Refine
Year of publication
Document Type
- Doctoral Thesis (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- AMPK, nuclear receptors, PPAR, LXR, fatty acid oxidation, ABCA1, human macrophages (1)
- BMC (1)
- HIF (1)
- Hypoxie (1)
- Knochenersatzmaterial (1)
- Makrophage (1)
- PGE2 Cancer Tumorigenesis (1)
- PRF (1)
- RNI (1)
- ROS (1)
Institute
- Medizin (15)
- Biochemie und Chemie (6)
- Pharmazie (4)
- Biochemie, Chemie und Pharmazie (1)
Macrophages show a remarkable functional plasticity, which enables them to change their phenotype in response to environmental signals. They are key players during infection by initiating inflammation through the release of proinflammatory mediators. Furthermore, macrophages contribute to the resolution of inflammation by phagocytosis of apoptotic granulocytes. Phagocytosis of apoptotic cells (AC) induces an anti-inflammatory phenotype in macrophages and protects them against apoptosis. However, mechanistic details provoking these phenotype alterations are incompletely understood. Therefore, the aim of my Ph.D. thesis was to investigate the molecular basis of anti-inflammatory macrophage polarization. In the first part of my studies, I investigated the expression of heme oxygenase (HO)-1 in macrophages following treatment with supernatants from AC. HO-1 catalyzes the first and rate-limiting step of heme degradation and potentially bears anti-inflammatory as well as anti-apoptotic potential. I was able to show biphasic upregulation of HO-1 by AC supernatants. The first phase of HO-1 induction at 6 h required activation of p38 MAPK and was accomplished by the bioactive lipid sphingosine-1-phosphate (S1P) engaging S1P receptor 1 (S1P1). However, the second wave of HO-1 induction at 24 h was attributed to autocrine signaling of vascular endothelial growth factor (VEGF) A, whose expression was facilitated by S1P. The release of VEGFA from macrophages was STAT1-dependent, whereas VEGFA itself acted on the macrophage HO-1 promoter via STAT1/STAT3 heterodimer binding. Knockdown of HO-1 revealed its relevance in promoting enhanced expression of the anti-apoptotic proteins B cell leukemia/lymphoma-2 (Bcl-2) and B cell leukaemia/lymphoma-x long (Bcl-XL), as well as the anti-inflammatory adenosine receptor A2A. MHC II and indoleamine 2,3-dioxygenase expression were also affected by ACsupernanatants, but were not HO-1 dependent. Unexpectedly, S1P1 was also upregulated following treatment with AC supernatants. Thus, I considered whether S1P1 induction could specifically be mediated by alternative macrophage activating factors. The expression of S1P1 was enhanced in the presence of the alternative activation stimuli IL-4 as well as IL-10, whereas it was unchanged following incubations with LPS, interferon-g or S1P. My next aim was to investigate the expression of the different S1P receptor isoforms in macrophages following treatment with supernatants form AC. While the expressions of S1P1 as well as S1P3 were induced by exposure to supernatants from AC, S1P2 expression was unaffected. As S1P1/3 and S1P2 are conflictively involved in the regulation of cell migration, I asked for a correlation between increased S1P receptor expression and enhanced migration rate. Indeed, macrophages showed enhanced motility following treatment with supernatants form AC, which was inhibited in S1P1 knockout macrophages. In summary, my findings indicate that HO-1, which is induced by AC-derived S1P, is critically involved in macrophage polarization towards an alternatively activated macrophage phenotype. S1P1 seems to represent a central checkpoint during macrophage activation. On the one hand, S1P1 is induced by supernatants form AC and promotes migration of macrophages. On the other hand, it mediates the induction of HO-1, which is accompanied by antiinflammatory as well as anti-apoptotic signaling. Furthermore, my studies provide evidence that upregulation of HO-1 and S1P1 in macrophages may contribute to the resolution of inflammation by establishing an anti-inflammatory macrophage phenotype and provoking macrophage migration along the vascular S1P gradient out of an inflammatory environment into the lymph.
Die Therapie des critical size defects stellt eine große Herausforderung der Medizin dar. Die Knochendefekte können beispielsweise in Folge von Tumorresektionen, Knochenheilungsstörungen oder nach Frakturen entstehen. Den aktuellen Goldstandard in der Therapie großer Knochendefekte stellt die Transplantation von autologem Knochenmaterial dar. Die Entnahme des Materials aus dem Beckenkamm ist allerdings mit Nachteilen wie der Entnahmemorbididät verbunden. Alternativ können Tissue-Engineering Techniken eingesetzt werden, bei denen Zellen mit regenerativem Potential mit Knochenersatzmaterialien und Wachstumsfaktoren kombiniert werden, um eine Defektheilung zu erzielen. Der Einsatz von bone marrow mononuclear cells (BMC) mit einem osteokonduktiven Gerüst wie b-TCP hat sich als geeignetes Therapiekonzept bewiesen. Einen weiteren Ansatz stellt die Verwendung von autologen Blutkonzentraten wie beispielsweise des platelet rich fibrin (PRF) dar. Das PRF kann innerhalb weniger Minuten aus patienteneigenem Blut mittels Zentrifugation hergestellt und direkt angewandt werden. Durch seine charakteristische dreidimensionale Fibrinmatrix dient das PRF als Reservoir für Wachstums- und Regenerationsfaktoren.
Die Kombination von BMC mit PRF könnte also durch die gesteigerte Konzentration an Zytokinen und Wachstumsfaktoren wie VEGF und TGF-b zu einer Unterstützung der regenerativen Wirkung der BMC führen. Ziel dieser Arbeit war es daher, den Effekt von PRF auf BMC in vitro zu analysieren.
In Anlehnung an das low speed centrifugation concept wurden zwei verschiedene PRF-Matrices hergestellt. Diese wurden entweder mit mittlerer relativer Zentrifugalbeschleunigung (RCF) (208g) oder mit geringer RCF (60g) zentrifugiert. Um eine geeignete Konzentration des PRF zur Kombination mit den BMC zu finden, wurde im Vorfeld eine Dosisfindungskurve erstellt. Zu diesem Zweck wurde der Einfluss ansteigender PRF-Konzentrationen auf die metabolische Aktivität der BMC nach 7 Tagen Inkubation analysiert. Wir konnten einen Trend zu erhöhten Werten bei einer Konzentration von 10% des PRF beobachten. Die metabolische Aktivität der BMC wurde durch höhere PRF-Konzentrationen nicht weiter gesteigert.
Aufgrund dieser Ergebnisse wurde für die nachfolgenden Experimente eine Konzentration von 10% der PRF-Aufbereitungen und der Serum-Kontrolle eingesetzt.
Zur Charakterisierung der beiden PRF-Aufbereitungen wurde der Gehalt an Wachstumsfaktoren im Vergleich zu humanem Serum untersucht. Es zeigten sich signifikant gesteigerte Konzentrationen von Insulin-like Growth Factor-1 (IGF-1), soluble Intercellular Adhesion Molecule-1 (sICAM-1) und Transforming Growth Factor-b (TGF-b) in dem PRF. Bezüglich des Vascular Endothelial Growth Factor (VEGF)-Gehaltes ließ sich allerdings kein Unterschied zwischen humanem Serum und den PRF-Matrices darstellen.
Der Effekt des PRF low-RCF und PRF medium-RCF auf die Viabilität der BMC wurde anhand der metabolischen Aktivität nach 2, 7 und 14 Tagen Inkubation untersucht. Als Kontrollgruppe diente hierbei der Zusatz von humanem Serum. Die metabolische Aktivität der BMC zeigte sich an Tag 14 in allen Gruppen signifikant gesteigert.
Außerdem konnten wir zeigen, dass der Zusatz von PRF zu BMC zu einer statistisch signifikant erhöhten Genexpression der Matrix-Metalloproteasen (MMP) -2, -7 und - 9 im Vergleich zur Serum-Kontrollgruppe führt.
In unseren Versuchen konnte nachgewiesen werden, dass die apoptotische Aktivität der BMC durch Kombination mit PRF nicht negativ beeinflusst wird. Zusammenfassend lässt sich sagen, dass sich PRF-Matrices als geeignete allogene oder autologe Quelle von Wachstums- und Regenerationsfaktoren nutzen lassen. Sie besitzen damit die Kapazität, Zellen wie die BMC zu stimulieren und zu aktivieren. Unsere Studie zeigt, dass der Zusatz von PRF für BMC-gestützte Therapien förderlich sein könnte. Dies muss jedoch in geeigneten Tiermodellen überprüft werden.
Disturbances in lipid metabolism are responsible for many chronic disorders, such as type 2 diabetes and atherosclerosis. Regulation of lipid metabolism occurs by activated transcription factors peroxisome proliferator-activated receptor δ (PPARδ) and liver X receptor α (LXRα) mediating transcription of different target genes involved in regulation of fatty acid uptake and oxidation or cellular cholesterol homeostasis. This is especially relevant for the macrophages, since pathways regulated by PPARδ and LXRα affect foam cell formation, a process driving the progression of atherosclerotic lesion. AMP-activated protein kinase (AMPK) plays a central role in energy homeostasis in every type of eukaryotic cell, but its role in human macrophages, particularly with regard to lipid metabolism, is not precisely defined yet. Thus, I investigated the impact of AMPK activity on PPARδ and LXRα and the expression of their target genes involved in fatty acid oxidation (FAO) and cholesterol metabolism.
As PPARδ has been described as a potential target for prevention and treatment of several disorders and AMPK as interesting drug target for diabetes and metabolic syndrome, the aim of the first part of my studies was to investigate their interaction in primary human macrophages. Completing the first challenge successfully, I was able to establish a lentiviral transduction system for constitutively active AMPK (consisting of a truncated catalytic AMPKα1 subunit bearing an activating T198D mutation) in primary human macrophages.
Using genome-wide microarray analysis of gene expression, I demonstrate FAO as the strongest affected pathway during combined AMPKα1 overexpression and PPARδ activation.
The most influenced genes were validated by quantitative PCR as well as by Western analysis. I found that AMPK increases the expression of FAO-associated genes targeted by PPARδ. Corroborating the results obtained using AMPKα1 overexpression, PPARδ target gene expression was increased not only by PPARδ agonist GW501516, but also by pharmacological allosteric AMPK activator A-769662. Additional enhancement of target gene mRNA expression was achieved upon co-activation of PPARδ and AMPK. Silencing PPARδ expression increased basal expression of target genes, confirming the repressive nature of ligand-free PPARδ, abolishing the increased target gene expression upon AMPK or PPARδ activation. Measurements of triglyceride contents of human macrophages incubated with VLDL following PPARδ activation demonstrated a reduction of intracellular triglyceride accumulation in cells, which may reflect the enhancement of fat catabolism.
In the second part of my studies, I concentrated on the regulation of cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) expression by AMPK. ABCA1 facilitates
cholesterol efflux from macrophages thus, preventing atherosclerosis progression. For the first time, AMPK implication in the regulation of the ABCA1 pathway could be presented. Both AMPK overexpression and activation lead to significantly increased ABCA1 expression, whereas AMPKα1 knock-down strongly reduced this effect. Besides, I was able to prove an enhanced activity of ABCA1 during AMPK activation in human THP-1 macrophages by measuring cholesterol efflux into apolipoprotein AI-containing medium.
Previous findings showed regulation of ABCA1 by LXRα. I confirmed these results by silencing experiments indicating an essential role of LXRα in ABCA1 regulation pathway.
Here, ABCA1 mRNA as well as protein expression were positively mediated by LXRα. LXRα activation elevated ABCA1 levels, whereas its silencing down-regulated this effect.
Interestingly, ABCA1 was found to be regulated only by LXRα and not through LXRα. At the same time, knock-down of PPARδ, -γ or -δ, which may be also involved in the regulation of LXR/ABCA1 axis, did not influence the activation of ABCA1 expression by an AMPK activator. To confirm that LXRE on Abca1 promoter is essential for ABCA1 regulation, I performed luciferase reporter assay using constructs based on Abca1 promoter with or without LXRE mutation. Mutation of LXRE abolished reporter activity, whereas AMPK activation increased luciferase activity of wild-type LXRE construct. Furthermore, I demonstrate AMPK-dependent LXRα binding to the LXRE site of Abca1 promoter using the method of chromatin immunoprecipitation. AMPK activation significantly increased, whereas silencing of AMPK significantly attenuated LXRα binding, indicating AMPK as one of the most important regulators of ABCA1 expression.
In summary, I provided an evidence for AMPK involvement into lipid and cholesterol metabolism in human macrophages showing the regulation of PPARδ and LXRα target genes. The understanding of AMPK and PPARδ interaction allows the development of new approaches for treatment of metabolic syndrome and related diseases. Increased FAO during the activation of both proteins may exhibit better therapeutic benefit. On the other hand, I have shown the impact of AMPK activation on ABCA1 via LXRα up-regulation leading to increased cholesterol efflux in human macrophages for the first time. These findings thus may impact future improving of anti-atherosclerosis therapies.
Immune cells are key players in several physiological and pathophysiological events such as acute and chronic inflammation, atherosclerosis and cancer. Especially in acute inflammation, macrophages are indispensable for the switch from the acute inflammatory phase to the resolution phase. Not only the phagocytosis of apoptotic cells, but especially the surrounding cytokines and mediators are able to switch macrophage polarization from inflammatory- to anti-inflammatory phenotypes. Within this cytokine environment, sphingosine-1-phosphate (S1P) plays an important role for immune cell activation, polarization and migration.
The tumor suppressor programmed cell death 4 (Pdcd4) exerts its function by inhibiting protein translation initiation. Specifically, it displaces the scaffold protein eukaryotic initiation factor 4G (eIF4G) from its binding to the eukaryotic initiation factor 4A (eIF4A). Thereby, Pdcd4 inhibits the helicase activity of eIF4A, which is necessary for the unwinding of highly structured 5’ untranslated regions (UTRs) of messenger RNAs (mRNAs) often found in oncogenes like c-myc to make them accessible for the translation machinery and subsequent protein production. Overexpression of Pdcd4 inhibits tumorigenesis in vitro and in vivo and inversely, Pdcd4 knockout mice show enhanced tumor formation. In line, Pdcd4 is lost in various tumor types and proposed as prognostic factor in colon carcinomas. Unlike most other tumor suppressors that are rendered nonfunctional by mutations (e.g., p53), Pdcd4 loss is not attributable to mutational inactivation. It is regulated via translational repression by microRNAs and increased degradation of the protein under tumor promoting, inflammatory conditions and mitogens. Specifically, proteasomal degradation of Pdcd4 is controlled by p70 S6 Kinase (p70S6K)-mediated phosphorylation in its degron sequence (serines 67, 71 and 76). Stimulation of the PI3K-AKT-mTOR pathway by growth factors, hormones and cytokines initiates p70S6K activity. Phosphorylated Pdcd4 is subsequently recognized by the E3 ubiquitin ligase beta-transducin repeats-containing protein (β-TrCP) and marked with a polyubiquitin tail to be detected by the 26S proteasome for degradation. β-TrCP represents the substrate specific recognition subunit of the ubiquitin ligase complex responsible for protein-protein interaction with Pdcd4 as substrate for ubiquitin transfer and subsequent proteasomal disassembly.
The first part of the present work aimed at identifying novel stabilizers of the tumor suppressor Pdcd4 in a high throughput screen (HTS). As assay design, a fragment of Pdcd4 from amino acid 39 to 91, containing the phosphorylation sensitive degron sequence, was fused to a luciferase reporter gene construct. Stable expression of this Pdcd4(39-91)luciferase (Pdcd4(39-91)luc) fusion protein in HEK 293 cells served as read-out for the Pdcd4 protein amount to be detected in a high throughput compatible cell-based assay. Loss of Pdcd4(39-91)luc was induced by treatment with 12-O-
tetradecanoylphorbol-13-acetate (TPA), a phorbolester, which activates the PI3K signaling cascade leading to degradation of Pdcd4. The cut-off for hit definition was set at >50% activity in rescuing the Pdcd4(39-91)luc signal from TPA-induced degradation. Activity was calculated relative to the difference of DMSO- and TPA-treated cells (ΔDMSO-TPA = RLUDMSO-RLUTPA). Initial screening of a protein kinase inhibitor library (PKI) revealed hit substances expected to show Pdcd4 stabilizing activity by inhibition of kinases involved in Pdcd4 downregulation, e.g., the mTOR inhibitor rapamycin, the PI3K inhibitors wortmannin and LY294002 and the PKC inhibitors GF 109203X and Ro 31-8220.
The Molecular Targets Laboratory (MTL) of the National Cancer Institute (NCI) in Frederick, USA, hosts one of the largest collections of crude natural product extracts as well as a big substance libraries from pure synthetic sources. Screening of over 15 000 pure compounds and over 135 000 natural product extracts identified 46 pure and 42 extract hits as Pdcd4 stabilizers. For nine synthetic and six natural product derived compounds (after bioassay-guided fractionation), dose-dependent activities for recovering the TPA-induced Pdcd4(39-91)luc loss defined IC50s in the low micromolar range. Most importantly, these compounds were confirmed to stabilize endogenous Pdcd4 protein levels from forced degradation as well. This result proved the assay design to be highly representative for endogenous cellular mechanisms regulating Pdcd4 protein stability. The next step was to stratify the hit substances according to their likely mechanism of action to be located either up- or downstream of the p70S6K-mediated phosphorylation of Pdcd4. Therefore, phosphorylation of S6, as proto-typical p70S6K target, was analyzed and uncovered two natural derived compounds to influence p70S6K activity. Four substances did not affect p70S6K phosphorylation activity and were therefore considered to stabilize Pdcd4 by acting downstream, i.e. on the β-TrCP-mediated proteasomal degradation.
In the second part of this work, one of these compounds, namely the sesquiterpene lactone erioflorin, isolated by bioassay-guided fraction from the active extract of Eriophyllum lanatum, Asteraceae, was further characterized in detail with respect to its molecular mechanism of action. Erioflorin dose-dependently protected both Pdcd4(39-91)luc and endogenous Pdcd4 protein from TPA-induced degradation with IC50s of 1.28 and 2.64 μM, respectively. Pdcd4 stabilizing activity was maximal at 5 μM erioflorin. Up to this concentration, erioflorin was verified not to inhibit p70S6K activity. In addition, it was observed that erioflorin rescued Pdcd4(39-91)luc from both, wild type and constitutively active p70S6K-mediated downregulation. Only wild type p70S6K was inhibitable by the mTOR inhibitor rapamycin which served as an upstream acting control. To study the next section of Pdcd4 regulation, i.e. recognition by the E3 ubiquitin ligase β-TrCP, Pdcd4(39-91)luc and endogenous Pdcd4 were immunoprecipitated from whole cell extracts with the corresponding antibodies. In this key experiment, treatment with TPA increased overexpressed β-TrCP binding to both and this coimmunoprecipitation could be strongly reduced by erioflorin treatment. This result strongly pointed to an inhibitory mechanism of the β-TrCP specific binding to Pdcd4 by erioflorin. In addition, erioflorin disrupted the binding of in vitro transcribed/translated β-TrCP to Pdcd4 in an in vitro interaction assay to exclude nonspecific intracellular signals. Furthermore, polyubiquitination of Pdcd4 was decreased by erioflorin treatment as well. To clarify questions regarding specificity of erioflorin for the E3 ubiquitin ligase β-TrCP, stability of another important β-TrCP target was explored, i.e. the tumor suppressor inhibitor of kappa B alpha (IκBα). Indeed, the tumor necrosis factor alpha (TNFα)-mediated loss of IκBα could be prevented by erioflorin cotreatment. On the other hand, the E3 ubiquitin ligase von Hippel Lindau protein (pVHL) was left unaffected as its target hypoxia inducible factor 1 alpha (HIF-1α) could not be stabilized from oxygen-dependent degradation by erioflorin treatment. These results argued strongly for erioflorin being a specific inhibitor of β-TrCP-mediated protein degradation. Functional consequences of erioflorin treatment were investigated by observing its influence on the transcriptional activities of the transformation marker activator protein 1 (AP-1, an indirect downstream target of Pdcd4) and nuclear factor κB (NF-κB which is directly inhibited by IκBα). Indeed, erioflorin showed significant inhibition of AP-1 and NF-κB reporter constructs at 5 μM, a concentration for which an impact on cell viability was excluded. Finally to characterize the significance of erioflorin in a cell-based tumorigenesis assay, the highly invasive colon carcinoma cell line RKO was tested in a two dimensional migration assay. Erioflorin was discovered to significantly lower cell migration in a wound closure assay.
In conclusion, development of a high throughput compatible cell-based reporter assay successfully identified novel substances from pure synthetic and natural product derived background as potent stabilizers of the tumor suppressor Pdcd4. In addition, this work aimed at elucidating the detailed mechanism of action of the sesquiterpene lactone erioflorin from Eriophyllum lanatum, Asteraceae. Erioflorin was discovered to inhibit the E3 ubiquitin ligase β-TrCP, thereby preventing protein degradation of tumor suppressors like Pdcd4 and IκBα. This may offer the possibility to more specifically target protein degradation and generate less adverse side effects by blocking a particular E3 ubiquitin ligase compared to general proteasome inhibition.
Tumor development usually follows predictable paths where tumor cells acquire common characteristics and features known as the hallmarks of cancer. Recently, additional characteristics have been added to these hallmarks since solid tumors are composed of a very heterogeneous population of transformed, formerly normal tissue cells and stromal cells, e.g. immune cells and fibroblasts. Compelling evidence suggests that stromal cells and tumor cells maintain a symbiotic relationship to build up the tumor microenvironment and to fuel tumor growth. In cancer therapies, common features of tumors such as unrestricted cell growth, suppression of immunological responses, and the ability to form new blood vessels (angiogenesis) have emerged as the main targets of interest. The lipid mediator prostaglandin E2 (PGE2) is known to promote all these features and thus, is connected to cancer progression in general. Its synthesis is triggered in response to stress factors or during inflammation. Inducible PGE2 production relies on the enzymes cyclooxygenase 2 (COX-2) and microsomal prostanglandin E synthase 1 (mPGES-1), which are simultaneously expressed in response to a variety of different stimuli and are functionally coupled. Inhibition of COX-2 with non-steroidal antiinflammatory drugs (NSAIDs) for cancer treatment is, however, limited by cardiovascular risks, since selective COX-2 inhibition disrupts the prostacyclin/thromboxane balance. Therefore targeting mPGES-1 downstream of COX-2 for PGE2 inhibition was evaluated in this work in different steps of carcinogenesis. Knockdown of mPGES-1 in DU145 prostate cancer cells revealed that the mPGES-1 status did not affect growth of monolayer tumor cells, but significantly impaired 3D growth of multi-cellular tumor spheroids (MCTS). Spheroid formation induced COX-2 in DU145 and other prostate cancer spheroids. High levels of PGE2 were detected in supernatants of DU145 MCTS as opposed to monolayer DU145 cells. Pharmacological inhibition of COX-2 and mPGES-1 confirmed the pivotal role of PGE2 for DU145 MCTS growth. Besides promoting spheroid growth, MCTS-derived PGE2 also inhibited cytotoxic T lymphocyte (CTL) activation. When investigating the mechanisms of COX-2 induction during spheroid formation, the typical tumor microenvironmental factors such as glucose deprivation, hypoxia or tumor cell apoptosis failed to enhance COX-2. Interestingly, when interfering with apoptosis in DU145 spheroids, the pan-caspase inhibitor Z-VAD-FMK triggered a Summary 12 shift towards necrosis, thus enhancing COX-2 expression. Coculturing viable DU145 monolayer cells with isolated heat-shocked-treated necrotic DU145 cells, but not with necrotic cell supernatants, induced COX-2 and PGE2, confirming the impact of necrosis for MCTS growth and CTL inhibition. As mentioned, in vivo tumors are very heterogenous mixtures of tumor cells and stromal cells e.g. immune cells. Hence, the interaction of the immune system with tumors was investigated in further experiments. When coculturing MCF-7 breast cancer spheroids with human peripheral blood mononuclear cells (PBMCs), only low levels of PGE2 were detected, since MCF-7 cells did not upregulate COX-2 during spheroid formation and did not induce PGE2 production by PBMCs. Under inflammatory conditions, by adding the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) to cocultures, PGE2 production was triggered, spheroid sizes were reduced, and numbers of high levels of granzyme B expressing (GrBhi) CTLs were increased, while CD80 expression by tumor-associated phagocytes was also elevated. Inhibition of CD80 but not CD86 diminished numbers of GrBhi CTLs and attenuated spheroid lysis. To determine the role of ctivation-induced PGE2 production, use of the COX-2 inhibitor celecoxib and the experimental mPGES-1 inhibitor C3 further increased CD80 expression. Addition of PGE2, the prostaglandin E2 (EP2) receptor agonist butaprost, and the phosphodiesterase 4 (PDE4) inhibitor rolipram reduced LPS/C3-triggered CD80 expression, confirming the impact of COX- 2/mPGES-1-derived PGE2 on shaping phagocyte phenotypes in an EP2/cAMP-dependent manner. In a spontaneous breast cancer model (MMTV-PyMT), mPGES-1-deficiency significantly delayed tumor growth in mice, confirming an overall protumorigenic role of mPGES-1 in breast cancer development in vivo. However in tumors of mPGES-1-/- mice, tumor-infiltrating phagocytes expressed low levels of CD80 similar to their wildtype counterparts. These data suggest that the immunosuppressive microenvironment does not allow for immunostimulatory effects by mPGES-1 inhibition without an activating stimulus. Evidences in this study recommend the application of mPGES-1 inhibitors for treating cancer diseases, since mPGES-1 promotes tumor growth in multiple steps of carcinogenesis, ranging from well-characterized effects of tumor cell growth to immune suppression of CTL activity and phagocyte polarization. Regarding the latter, blunting PGE2 during immune activation may limit the tumor-favoring features of inflammation and improve the efficiency of TLR4 based immune therapies.
Der VEGF-neutralisierende Antikörper Bevacizumab ist ein wichtiger Bestandteil der modernen Tumortherapie. Auch in der Glioblastom Therapie wird Bevacizumab eingesetzt, da in klinischen Studien eine Verlängerung des progressionsfreien Überlebens beobachtet wurde. Leider entwickeln sich schnell Resistenzen und das Gesamtüberleben konnte durch Bevacizumab in der Erstlinientherapie von Glioblastomen nicht verlängert werden.
Die genaue Wirkungsweise von Bevacizumab und somit auch die Resistenzentwicklung sind nur teilweise bekannt. Es wird vermutet, dass es durch Gefäßveränderungen zu einer Mangelsituation und zu Hypoxie kommt. Einige Studien deuten darauf hin, dass es neben der Wiedererlangung einer VEGF-unabhängigen Gefäßversorgung auch zu Resistenz gegen das durch Bevacizumab hervorgerufene, von Sauerstoffmangel gekennzeichnete Mikromilieu kommt. So konnte gezeigt werden, dass Bevacizumab-resistente Tumoren einen stark glykolytischen, sauerstoff-unabhängigen Zellmetabolismus aufweisen und vermehrt Laktat produzieren. Darüber hinaus wurde in Folge der Bevacizumab-Behandlung eine Fehlfunktion von Mitochondrien beobachtet. Unklar ist noch, ob die beschriebenen metabolischen Veränderungen ein Epiphänomen der Nährstoffmangelsituation sind oder ob sie kausal mit der Resistenzentwicklung in Zusammenhang stehen.
In der vorliegenden Arbeit sollte deshalb geprüft werden, ob die metabolische Umstellung hin zu einem glykolytischen, anaeroben Phänotyp eine hinreichende Bedingung zur Entwicklung einer Hypoxie- und Bevacizumabresistenz darstellt.
Hierzu wurden Glioblastomzellen (LNT229) derart verändert, dass sie keine oxidative Phosphorylierung durchführen konnten und rein auf die glykolytische Energiegewinnung angewiesen waren (rho0-Zellen). Diese Veränderung führte in-vitro zu einer Hypoxieresistenz der Zellen. Außerdem waren rho0-Zellen empfindlicher gegenüber Glukoseentzug und einer Behandlung mit dem Glykolyse-Inhibitor 2-Deoxyglucose (2DG). Des Weiteren waren im Mausmodell intrakranielle rho0-Tumorxenografts resistent gegenüber Bevacizumab. Diese Resistenz konnte durch zusätzliche Therapie mit 2DG wieder aufgehoben werden.
Somit konnte in der vorliegenden Arbeit gezeigt werden, dass die Hemmung der oxidativen Phosphorylierung zu einem glykolytischen Phänotyp führt, der hinreichend ist, um eine Hypoxieresistenz und in Folge dessen eine Bevacizumabresistenz in Glioblastomzellen zu verursachen. Dies lässt einen kausalen Zusammenhang zwischen bereits in anderen Studien beschriebenen metabolischen Veränderungen und einer Bevacizumabresistenz in Tumoren vermuten. Der zelluläre Glukosestoffwechsel ist damit ein vielversprechender therapeutischer Angriffspunkt zur Vermeidung und Überwindung einer Bevacizumabresistenz.
Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor and third leading cause of cancer-related death worldwide. Most cases arise as a consequence of underlying liver disease, e.g. developed from chronic hepatitis B or C infectionsalcohol abuse or obesity, and are most often associated with liver cirrhosis. Hypoxiand the hypoxia inducible factors (HIF)-1α and -2α promote tumor progression of HCC, not only affecting tumor cell proliferation and invasion, but also angiogenesis and lymphangiogenesis and thus, increasing the risk of metastasis.
HCC is characterized as one of the most vascularized solid tumors. While HIF-1α and HIF-2α are frequently up-regulated in HCC only HIF-2α is correlated with high patientlethality. HIF-dependent regulation of HCC angiogenesis is controversially discussed.VEGFA, for example, as the most prominent factor inducing tumor angiogenesis represents not only a HIF-1 target, but also a HIF-2 target gene in HCC. This questions whether both isoforms have overlapping functions in regulating the angiogenic switch in HCC.
Besides angiogenesis also tumor-associated lymphangiogenesis significantly influences patient survival in HCC. Lymphatic spread is an important clinical determinant for the prognosis of HCC, but little is known how lymphangiogenesis is controlled in this context. To date, mainly HIF-1α was positively correlated with olymphatic invasion and metastasis in HCC, while a defined role of HIF-2α is missing. Thus, although HIF-1α and HIF-2α are structurally alike and regulate overlapping but not identical sets of target genes, they promote highly divergent outcomes in cancer progression and may even have counteracting roles. The aim of my work was to characterize the specific role of HIF-1α and HIF-2α in the angiogenic switch and lymphangiogenesis induction during HCC development.
Therefore, I created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids and embryonic bodies derived from embryonic mouse stem cells as an in vitro tumor model mimicking the cancer microenvironment to analyze which HIF isoform has key regulatory functions in HCC (lymph)angiogenesis. In cocultures with a HIF-2α knockdown angiogenesis was attenuated but lymphangiogenesis increased, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1)and insulin-like growth factor binding protein 1 (IGFBP1) as HIF-2 target genes.However, prominent angiogenic and lymphangiogenic factors such as VEGFs, PDGFB, ANG and their receptors were not regulated in a HIF-dependent manner. As PAI-1 was linked to angiogenesis in literature and IGF-signaling, which is negatively regulated by IGFBP-1, was correlated with lymphangiogenesis, I decided to investigate their HIF-2α-dependent influence on HCC (lymph)angiogenesis. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis in PAI-1k/d cocultures similar to the HIF-2α k/d phenotype. PAI-1 as the potent inhibitor of tPA and uPA, both inducing the conversion of plasminogen to plasmin, also inhibits plasmin directly. Therefore, I assumed an increase of plasmin in HIF-2α k/d and PAI-1 k/d cocultures as a result of the reduced PAI-1 levels. Blocking plasmin with aprotinin in HIF-2α k/d cocultures restored angioge nesis, suggesting that HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. In further experiments I could exclude PAI-1 to reduce angiogenesis by inducing plasmin-mediated apoptosis of differentiating stem cells in PAI-1 k/d and HIF-2α k/d cocultures, but demonstrated an increase of VEGFA165 degradation in these cocultures, suggesting plasmin-catalyzed proteolysis of VEGF as an additional layer of regulation required to explain the angiogenic phenotype. Besides the pivotal role of PAI-1 in angiogenesis I also investigated its potentialinfluence in lymphangiogenesis. Indeed, the knockdown of PAI-1 reduced lymphaticstructures and implied an important but opposing role in lymphangiogenesis comparedto induced lymphangiogenesis in HIF-2α k/d cocultures. However, blocking plasmin again with aprotinin in HIF-2α k/d cocultures restored lymphangiogenesis to the level of control virus, which indicates a divergent lymphangiogenic role of plasmin in PAI-1 k/d and HIF-2α k/d cocultures, possibly because of other essential pathways masking the lymphangiogenic effects of PAI-1 in HIF-2α k/d cocultures.
HIF-2α resulting in reduced IGFBP1 expression induced the differentiation of stem cells toward a lymphatic cell type and significantly enhanced the assembly of human dermal lymphatic endothelial cells into tubes. These data point the first time to an important impact of HIF-2 in the regulatin of lymphangiogenesis in vitro by inducing IGFBP1 and thus, scavenging IGF-1. Furthermore, matrigel plug assays to investigate the in vivorelevance of these observations confirmed HIF-2α as a crucial factor in the regulation of lymphangiogenesis in vivo
In conclusion, this work provides evidence that HIF-2α is a key regulator of angiogenesis and lymphangiogenesis in HCC by regulating PAI-1 and IGFBP1. HIF-2α positively influences the angiogenic switch via PAI-1 and negatively affects lymphangiogenesis via IGFBP1 expression. Targeting HIF-2α in HCC to reduce tumor angiogenesis should be approached carefully, as it might be overcome by induced lymphangiogenesis and metastasis.
Um der Erkennung durch das körpereigene Immunsystem entkommen, weisen Tumore Modifikationen in ihrer Mikroumgebung auf. Zu diesen gehören u. a. veränderte Sauerstoffkonzentrationen im Tumorkern und die Freisetzung biochemischer Faktoren aus Tumorzellen, welche die Funktion von Tumor-assoziierten Phagozyten, wie z.B. Dendritischen Zellen (DC) beeinflussen. DC sind professionelle Antigen-präsentierende Zellen, die eine Spezialisierung in verschiedene funktionale Subtypen aufweisen. Myeloische DC (mDC) sind besonders effizient in Hinsicht auf die Präsentation von Antigenen, wohingegen plasmazytoide DC (pDC) regulatorisch auf das Immunsystem einwirken. Beide Subtypen spielen eine wichtige Rolle bei der Karzinogenese.
Während humane mDC, zur therapeutischen Verwendung, ex vivo aus Monozyten hergestellt werden können, war dies für humane pDC bisher nicht möglich. Ein war deshalb ein erstes Ziel dieser Arbeit, ein Protokoll zur Generierung humaner pDC aus humanen Monozyten zu entwickeln. Diese wurden mittels des Wachstumsfaktors Fms-related tyrosine kinase 3 ligand (Flt3-L) zu pDC-Äquivalenten differenziert, welche als monocyte-derived pDC (mo-pDC) bezeichnet wurden. In der Tat zeigten mo-pDC ein für humane pDC charakteristisches Oberflächenmarkerprofil und wiesen, im Vergleich zu mDC, eine geringe Kapazität zur Induktion der Proliferation autologer T Zellen und zur Phagozytose apoptotischer Zellen auf. Mo-pDC erwarben im Verlauf ihrer Differenzierung aus Monozyten eine kontinuierlich erhöhte Expression des pDC-spezifischen Transkriptionfaktors E2-2 und seiner spezifischen Zielgene. Der wichtigste funktionale Parameter von pDC ist die Produktion großer Mengen von Interferon-α (IFN-α). Mo-pDC sezernierten, nach vorheriger Aktivierung mit Tumornekrosefaktor-α (TNF-α) oder wenn zu ihrer Differenzierung neben Flt3-L auch Vitamin D3 oder all-trans-Retinolsäure verwendet wurde, ebenfalls große Mengen IFN-α. Wurden mo-pDC unter Hypoxie, einem prominenten Faktor der Tumormikroumgebung, generiert, so waren die Expression des spezifischen Transkriptionsfaktors E2-2 und die Freisetzung von IFN-α stark vermindert. Diese Daten zeigten zunächst, dass mo-pDC für das Studium von Differenzierung und Funktion humaner pDC eingesetzt werden können.
