Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Homeostasis (1)
- Learning (1)
- Neural Networks (1)
- Plasticity (1)
Institute
- Physik (3)
Different approaches are possible when it comes to modeling the brain. Given its biological nature, models can be constructed out of the chemical and biological building blocks known to be at play in the brain, formulating a given mechanism in terms of the basic interactions underlying it. On the other hand, the functions of the brain can be described in a more general or macroscopic way, in terms of desirable goals. This goals may include reducing metabolic costs, being stable or robust, or being efficient in computational terms. Synaptic plasticity, that is, the study of how the connections between neurons evolve in time, is no exception to this. In the following work we formulate (and study the properties of) synaptic plasticity models, employing two complementary approaches: a top-down approach, deriving a learning rule from a guiding principle for rate-encoding neurons, and a bottom-up approach, where a simple yet biophysical rule for time-dependent plasticity is constructed.
We begin this thesis with a general overview, in Chapter 1, of the properties of neurons and their connections, clarifying notations and the jargon of the field. These will be our building blocks and will also determine the constrains we need to respect when formulating our models. We will discuss the present challenges of computational neuroscience, as well as the role of physicists in this line of research.
In Chapters 2 and 3, we develop and study a local online Hebbian self-limiting synaptic plasticity rule, employing the mentioned top-down approach. Firstly, in Chapter 2 we formulate the stationarity principle of statistical learning, in terms of the Fisher information of the output probability distribution with respect to the synaptic weights. To ensure that the learning rules are formulated in terms of information locally available to a synapse, we employ the local synapse extension to the one dimensional Fisher information. Once the objective function has been defined, we derive an online synaptic plasticity rule via stochastic gradient descent.
In order to test the computational capabilities of a neuron evolving according to this rule (combined with a preexisting intrinsic plasticity rule), we perform a series of numerical experiments, training the neuron with different input distributions.
We observe that, for input distributions closely resembling a multivariate normal distribution, the neuron robustly selects the first principal component of the distribution, showing otherwise a strong preference for directions of large negative excess kurtosis.
In Chapter 3 we study the robustness of the learning rule derived in Chapter 2 with respect to variations in the neural model’s transfer function. In particular, we find an equivalent cubic form of the rule which, given its functional simplicity, permits to analytically compute the attractors (stationary solutions) of the learning procedure, as a function of the statistical moments of the input distribution. In this way, we manage to explain the numerical findings of Chapter 2 analytically, and formulate a prediction: if the neuron is selective to non-Gaussian input directions, it should be suitable for applications to independent component analysis. We close this section by showing how indeed, a neuron operating under these rules can learn the independent components in the non-linear bars problem.
A simple biophysical model for time-dependent plasticity (STDP) is developed in Chapter 4. The model is formulated in terms of two decaying traces present in the synapse, namely the fraction of activated NMDA receptors and the calcium concentration, which serve as clocks, measuring the time of pre- and postsynaptic spikes. While constructed in terms of the key biological elements thought to be involved in the process, we have kept the functional dependencies of the variables as simple as possible to allow for analytic tractability. Despite its simplicity, the model is able to reproduce several experimental results, including the typical pairwise STDP curve and triplet results, in both hippocampal culture and layer 2/3 cortical neurons. Thanks to the model’s functional simplicity, we are able to compute these results analytically, establishing a direct and transparent connection between the model’s internal parameters and the qualitative features of the results.
Finally, in order to make a connection to synaptic plasticity for rate encoding neural models, we train the synapse with Poisson uncorrelated pre- and postsynaptic spike trains and compute the expected synaptic weight change as a function of the frequencies of these spike trains. Interestingly, a Hebbian (in the rate encoding sense of the word) BCM-like behavior is recovered in this setup for hippocampal neurons, while dominating depression seems unavoidable for parameter configurations reproducing experimentally observed triplet nonlinearities in layer 2/3 cortical neurons. Potentiation can however be recovered in these neurons when correlations between pre- and postsynaptic spikes are present. We end this chapter by discussing the relation to existing experimental results, leaving open questions and predictions for future experiments.
A set of summary cards of the models employed, together with listings of the relevant variables and parameters, are presented at the end of the thesis, for easier access and permanent reference for the reader.
Die vorgelegte Dissertation behandelt den Einfluss homöostatischer Adaption auf die Informationsverarbeitung und Lenrprozesse in neuronalen Systemen. Der Begriff Homöostase bezeichnet die Fähigkeit eines dynamischen Systems, bestimmte interne Variablen durch Regelmechanismen in einem dynamischen Gleichgewicht zu halten. Ein klassisches Beispiel neuronaler Homöostase ist die dynamische Skalierung synaptischer Gewichte, wodurch die Aktivität bzw. Feuerrate einzelner Neuronen im zeitlichen Mittel konstant bleibt. Bei den von uns betrachteten Modellen handelt es sich um eine duale Form der neuronalen Homöostase. Das bedeutet, dass für jedes Neuron zwei interne Parameter an eine intrinsische Variable wie die bereits erwähnte mittlere Aktivität oder das Membranpotential gekoppelt werden. Eine Besonderheit dieser dualen Adaption ist die Tatsache, dass dadurch nicht nur das zeitliche Mittel einer dynamischen Variable, sondern auch die zeitliche Varianz, also die stärke der Fluktuation um den Mittelwert, kontrolliert werden kann. In dieser Arbeit werden zwei neuronale Systeme betrachtet, in der dieser Aspekt zum Tragen kommt.
Das erste behandelte System ist ein sogennantes Echo State Netzwerk, welches unter die Kategorie der rekurrenten Netzwerke fällt. Rekurrente neuronale Netzwerke haben im Allgemeinen die Eigenschaft, dass eine Population von Neuronen synaptische Verbindungen besitzt, die auf die Population selbst projizieren, also rückkoppeln. Rekurrente Netzwerke können somit als autonome (falls keinerlei zusätzliche externe synaptische Verbindungen existieren) oder nicht-autonome dynamische Systeme betrachtet werden, die durch die genannte Rückkopplung komplexe dynamische Eigenschaften besitzen. Abhängig von der Struktur der rekurrenten synaptischen Verbindungen kann beispielsweise Information aus externem Input über einen längeren Zeitraum gespeichert werden. Ebenso können dynamische Fixpunkte oder auch periodische bzw. chaotische Aktivitätsmuster entstehen. Diese dynamische Vielseitigkeit findet sich auch in den im Gehirn omnipräsenten rekurrenten Netzwerken und dient hier z.B. der Verarbeitung sensorischer Information oder der Ausführung von motorischen Bewegungsmustern. Das von uns betrachtete Echo State Netzwerk zeichnet sich dadurch aus, dass rekurrente synaptische Verbindungen zufällig generiert werden und keiner synaptischen Plastizität unterliegen. Verändert werden im Zuge eines Lernprozesses nur Verbindungen, die von diesem sogenannten dynamischen Reservoir auf Output-Neuronen projizieren. Trotz der Tatsache, dass dies den Lernvorgang stark vereinfacht, ist die Fähigkeit des Reservoirs zur Verarbeitung zeitabhängiger Inputs stark von der statistischen Verteilung abhängig, die für die Generierung der rekurrenten Verbindungen verwendet wird. Insbesondere die Varianz bzw. die Skalierung der Gewichte ist hierbei von großer Bedeutung. Ein Maß für diese Skalierung ist der Spektralradius der rekurrenten Gewichtsmatrix.
