• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Fischlin, Roger (1)
  • Ritter, Harald (1)
  • Seifert, Jean-Pierre (1)

Year of publication

  • 1997 (1)
  • 2000 (1)
  • 2002 (1)

Document Type

  • Doctoral Thesis (3)

Language

  • German (3)

Has Fulltext

  • yes (3)

Is part of the Bibliography

  • no (3)

Keywords

  • Elektronische Unterschrift (1)
  • Gitter <Mathematik> ; Basis <Mathematik> ; Reduktion ; Algorithmus ; Laufzeit ; L-unendlich-Norm ; Rucksackproblem ; Kryptosystem (1)
  • Hinterlegungsverfahren <Kryptologie> (1)
  • RSA-Verschlüsselung (1)

Institute

  • Mathematik (3)

3 search hits

  • 1 to 3
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Das Faktorisierungsrepräsentationsproblem als Basis kryptographischer Protokolle (2002)
Fischlin, Roger
Okamoto (Crypto 1992) hat die RSA-Repräsentation als Basis eines gegen aktive Angreifer sicheren Identifikationsschemas eingeführt. Eine RSA- Repräsentation von X E Z * N ist ein Paar (x; r) E Z e x Z * N mit X = g x r e (mod N) für vorgegebenes g E ZN , RSA-Modul N und primen RSA- Exponenten e. Das zugehörige Repräsentationsproblem, also das Auffinden eines Wertes X samt zweier verschiedener Darstellungen, ist äquivalent zum RSA-Problem, der Berechnung einer e-ten Wurzel von g modulo N . Von Brassard, Chaum und Crépeau (Journal Computing System Science, 1988) sowie Damgard (Journal of Cryptology, 1995) stammt eine analoge Konstruktion der Form X = g x r 2 t (mod N) mit x E Z 2 t für den Spezialfall der Blum-Zahlen als Modul N und gegebenes t größer gleich 1, wo die Möglichkeit, zwei verschiedene Repräsentationen zu berechnen, gleichbedeutend zur Zerlegung des Moduls in die Primfaktoren ist. Im ersten Abschnitt der vorliegenden Arbeit verallgemeinern wir dieses Konzept systematisch auf beliebige (RSA-)Module durch die Einführung eines Anpassungsparameters r:= r (N ), so dass X = g x r 2 r t (mod N) mit x E Z 2 t. Basierend auf dieser als Faktorisierungsrepräsentation bezeichneten Darstellung leiten wir Identifikations-, Signatur- und Blinde-Unterschriften-Verfahren her. Im zweiten Teil verwenden wir sowohl RSA- als auch Faktorisierungsrepräsentation als Grundlage sogenannter non-malleable Commitment-Schemata zur Hinterlegung (Verbriefung) einer geheimen Nachricht. Bei dem von Dolev, Dwork und Naor (SIAM Journal on Computing, 2000) eingeführten Begriff der Non-Malleability soll ein Angreifer außer Stande sein, die Hinterlegung einer Nachricht m so abzuändern, dass er diese später dann mit einem in Relation zu m stehenden Wert, man denke zum Beispiel an m 1, aufdecken kann. Von Dolev, Dwork und Naor stammt ein allgemeiner Ansatz zur Konstruktion von non-malleable Commitment-Schemata aufbauend auf einem sogenannten Knowledge-Extraktor. Für die RSA-Darstellung verfügt das von Okamoto entworfene Protokoll als Proof-Of-Knowledge über einen solchen Extraktor, bei dem im Fall der Faktorisierungsrepräsentation von uns entwickelten Verfahren fehlt allerdings der Extraktor. Aus diesem Grund stellen wir mit Hilfe des Chinesischen Restsatzes ein neues, auf Commitments zugeschnittenes Protokoll mit Knowledge-Extraktor vor, das in Verbindung mit der Faktorisierungsrepräsentation ein effizientes Hinterlegungsschema ergibt. Zum Abschluß wird bei einem Commitment- Verfahren mit abgeschwächter Non-Malleability-Eigenschaft von Di Crescenzo, Katz, Ostrovsky und Smith (Eurocrypt 2001) die RSA- durch die Faktorisierungsrepräsentation ersetzt und das Schema vereinfacht.
Aufzählung von kurzen Gittervektoren in allgemeiner Norm (1997)
Ritter, Harald
Komplexität von Gitterproblemen : Nicht-Approximierbarkeit und Grenzen der Nicht-Approximierbarkeit (2000)
Seifert, Jean-Pierre
Ein Gitter vom Rang n ist die Menge der ganzzahligen Linerkombinationen von n linear unabhängigen Vektoren im Rm. Unter der Annahme P <> NP beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der eine kürzeste Gitterbasis bis auf einen Faktor nO exp(1/log log n) berechnet, wobei die Länge einer Menge von Vektoren durch die maximale Euklidische Länge der Vektoren definiert ist. Weiter zeigen wir, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n/ sqrt(log n) unter plausiblen Annahmen nicht möglich ist. Ein simultaner Diophantischer Best Approximations Nenner für reelle Zahlen alpha1, .... , alpha n und Hauptnennerschranke N ist eine natürliche Zahl q mit 1 <= q >= N, so daß maxi minp2Z |q alpha i - p| minimal ist. Unter der Annahme, daß die Klasse NP keine fast-polynomiellen Algorithmen besitzt, beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der für gegebene rationale Zahlen. Ein Gitter vom Rang n ist die Menge der ganzzahligen Linerkombinationen von n linear unabhängigen Vektoren im Rm. Unter der Annahme P 6= NP beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der eine kürzeste Gitterbasis bis auf einen Faktor nO(1= log log n) berechnet, wobei die Länge einer Menge von Vektoren durch die maximale Euklidische Länge der Vektoren definiert ist. Weiter zeigen wir, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n=plog n unter plausiblen Annahmen nicht möglich ist. Ein simultaner Diophantischer Best Approximations Nenner für reelle Zahlen alpha1, .... , alpha n und Hauptnennerschranke N ist eine natürliche Zahl q mit 1 <= q <= N, so daß maxi ...... minimal ist. Unter der Annahme, daß die Klasse NP keine fast-polynomiellen Algorithmen besitzt, beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der für gegebene rationale Zahlen alpha1,......, alphan und eine Hauptnennerschranke N einen Nenner ~q mit 1 <= ~q <= f(n)N berechnet, so daß ~q bis auf einen Faktor f(n) = nO(1= log0:5+epsilon n) ein Best Approximations Nenner ist, wobei epsilon > 0 eine beliebige Konstante ist. Wir zeigen, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n=log n unter plausiblen Annahmen nicht mölich ist. Wir untersuchen die Konsequenzen dieser Resultate zur Konstruktion von im Durchschnitt schwierigen Gitterproblemen.
  • 1 to 3

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks