Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Adeno-associated virus vector (1)
- Bispecific (1)
- Designed ankyrin repeat protein (1)
- Gentherapie (1)
- Impfung (1)
- Maus-Leukämie-Virus (1)
- Prion (1)
- Prionprotein (1)
- Retrovirus (1)
- Virus-ähnliche Partikel (1)
Institute
Molecular concepts for pandemic viruses : membrane fusion assays and targeting of reservoir cells
(2024)
In den letzten Jahren haben verschiedene pandemische Viren zu beträchtlichen Krankheits- und Todesfällen geführt. Um dieser ständigen Bedrohung entgegenzuwirken, ist es wichtig diagnostische Testsysteme und Therapien anzupassen oder neu zu etablieren. Diese Arbeit konzentriert sich auf die pandemischen Viren SARS-CoV-2 und HIV.
Der Zelleintritt von SARS-CoV-2 wird durch das Spike-Protein (S) ausgelöst, welches die Fusion der Virushülle mit der zellulären Membran bewirkt. Erste Studien haben gezeigt, dass das S-Protein eine hohe Fusionsaktivität aufweist. Aus diesem Grund sollten in dieser Arbeit neue Fusionstests etabliert werden, um potenzielle Inhibitoren der Zellfusion zu evaluieren. Im ersten Teil dieser Thesis wird die Etablierung von quantitativen Tests zur Evaluierung der Zell-Zell und Partikel-Zell Fusionsaktivität, welche durch S bewirkt wird, demonstriert.
Trotz jahrelanger Forschung können HIV-Patienten nicht geheilt werden und Virusinfektionen treten weiterhin weltweit auf. Das größte Problem bei der Entwicklung eines Heilmittels ist die frühe Bildung von Reservoirzellen während einer Infektion. Um diese Reservoirzellen zu identifizieren, wurde der Oberflächenmarker CD32a vorgeschlagen. Die Nutzung von Cas9-Nukleasen zur Inaktivierung von HIV ist in vitro erfolgreich, aber der effiziente Transfer in Reservoirzellen bleibt weiterhin herausfordernd. Im zweiten Teil dieser Thesis werden Rezeptor-gerichtete Adeno-assoziierte Vektoren (AAVs) für die HIV-Gentherapie präsentiert, die CD4 und CD32a für den Zelleintritt nutzen.
Zur Charakterisierung der Fusionsaktivität von SARS-CoV-2 wurden drei quantitative Fusionstests etabliert, welche Partikel- und Zell-Zell Fusionen berücksichtigen. Für den Partikel-Zell Fusionstest wurden lentivirale Vektoren (LV) verwendet, welche das S-Protein auf ihrer Oberfläche präsentierten. Die Transduktionseffizienz von S-LV erreichte auf Zellen, die den SARS-CoV-2 Rezeptor ACE2 exprimieren, ein Signal-zu-Hintergrund Verhältnis von über 2000. Durch die Präsentation von S auf leeren LV-Partikeln konnte die Fusion von benachbarten Zellen detektiert und quantifiziert werden („fusion-from-without“ (FFWO)). Für die Quantifizierung wurde ein Reporter-Komplementationstest etabliert. Hierbei wurden die Alpha- und Omega-Fragmente der β-Galaktosidase getrennt in zwei Zielzellpopulationen exprimiert, die beide ACE2 exprimierten. Durch die Zugabe von S-Partikeln kam es zur Fusion der Zielzellen und zur Komplementation der Alpha- und Omega-Fragmente. Die resultierende β-Galaktosidase-Aktivität konnte anschließend quantifiziert werden. Unter optimalen Versuchsbedingungen erreichte dieser Assay ein Signal-zu-Hintergrund Verhältnis von 2,7 Größenordnungen. Anschließend wurde der Komplementationstest für die Messung der Zell-Zell Fusion verwendet. In diesem Test exprimierten Effektorzellen S und das Alpha-Fragment, Zielzellen ACE2 und das Omega-Fragment. Obwohl die S-Expression auf den Effektorzellen sehr gering war, konnte dennoch eine signifikante Fusion nachgewiesen werden. Auch hier konnte unter optimalen Versuchsbedingungen ein hohes Signal-zu-Hintergrund Verhältnis von 2,9 Größenordnungen festgestellt werden. Nach der Etablierung der Testsysteme wurden S-spezifische Inhibitoren verwendet. Im Gegensatz zu Partikel-Zell-Fusionen wurde die Fusionsaktivität von S auf Zellen nur mäßig inhibiert. Dies deutet daraufhin, dass das Eindringen von Partikeln in Zellen wirksamer verhindert werden kann als die Ausbreitung durch Zell-Zell Fusionen.
Um AAVs spezifisch an HIV-Reservoirzellen zu binden, wurden CD4- und CD32a-spezifische DARPins („designed ankyrin repeat proteins“) in Rezeptor-verblindete AAVs eingebaut. Ebenso wurden beide DARPins gleichzeitig auf dem Kapsid präsentiert, um eine höhere Spezifität für doppelt-positive Zellen zu erreichen. Wenn diese Partikel einer Zellmischung aus CD4-, CD32a- und CD4/CD32a-exprimierenden Zellen zugesetzt wurden, transduzierten die bispezifischen Vektoren vorzugsweise doppelt-positive Zellen. Diese Präferenz war am höchsten in Zellkulturen, die stark unterrepräsentierte CD4/CD32a-exprimierende Zellen enthielten. Unter diesen Voraussetzungen erreichten bispezifische Vektoren eine bis zu 66-fach höhere Transduktionseffizienz auf CD4/CD32a-positive Zellen im Vergleich zu CD32a-exprimierenden Zellen. Darüber hinaus zeigten bispezifische AAV eine präferentielle Bindung und Transduktion von isolierten Primärzellen und Zellen in Vollblut. Selbst nach systemischer Injektion in humanisierte Mäuse wurden doppelt-positive Zellen effizienter von bispezifischen als von monospezifischen AAVs transduziert. Schließlich zeigten die generierten Vektoren, welche die Cas9 Nuklease transferierten, eine effiziente Inhibition der HIV-Replikation.
So far clinical human immunodeficiency virus (HIV) therapy is limited to non-curative treatments. However, as recently shown, alternative approaches such as HIV gene therapy have the potential to functionally cure the disease (e.g. the hematopoietic stem cell (HSC)-transplantation with a CCR5Δ32 homozygous transplant) (1). In contrast to the highly personalized medical treatment applied in the ‘Berlin case’, more broadly applicable approaches are currently under intensive investigation.
One example is the adeno-associated-virus (AAV)-mediated delivery of in vivo secreted antiviral entry inhibitors (iSAVE), the concept of which is based on the direct in vivo administration of a broadly applicable highly potent antiviral gene (here: a C46-derived entry inhibitory peptide interfering with HIV-1 membrane fusion). The AAV-based gene delivery is believed to overcome several limitations of gene therapeutic treatments based on ex vivo lentiviral trials in the past. It is (i) targeting differentiated HIV target cells (i.e. liver and differentiated lymphatic cells) reducing the risk of genotoxicity compared to stem cell-based trials, (ii) overcoming the limitation of a low number of genetically modifiable cells as in lentivirally based ex vivo transduction strategies (i.e. limited modifiable cell number due to culture conditions and lower vector titers) and (iii) using the safe AAV vector system, which has not been associated with major genotoxicity in men. (iv) Most importantly, the concept of secretable entry inhibitors does not require transduction of large amounts of cells due to the protective bystander effect. Thus, iSAVE might be a treatment principle for HIV infection that might be able to cure patients irrespective of their viral isolates or adherence.
Accordingly, the iSAVE concept could aim at two different sites in the patient for the production of antiviral transgenes, either the systemic production via suitable producer cells (e.g. hepatocytes) or the local production in the lymphatic system.
In a first approach, we are able to efficiently target hepatocytes using the natural AAV serotype 8 to express high plasma levels of secretable antiviral entry inhibitors in order to systemically suppress viral replication. In this setting we could show that iSAVE peptides are highly expressed in hepatocytes. However, plasma levels of iSAVE were insufficient when using a secretable peptide as sole antiviral transgene.
As a second treatment strategy, the iSAVE project aimed to deliver antiviral genes directly to the site of viral replication, the lymphatic system. Here, (i) a panel of naturally occurring AAV serotypes as well as (ii) AAV retargeting approaches were employed to design a highly efficient and selective AAV vector variant for gene delivery into the lymphatic system after intravenous vector administration.
In detail, (i) screening of the natural occurring serotypes revealed that the AAV serotype 1 (AAV-1) was best in targeting splenic tissue in two humanized mouse models, however at a very low level. After systemic AAV-1 vector administration neither transduction of human lymphocytes did occur nor was iSAVE expressed in the lymphatic system in a humanized mouse model.
(ii) In a second approach, we modified the well-characterized AAV-2 serotype in a tropism-defining region of its capsid gene by insertion of human peripheral blood lymphocytes (hPBL)-tropic peptide ligands. These in turn were selected by M13 in vivo phage display and by in vivo AAV peptide display. Selected variants were cloned and tested for hPBL transduction in vitro. Although the selected variants did not show increased expression efficacies compared to AAV-2 WT, it still might be possible that the selected variant are more specific for hPBLs as these conditions have not been tested.
As these selection processes required a humanized mouse model that comprises a functional lymphatic system, we established the previously described Trimera mouse model in our lab (2). We found that this mouse model could be further improved to allow engraftment of a lower number of gene-modified (gm) human T cells as in the classical Trimera model. These modified Trimera mice (mT3 mice) were conditioned by inclusion of cyclophosphamide (CTX) to the irradiation-conditioning scheme of the classical Trimera model.
Comparison of mT3 mice with established NSG and DKO mice in an adoptive gm T cell transplantation setting revealed that NSG mice were the most robust model providing high reproducibility in human T cell engraftment. MT3 mice allowed a substantial, yet more variable engraftment of gm T cells. Besides comparing engraftment kinetics, the graft quality (i.e. clonality and cytokine milieu) was analyzed. Again, NSG mice showed the most balanced homeostatic repopulation three weeks after transplantation, while mT3 mice were prone to Th1-type, oligloclonal repopulation, indicating an early onset of xenograft-versus-host disease. Finally, the lymphatic infiltration was analyzed. As expected, mT3 mice provided the most intact lymphatic structures, although the normal lymphatic morphology was not restored.
In conclusion, it was demonstrated in this work that AAV-mediated iSAVE gene therapy faces specific limitations depending on the respective targeting approach
In the systemic approach, iSAVE peptides have to be further optimized in terms of transgene design itself, as high-level accumulation in murine plasma was not feasible for the short iSAVE precursor. In the local, lymphatic targeting approach, AAV-mediated expression faces its limits in targeting specificity but foremost expression efficacy. Thus, the AAV vector itself needs further optimization for sufficient local iSAVE expression levels. Independently from the AAV-related approaches, a novel humanized mouse model was established in this work. Despite drawbacks regarding repopulation variability and set-up complexity, the novel mT3 mouse model comprised improved secondary lymphatic structures for adoptive T cell transfer, which might be an interesting platform for studies in lymphoma or leukemia therapy.
Life-attenuated measles virus (MV) vaccines have revealed their capacity to routinely induce life-long immunity against MV after just a single or two low-dose injections. Moreover, MV vaccines have been shown to be extensively safe and well tolerated, in general. Thus, MV is a prime candidate for a recombinant vaccine platform to protect also against other pathogens after vaccination. For this purpose, foreign genes can be inserted into additional transcription units (ATU) in recombinant MV genomes so that the encoded foreign proteins are co-expressed with MV proteins in infected cells. These so-called bivalent MV should protect against infection by MV or the pathogen, which the encoded foreign protein had been derived from. Bivalent MVs have already been shown to be effective vaccines against e.g. dengue virus or hepatitis B virus infections by inducing humoral and sometimes also cellular immune responses. In most of these studies, soluble or soluble versions of the pathogens' antigens were used for generation of bivalent MVs.
We hypothesized that the form of the antigen expressed by bivalent MVs is crucial for the potency and constitution of the induced immune responses. Therefore, three different forms of an antigen expressed by bivalent MVs were analyzed, here. The model antigen chosen for this purpose has been the envelope protein (Env) of SIVsmmPBj1.9. In its natural mature form, Env is composed of the surface unit gp120 and the transmembrane unit gp41, which stay non-covalently linked after proteolytic processing of the common precursor protein gp160. However, gp120 can be shed by infected cells or virus particles. Therefore, natural gp160 antigen was used as shedding form. Furthermore, stabilized covalently-linked gp160 variants and soluble gp140 variants were used in this thesis. These different antigen forms were inserted either behind the P or behind the H expression cassettes into the MV genome. The respective bivalent MVs were rescued and characterized. Expression of SIVsmmPBj1.9 Env variants by the bivalent MVs was confirmed by immuno blot and in situ immunoperoxidase assays. Replication curves of bivalent MV showed that growth of MVs expressing the different Env variants was slightly delayed by approximately 24 h compared to control viruses.
For immunization of transgenic, MV-susceptible IFNAR-/--CD46Ge mice, which are the current standard to analyze MV vaccines in a small animal model, an optimal dose of 1x105 TCID50 was determined. For the evaluation of humoral immune responses in transgenic mice, two ELISA systems for the detection of total α-MV and α-SIV antibodies and neutralization assays for detection of neutralizing antibodies against MV and SIV in sera of immunized mice were established. Mice immunized with any of the bivalent MVs showed significant humoral immune responses against MV comparable to those elicited by the parental MV vaccine strain without further genetic modifications. Mice immunized with MVvac2-gp140(P) expressing the soluble gp140 variant revealed highest α-SIV titers with a maximal OD of up to 0.4. Second highest levels of α-SIV antibodies were detected in mice that were immunized with the shedding variants or soluble Env in other positions. MVs expressing the stabilized variants induced only very low α-SIV antibody titers. Neutralizing antibodies directed against SIV could be detected in sera of mice immunized with MVs expressing the soluble or shedding variants, but not in sera of mice immunized with MVs expressing the stabilized variants. In sera of control mice immunized with PBS no antibodies could be detected, as expected. Thus, soluble and shedding antigens induced humoral immune responses, whereas stabilized antigens induced only weak humoral immune responses but no neutralizing antibodies. Analysis of cellular immune responses is still ongoing.
Besides Env, further SIV antigens could be tested for their potency to induce humoral as well as cellular immune responses.
Besides being used as a vaccine platform, recombinant MVs are evaluated as future agent for cancer therapy due to their significant inherent tumor-lytic, so-called oncolytic activity. Currently, the anti-tumoral activity of MV is analyzed in clinical phase I trials. MV strains with high fusion activity are used as oncolytic agents. The fusion protein F of MV strain NSe is highly fusogenic, in contrast to e.g. F of MVwt323, a clone of the pathogenic strain IC-B. Sequence analysis of these two proteins identified one coding nucleotide difference at aa 94 in the F2 domain: a valine (V) in FNSe and a methionine (M) in Fwt323. To evaluate impact of this difference, residues at aa 94 were exchanged. After transient-transfection of MV F and H expression plasmids in receptor-positive cells, V94 in the F2 subunit of FNSe or Fwt323 led to about 6-fold higher fusion activity compared to F proteins with M94. The co-expressed H protein (HNSe or Hwt323) did not influence fusion activity, indicating that the receptor (CD46 or SLAM) bound by H does not quantitatively affect the F proteins' activation. Analysis of F and H showed that formation and transport of MV glycoprotein complexes are not altered by substitution in aa 94 of FNSe or Fwt323.
Furthermore, recombinant MVNSe, MVNSe-F-M94, MVwt323, or MVwt323-F-V94 were rescued. Viral replication revealed slightly higher titers for recombinant MVs expressing M94 in F after 96 h of replication, compared to MVs expressing V94. MVs expressing V94 in F2 showed 2.5-fold higher fusion activity on CD46- and SLAM-positive Vero-hSLAM cells and 2-fold higher fusion activity on B95a cells expressing only SLAM compared to MVs expressing F with M94. Fusion activity of recombinant MVs can thus be modulated by substituting a single aa. V94 in the F protein results in highly fusion active MVs with possibly increased direct cytotoxicity in infected tumors, whereas M94 in F could be associated with decreased fusion activity for therapies, where higher virus titers are required.
Prion diseases, also called transmissible spongiform encephalopathies, are a group of fatal neurodegenerative conditions that affect humans and a wide variety of animals. To date there is no therapeutic or prophylactic approach against prion diseases available. The causative infectious agent is the prion, also termed PrPSc, which is a pathological conformer of a cellular protein named prion protein PrPc. Prions are thought to multiply upon conversion of PrPc to PrPSc in a self-propagating manner. Immunotherapeutic strategies directed against PrPc represent a possible approach in preventing or curing prion diseases. Accordingly, it was already shown in animal models, that passive immunization delays the onset of prion diseases. The present thesis aimed at the development of a candidate vaccine towards the active immunization against prion diseases, an immune response, which has to be accompanied by the circumvention of host tolerance to the self-antigen PrPc. The vaccine development was approached using virus-like particles (retroparticles) derived from either the murine leukemia (MLV) or the human immunodeficiency virus (HIV). The display of PrP on the surface of such particles was addressed for both the cellular and the pathogenic form of PrP. The display of PrPc was achieved by either fusion to the transmembrane domain of the platelet derived growth factor receptor (PDGFR) or to the N-terminal part of the viral envelope protein (Env). In both cases, the corresponding PrPD- and PrPE-retroparticles were successfully produced and analyzed via immune fluorescence, Western Blot analysis, immunogold electron microscopy as well as by ELISA methods. Both, PrPD- and PrPE-retroparticles showed effective incorporation of N-terminally truncated forms of PrPc but not for the complete protein. PrPc at this revealed the typical glycosylation pattern, which was specifically removed by a glycosidase enzyme. Upon display of PrPc on retroparticles the protein remained detectable by PrP-specific antibodies under native conditions. Electron microscopy analysis of PrPc-variants revealed no alteration of the characteristic retroviral morphology of the generated particles. MLV-derived PrPD-retroparticles were successfully used in immunization studies. Contrary to approaches using bacterially expressed PrPc, the immunization of mice resulted in a specific antibody response. The display of the pathogenic isoform was aimed by two different strategies. The first one was directed at the conversion of the proteinase K (PK) sensitive from of PrP on the surface of PrPD-retroparticles into the PK resistant form. Albeit specific adaption of the PK digestion assay detecting resistant PrP, no PrP conversion was observed for PrPD-retroparticles. The second approach utilized a replication competent variant of the ecotropic MLV displaying PrPc on the viral Env protein. This MLV variant was stable in cell culture for six passages but did not replicate on scrapie-infected, PrPSc-propagating neuroblastoma cells. Thus, besides PrPc-displaying virus-like particles a replication competent MLV variant was obtained, which stably incorporated PrPc at the N-terminus of the viral Env protein. The incorporation of the cell-surface located PrPc into particles was expected from previously obtained data on protein display in the context of retrovirus-derived particles. Thus, the lack of incorporation observed for the complete PrPc sequence was rather unexpected and was found to be inhibited at both, fusion to PDGFR and the viral Env. In contrast to N-terminally truncated PrPc, the complete PrPc was shown to exhibit increased cell surface internalization rates and half-life times eventually contributing to the observed results. The PrP-vaccination approach described in this work represents the first successful system inducing PrP-specific antibody responses against the prion protein in wt mice. Explanations at this are based on the induction of specific T cell help or effects of the innate immunity, respectively. MLV-and HIV-derived particles bearing the PrP-coding sequence or being replication competent variants generated during this thesis might help to further improve the PrP-specific immune response.
The display of foreign polypeptides and proteins on the surface of viruses or cells provides an important tool for the engineering of biomolecules and the analysis of their interactions with binding partners. The most extensively used display platform is the coat protein of the filamentous bacteriophage (Smith, 1985). Phage display libraries have often been selected for polypeptides, e.g. single chain (sc) antibodies that bind to a protein of interest, but in vivo selection could only be demonstrated for peptides so far. An alternative display platform is the retrovirus murine leukemia virus (MLV). Here, polypeptides are displayed at the N-terminus of the viral envelope glycoprotein. Proof of principle for this platform was demonstrated for protease substrate libraries, which can be selected through coupling proteolytic activation with viral infectivity (Buchholz et al., 1998). Selection of the library CX4A on living cells resulted in viruses with more than three orders of magnitude improved spreading efficiency through tumor cells (Hartl et al., 2005). Also scAb libraries have recently been displayed and selected using retroviruses (Urban et al., 2005). The library scFvlibxMo displays the repertoire of phage display preselected sc antibodies for laminin-1 binding. The retrovirus based selection process resulted in laminin-specific sc antibodies with improved expression levels in mammalian cells.
This thesis describes the in vivo (i.e. in mouse tumor models) selection of the C-X4-A and scFvlibxMo for tumor homing upon systemic delivery.
For selection of the protease substrate library C-X4-A a subcutaneous tumor was induced in SCID mice followed by three systemic injections of the library. The selection process was monitored over a period of 34 days. After the incubation period mice were sacrificed and virus load in organs and tumor determined. PCR analysis after 34 days showed that virus from the library had preferentially infected the tumor. Sequence analysis showed the selection of protease substrates with the most prominent one with a frequency of over 65%. The four most prominent protease substrate variants where reconstituted into the original viral backbone for further investigation (C-SK-A, C-HI-A, C-HM-A and C-HS-A). Interestingly, these viruses exhibited a reduced spreading capacity in vitro on HT1080 cells as compared to the C-AK-A virus, which had previously been selected on HT1080 cells. When assayed for tumor homing, however, viruses C-HI-A and C-HS-A had clearly improved in comparison to C-AK-A. Tumor tissue had been infected at rates of over 55% while virus load of extratumoral organs was very low (infection rates <0.7 for C-HS-A and <0.02 for C-HI-A). Tumor targeting capacity had thus been improved over 10-fold by the in vivo selection of the C-X4-A library.
The experimental set up for the in vivo selection of the scFvlibxMo library was performed according to that of the C-X4-A library. Fingerprint analysis of the selected viruses that infected tumor tissue resulted in the identification of seven antibody variants showing unique CDR3 sequences. Two prominent clones (M49T-A and M49T-B) were cloned back into the MoMLV genome for further analysis of the reconstituted viruses. While variant B bound laminin-1 efficiently, variant A was unable to do so, although it was selected at highest frequency (76%). Both reconstituted viruses were equally well infectious and spread through HT1080rec1 cells at a similar efficiency as MoMLV. In an in vivo competition experiment the selected viruses clearly out-competed a laminin-1 binding reference virus L36xMo for tumor homing. To understand the molecular driving forces behind the in vivo selection process the epitope of the selected scFv M49T-A was identified using a phage peptide library approach. In silico analysis led to the identification of a small group of possible antigens, including tenascin, fibronectin and collagen.
The data described in this thesis demonstrate that the retrovirus display platform is capable of allowing the in vivo selection of protease substrates and scFvs. Notably, the replication competence of the system introduced an additional level of complexity to the library. The performed in vivo selections significantly enhanced tumor tropism. Selective infection of tumor cells combined with transfer of anti-tumoral genes is an attractive strategy for cancer therapy being in focus of current research. The viruses selected in this thesis build prime candidates for targeted retrovirus based tumor therapy.
Durch RNAinterferenz (RNAi) läßt sich die Expression eines beliebigen Gens spezifisch unterdrücken. Dafür müssen in das Zytoplasma kurze, doppelsträngige RNA Moleküle (siRNA bzw. shRNA) eingebracht werden, die teilweise komplementäre Sequenzen zu dem Zielgen aufweisen. Um siRNAs mit einer hohen Effizienz und Kopienzahl in die Zielzelle einzubringen, wurden Transfersysteme unterschiedlicher Art entwickelt. Nicht-virale Transfersysteme können nur einen transienten Effekt auslösen - ein Umstand, der für Langzeitstudien eine mehrfache Transfektion bedingt. Zur Lösung dieses Problems wurden retrovirale Vektorsysteme entwickelt, die durch Integration der shRNA-Expressionskassette in das zelluläre Genom eine stabile Unterdrückung eines Zielgens erreichen können. Insbesondere für präklinische Studien in vivo ist jedoch ein System mit erhöhter Transferrate wünschenswert, um in möglichst vielen Zielzellen einen RNAi-Effekt zu bewirken. Sliva et al. konnten zeigen, dass das Murine Leukämie Virus (MLV) theoretisch diese Anforderung erfüllt. Dafür wurde eine shRNA-Expressionskassette in das Virusgenom eingefügt und in vitro ein RNAi-Effekt nachgewiesen. In der vorliegenden Arbeit wurde dieses System nun durch die Verwendung von microRNA-adaptierten shRNAs (shRNAmir) verbessert. In mehreren Publikationen wurde bestätigt, dass shRNAs, die endogenen microRNAs nachempfunden sind, eine höhere Effizienz und niedrigere Toxizität aufweisen. Zunächst wurde die für die genetische Stabilität optimale Orientierung der shRNAmir-Expressionskassette bestimmt. Das Konstrukt in reverser Orientierung wies eine Deletion in der shRNAmir Promotersequenz auf, die wahrscheinlich durch Interferenz mit dem 5’LTR Promoter entstanden ist. Mit dem genetisch stabilen Viruskonstrukt wurden Experimente zur Reduktion der Expression von Markergenen durchgeführt, um die Effizienz der RNAi-Aktivität leicht zu quantifizieren. Dafür wurden humane Fibrosarkom (HT1080) Zellen infiziert, die eGFP oder Luziferase stabil exprimieren.
Mit eGFP- und Luziferase-spezifischen shRNAmir-Expressionskassetten konnte nach Infektion eine Herunterregulation von eGFP auf etwa 20 % und für Luziferase auf unter 10% beobachtet werden. Das Kontrollvirus, das eine unspezifische shRNAmir kodiert, hatte keinen Einfluss auf die Expression beider Markerproteine. Die Kinetik mit der die Markerproteine herrunterreguliert wurden, war abhängig von der Virusdosis. Die Virusdosis hatte aber keinen Einfluß auf die Stärke des RNAi-Effekts, der nach Infektion aller Zellen festgestellt werden konnte. Dieses Ergebnis entspricht der Erwartung an ein replikatives Transfersystems, das je nach applizierter Virusdosis unterschiedlich schnell RNAi in der Zellkultur ausbreitet und induziert. Die Anwendbarkeit dieses RNAi-Transfersystems auch für endogene Gene wurde mit MMP14-spezifischen shRNAmirs gezeigt. Nach Infektion von HT1080 Zellen mit den entsprechenden Viren in HT1080 Zellen konnte eine verringerte Menge an MMP14 mRNA und Protein nachgewiesen werden. Dies konnte funktionell durch eine verringerte Menge an intermediärem MMP2 und durch eine reduzierte Invasivität bestätigt werden. Zudem war die Fähigkeit dieser Zellen subkutane Tumore zu bilden stark eingeschränkt.
Um die Anwendbarkeit dieses Systems für in vivo Applikationen zu zeigen, wurde in Mäuse, die Luziferase-exprimierenden Tumoren trugen, MLV-shLuc oder das Kontrollvirus systemisch appliziert. 21 Tage nach Virusgabe konnte in den Tumoren von MLV-shLuc infizierten Mäusen eine Abnahme der Luziferaseaktivität auf 15 % nachgewiesen werden. Auch in Mäusen, die systemisch applizierte Tumorzellen erhielten, konnte eine Tendenz von RNAi-vermittelter Luziferase-Reduktion beobachtet werden.
Damit wurde in dieser Arbeit ein neuartiges RNAi-Transfersystem geschaffen, das in der Lage ist, auch in vivo einen starken und lang andauernden RNAi-Effekt auszulösen. Die Einzigartigkeit besteht in der Kombination von shRNAmir und Replikations-kompetenten Retroviren. Dadurch konnte eine erweiterte Transferrate von shRNAmir in Tumorzellen erreicht werden, so dass nun Genfunktionsstudien mit sehr hoher Aussagekraft möglich sind.
Der derzeitige Stand der Gentherapie bedarf der Entwicklung neuer Systeme zur Selektion bislang unbekannter Proteine und zur Verbesserung der Gentransfereffizienz viraler Vektorsysteme. Bisher verwendete Systeme wie Phagen display bergen erhebliche Nachteile, die alle auf die Verwendung von Prokaryonten zurückzuführen sind. Deswegen wurde in der vorliegenden Arbeit ein System entwickelt, welches eine Selektion und Produktion von Proteinen im stets eukaryonten Kontext ermöglicht. Dazu wurde ein ein replikationskompetenter retroviraler Vektor entwickelt durch den eine erhebliche Steigerung der Gentransfereffizienz möglich ist. Beide Teilaspekte meiner Arbeit beruhen auf Modifikationen unterschiedlicher Stämme des Maus Leukämie Virus (MLV). Zur Selektion von Proteinen im eukaryonten Kontext wurde erstmalig eine retrovirale display Bibliothek etabliert, wobei ecotropes MLV varible Antikörper-Fragmente (scFv´s) auf der Oberfläche präsentiert. Eine Modellselektion mit dem Antigen Laminin, simuliert durch das Mischen von zwei erstellten Virusvarianten (7A5 Xa Mo/ L36 Xa Mo) in unterschiedlichen Konzentrationen, konnte die Selektion der Laminin-bindenen Variante L36 Xa Mo aus einem Überschuß von 10 hoch -4 nicht bindender 7A5 Xa Mo zeigen. Die Anreicherung der bindenden L36 Xa Mo Variante konnte ebenfalls aus dem Kontext einer erstellten retroviralen alphaHUVEC Bibliothek erzielt werden. Die Anwendbarkeit des Systems wurde durch diese Modellselektionen sowie durch die Selektion der alphaHUVEC Bibliothek auf VEGFR-1 als Antigen demonstriert. Derart selektionierte Proteine konnten im nächsten Schritt, unter Verwendung einer Furinspaltstelle im Hüllprotein des amphotropen MLV, in verschiedenen Zelllinien produziert werden. Gezeigt werden konnte eine effiziente Produktion und Sezernierung der verwendeten scFv´s bis zu einer Konzentration von 6µg/ml im Zellkulturüberstand, wobei der Tropismus des amphotropen MLVs nicht beeinflußt wurde. Die biologische Aktivität derart hergestellter Proteine, konnte mittels FACS und ELISA nachgewiesen werden. Eine Abtrennung von den viralen Bestandteilen kann durch Filtration mit molekularer Ausschlußgrenze erzielt werden. Besonders hervorzuheben ist die genomische Stabilität derart mordifizierter Viren. Trotz des zusätzlichen Leserahmens war das auf die beschriebene Weise modifizierte MLV über 12 Infektionszyklen genetisch stabil und gewährleistete so erstmalig eine stetige Produktion der gewünschten Proteine. Die erfolgreiche Anwendung dieses Vektorsystems zur Tumortherapie erwies sich bereits in weiterführenden Arbeiten.