In vorangegangenen theoretischen Arbeiten wurde gezeigt, dass für das betrachtete System ein Spektralradius nahe unterhalb des kritischen Wertes von 1 zu einer guten Performance führt. Oberhalb dieses Wertes kommt es im autonomen Fall zu chaotischem dynamischen Verhalten, welches sich negativ auf die Informationsverarbeitung auswirkt. Der von uns eingeführte und als Flow Control bezeichnete duale Adaptionsmechanismus zielt nun darauf ab, über eine Skalierung der synaptischen Gewichte den Spektralradius auf den gewünschten Zielwert zu regulieren. Essentiell ist hierbei, dass die verwendete Adaptionsdynamik im Sinne der biologischen Plausibilität nur auf lokale Größen zurückgreift. Dies geschieht im Falle von Flow Control über eine Regulation der im Membranpotential der Zelle auftretenden Fluktuationen. Bei der Evaluierung der Effektivität von Flow Control zeigte sich, dass der Spektralradius sehr präzise kontrolliert werden kann, falls die Aktivitäten der Neuronen in der rekurrenten Population nur schwach korreliert sind. Korrelationen können beispielsweise durch einen zwischen den Neuronen stark synchronisierten externen Input induziert werden, der sich dementsprechend negativ auf die Präzision des Adaptionsmechanismus auswirkt.
Beim Testen des Netzwerks in einem Lernszenario wirkte sich dieser Effekt aber nicht negativ auf die Performance aus: Die optimale Performance wurde unabhängig von der stärke des korrelierten Inputs für einen Spektralradius erreicht, der leicht unter dem kritischen Wert von 1 lag. Dies führt uns zu der Schlussfolgerung, dass Flow Control unabhängig von der Stärke der externen Stimulation in der Lage ist, rekurrente Netze in einen für die Informationsverarbeitung optimalen Arbeitsbereich einzuregeln.
Bei dem zweiten betrachteten Modell handelt es sich um ein Neuronenmodell mit zwei Kompartimenten, welche der spezifischen Anatomie von Pyramidenneuronen im Kortex nachempfunden ist. Während ein basales Kompartiment synaptischen Input zusammenfasst, der in Dendriten nahe des Zellkerns auftritt, repräsentiert das zweite apikale Kompartiment die im Kortex anzutreffende komplexe dendritische Baumstruktur. In früheren Experimenten konnte gezeigt werden, dass eine zeitlich korrelierte Stimulation sowohl im basalen als auch apikalen Kompartiment eine deutlich höhere neuronale Aktivität hervorrufen kann als durch Stimulation nur einer der beiden Kompartimente möglich ist. In unserem Modell können wir zeigen, dass dieser Effekt der Koinzidenz-Detektion es erlaubt, den Input im apikalen Kompartiment als Lernsignal für synaptische Plastizität im basalen Kompartiment zu nutzen. Duale Homöostase kommt auch hier zum Tragen, da diese in beiden Kompartimenten sicherstellt, dass sich der synaptische Input hinsichtlich des zeitlichen Mittels und der Varianz in einem für den Lernprozess benötigten Bereich befindet. Anhand eines Lernszenarios, das aus einer linearen binären Klassifikation besteht, können wir zeigen, dass sich das beschriebene Framework für biologisch plausibles überwachtes Lernen eignet.
Die beiden betrachteten Modelle zeigen beispielhaft die Relevanz dualer Homöostase im Hinblick auf zwei Aspekte. Das ist zum einen die Regulation rekurrenter neuronaler Netze in einen dynamischen Zustand, der für Informationsverarbeitung optimal ist. Der Effekt der Adaption zeigt sich hier also im Verhalten des Netzwerks als Ganzes. Zum anderen kann duale Homöostase, wie im zweiten Modell gezeigt, auch für Plastizitäts- und Lernprozesse auf der Ebene einzelner Neuronen von Bedeutung sein. Während neuronale Homöostase im klassischen Sinn darauf beschränkt ist, Teile des Systems möglichst präzise auf einen gewünschten Mittelwert zu regulieren, konnten wir Anhand der diskutierten Modelle also darlegen, dass eine Kontrolle des Ausmaßes von Fluktuationen ebenfalls Einfluss auf die Funktionalität neuronaler Systeme haben kann.
We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson’s resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogoliubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions.