung zu steigern. Die auftretenden Zersetzungsprodukte wurden mit HPLC-MS untersucht. Die Beobachtung, dass in 30% H2O2 und in dem Reinigungsbad APM (H2O2/NH3/H2O-Gemisch) jeweils identische Zersetzungsprodukte auftraten deutet darauf hin, dass in beiden Fällen eine Oxidation durch H2O2 stattfindet. Die in 30% H2O2 beständigsten Komplexbildner waren ESEHP (Sulfoniumsubstituent) und BMHP (Alkylsubstituent). In APM war ECEHP am stabilsten (Carboxylsubstituent). Tiron wurde nur in 30% H2O2 untersucht. Seine Stabilität wird in dieser Lösung nur von 2 der 13 untersuchten Pyridinone, ESEHP und BMHP, übertroffen. Es wurden keine Zersetzungsprodukte detektiert. ABS-BAMTPH hingegen wurde nur in APM untersucht. In APM erwies sich ABS-BAMTPH als der am wenigsten stabile von allen untersuchten Komplexbildnern. Die Brauchbarkeit von ABS-BAMTPH wurde zusätzlich durch einen hohen Anteil an Nebenprodukten eingeschränkt, die bei der Synthese des Komplexbildners entstanden waren. Die Nebenprodukte konnten mittels HPLC-MS und Kenntnis des Syntheseweges identifiziert werden. Über die Zersetzungsreaktion(en) des Pyrinan konnte mit Hilfe von HPLC-MS und MS/MS eine Reihe von Informationen gewonnen werden. Eine Abfolge von Reaktionen wird zur Erklärung der beobachteten Zersetzung vorgeschlagen. Alle Reaktionen laufen an den 3 tertiären Amin-Stickstoffatomen des Pyrinans ab. Diese stellen den Schwachpunkt der Pyrinanstruktur dar. Die Bildung von Aminoxiden leitet die Zersetzung ein. Die Aminoxide reagieren über eine Meisenheimer-Umlagerung weiter. Eine komplexierende Wirkung der Zersetzungsprodukte kann aufgrund der beobachteten Stabilisierung des H2O2 gegen die durch Übergangsmetallionen katalysierte Disproportionierung angenommen werden. Die vorliegende Arbeit zeigt, das die HPLC zur Untersuchung der Stabilität von Komplexbildnern in Halbleiter-Reinigungschemikalien geeignet ist. Die HPLC-MS und die MS/MS lieferten zusätzliche Informationen über Zersetzungsprodukte und die stattfindenden Zersetzungsreaktionen. Die HPLC-MS ist darin den bisher in der Halbleiterindustrie für diese Fragestellung benutzten analytischen Methoden überlegen.
Die vorliegende Arbeit ist aus drei Teilen aufgebaut. Im ersten, relativ kurz gehaltenen Kapitel wird die klassische Standard-Industrie-Solarzelle auf der Basis monokristallinen Siliziums vorgestellt. Der bisherige Herstellungsprozess der Standard-Industrie-Solarzelle, der in wesentlichen Teilen darauf abzielt, diese Verluste zu minimieren, dient als Referenz für die Entwicklung neuer Fertigungsverfahren, wie sie in den Kapiteln 2 und 3 dieser Arbeit vorgestellt werden. Den ersten thematischen Schwerpunkt dieser Arbeit bildet die Entwicklung eines alternativen Wafering-Konzeptes zum Multi-Drahtsägen, der klassischen Technologie zur Fertigung von Silizium-Wafern. Die Basis des neuen, hier vorgestellten Wafering-Prozesses bildet das Laser-Micro-Jet-Verfahren (LMJTM). Dieses System besitzt eine Reihe von Vorteilen gegenüber klassischen „trockenen“ Laserverfahren. Das ursprünglich auf reinem, deionisiertem Wasser als Strahlmedium aufbauende System wurde im Rahmen dieser Arbeit so modifiziert, dass der Flüssigkeitsstrahl nunmehr nicht nur als flüssiger Lichtleiter dient, sondern gleichzeitig auch als Transportmedium für Ätzmittel, welche den thermischen Abtrag des Siliziums durch den Laserstrahl unterstützen. Ausgehend vom aus der Literatur bekannten chemischen Verhalten des Siliziums wurden 3 Ätzsysteme für Silizium vorgestellt. Dabei wurden Vor- und Nachteile für deren technischen Einsatz diskutiert. Den praktischen Teil dieses Arbeitspaketes bildete der Test zweier Ätzmedien im Experiment. Dabei konnte gezeigt werden, dass wasserfreie Strahlmedien basierend auf perfluorierten Lösemitteln mit bereits sehr geringen Zusätzen gasförmigen Chlors als Ätzmittel für Silizium wässrigen alkalischen Ätzsystemen jeder Konzentration prinzipiell überlegen sind- Parallel zur Evaluation des Einflusses der chemischen Beschaffenheit des Flüssigkeitsstrahls auf den Abtragsprozess fand auch eine Untersuchung verschiedener Prozessparametereinflüsse statt, etwa der Laserleistung, der Laserlichtwellenlänge, etc. Den zweiten thematischen Schwerpunkt der Arbeit bildet die Modifizierung der nasschemischen Schritte zwischen dem Wafering und dem ersten Hochtemperatur-Fertigungsschritt in der Solarzellen-Produktion, der Emitterdiffusion. Diese nasschemischen Schritte umfassen bei der Standard-Industrie-Solarzelle in der Regel eine zum Teil aufwändige Reinigung der Wafer-Oberflächen von partikulären und metallischen Kontaminationen, die vor allem vom Wafering-Prozess herrühren, als auch eine Texturierung der Substrate. Kernanliegen des praktischen Teils dieses Arbeitspaketes ist zum einen die Suche nach alternativen Texturmitteln zum 2-Propanol, dem klassischen Badadditiv in basischen Ätzbädern, das in der Praxis über zahlreiche Nachteile verfügt, etwa einem relativ niedrigen Siedepunkt, der zu seinem permanenten Ausgasen aus der Lösung führt. Zum anderen sollte der auf die Textur folgende Reinigungsprozess rationalisiert werden, um Prozesskosten zu minimieren, entweder durch eine Straffung des Prozesses durch Verringerung des Chemikalienverbrauchs und einer Reduzierung der Prozesszeit oder durch eine Verringerung der Chemikalienkosten. Bei der Suche nach neuen Texturmitteln wurden 45 verschiedene organische Substanzen verschiedener Verbindungsklassen hinsichtlich ihrer Texturwirkung auf monokristallinen Silizium-substraten getestet. Mit 1-Pentanol und p-Toluolsulfonsäure wurden zwei Substanzen ermittelt, welche in der Zukunft als praktikable Alternativen zu 2-Propanol als Texturadditive dienen könnten. Im Kontext der Suche nach neuen Reinigungsverfahren wurden eine Reihe verschiedener neuer Reinigungssequenzen getestet, die sich entweder durch veränderte - in der Regel verringerte - Badkonzentrationen, durch neue Badsequenzen, welche auf bestimmte Teilschritte verzichten oder durch neue Badkompositionen, etwa durch Hinzuziehen von Komplexbildnern für metallische Verunreinigungen von den klassischen Reinigungsprozessen unterscheiden. Der Erfolg des Reinigungseffektes der nasschemischen Sequenzen wurde anhand der Ladungsträger-Lebensdauer in den Wafern abgeschätzt. Dabei konnte gezeigt werden, dass mit Hilfe von LMJ produzierte (gelaserte) Wafer-Oberflächen wesentlich straffere Reinigungsprozesse erfordern als drahtgesägte Substrate. Neben einer deutlichen Straffung des Reinigungsprozesses ist auch eine Verkürzung der Texturzeit bei den mit Lasern geschnittenen Oberflächen möglich, die wiederum ihren Grund im geringeren Schädigungsgrad dieser Oberflächen hat, der einen geringeren Materialabtrag durch die Ätzbäder erfordert, als bei drahtgesägten Wafern. Abschließend konnte noch gezeigt werden, dass drahtgesägte Substrate, die bei gleicher Prozesszeit mit den neuen Texturmitteln prozessiert wurden, über erheblich höhere mechanische Stabilitäten verfügen, als jene, bei denen das klassische Texturmittel 2-Propanol eingesetzt wurde.