Weiterhin lieferten sie Hinweise auf eine veränderte Differenzierung humaner pDC unter Hypoxie. In einem nächsten Schritt wurde folglich untersucht, ob Hypoxie auch die Differenzierung von pDC aus deren physiologischen Vorläufern beeinflusst. Wurden Knochenmarkszellen der Maus mit Flt3-L unter Normoxie oder Hypoxie kultiviert, so war die Differenzierung zu pDC unter Hypoxie in der Tat unterdrückt. Dies war abhängig von der Hypoxie-induzierten Aktivität des Hypoxie-induzierten Faktors 1 (HIF-1), da die Flt3-Linduzierte Differenzierung von murinen Knochenmarkszellen, in denen die Expression von HIF-1 in pDC-Vorläuferzellen ausgeschaltet war, unter Hypoxie normal verlief.
Zusammenfassend kann also gesagt werden, dass Hypoxie, durch Aktivierung von HIF-1, Differenzierung und Funktion von pDC unterdrückt. Dieser Mechanismus könnte zu ihrer beschriebenen Dysfunktion in humanen Tumoren beitragen.
Neben Hypoxie sind viele andere Faktoren an der Immunsuppression in Tumoren beteiligt.
Eine Komponente der Mikroumgebung in Tumoren ist das Vorhandensein apoptotischer Tumorzellen. Apoptose von Tumorzellen findet, im Kontrast zur generellen Sicht von Tumoren als Apoptose-resistente Entitäten, auch in unbehandelten Tumoren im Überfluss statt. Apoptotische körpereigene Zellen unterdrücken unter physiologischen Bedingungen das Immunsystem. Deshalb könnte das Freisetzen von apoptotischem Material oder die Sekretion von Faktoren aus sterbenden Tumorzellen einen starken Einfluss auf die Funktion von Tumor-assoziierten DC und die damit verbundene Aktivierung von tumoriziden Lymphozyten haben. Eine diesbezügliche Studie war das zweite Ziel der vorliegenden Arbeit. Humane mDC wurden zu diesem Zweck mit Überständen lebender, apoptotischer oder nekrotischer humaner Brustkrebszellen aktiviert und anschließend mit autologen T Zellen ko-kultiviert. Danach wurde das zytotoxische Potential der ko-kultivierten T Zellen analysiert. Interessanterweise unterdrückte die Aktivierung mit Überständen apoptotischer Tumorzellen die DC-vermittelte Generierung tumorizider T Zellen durch die Ausprägung einer Population von regulatorischen T Zellen (Treg), die durch die gleichzeitige Expression der Oberflächenmoleküle CD39 und CD69 charakterisiert war. Die Ausprägung der CD39-und CD69-exprimierenden Treg Zell-Population war abhängig von der Freisetzung des bioaktiven Lipids Sphingosin-1-Phosphat (S1P) aus apoptotischen Zellen, welches durch den S1P-Rezeptor 4 zur Freisetzung des immunregulatorischen Zytokins IL-27 aus mDC führte.
Neutralisierung von IL-27 in AC-aktivierten Ko-Kulturen von mDC und T Zellen blockierte die Generierung von CD39- und CD69-exprimierenden Treg Zellen und resultierte folglich in der Aktivierung zytotoxischer T Zellen. Weiterhin war die Bildung von Adenosin in den Ko-Kulturen für die Unterdrückung zytotoxischer T Zellen vonnöten. Erste Experimente lieferten Hinweise auf eine direkte Interaktion von CD69- und CD39-exprimierenden Treg Zellen mit CD73-exprimierenden zytotoxischen T Zellen. CD39 und CD73 werden für die Bildung von Adenosin aus ATP benötigt, weswegen die Interaktion von Treg Zellen und zytotoxischen T Zellen die Adenosin-Produktion fördern könnte.
Zusammenfassend zeigen die hier präsentierten Befunde wie Faktoren der
Tumormikroumgebung die Funktion von humanen DC Subtypen beeinflussen können. Ein Verständnis der zugrundeliegenden Mechanismen kann wertvolle Informationen für die Wahl effektiver Immuntherapien oder Chemotherapien liefern und so die Therapie humaner Tumore unterstützen.
Recent data indicate that reactive oxygen species (ROS) are produced in the nociceptive system during persistent pain and contribute to pain sensitization. Aim of this study was to investigate potential antinociceptive effects of ROS scavengers in different animal models of pain. Intrathecal injection of ROS scavengers 1-Oxyl-2,2,6,6-tetramethyl -4-hydroxypiperidine (TEMPOL) or Phenyl-N-tert-butylnitrone (PBN) significantly inhibited formalin-induced nociceptive behavior in mice, suggesting that ROS released in the spinal cord are involved in nociceptive processing. Formalin-induced nociceptive behavior was also inhibited by intraperitoneal injection of a combination of vitamin C and vitamin E, but not of vitamin C or vitamin E alone. Moreover, the combination of vitamin C and E dose-dependently attenuated mechanical allodynia in the spared nerve injury (SNI) model of neuropathic pain. The SNI-induced mechanical allodynia was also reduced after intrathecal injection of the combination of vitamin C and E, and western blot analyses revealed that vitamin C and E treatment can ameliorate the activation of p38 MAPK in the spinal cord and in DRGs. These data suggest that a combination of vitamin C and E can inhibit the nociceptive behavior in animal models of pain, and points to a role of the spinal cord as an important area of ROS production during nociceptive processing.