Refine
Year of publication
Document Type
- Doctoral Thesis (61)
Has Fulltext
- yes (61)
Is part of the Bibliography
- no (61)
Keywords
- rhodopsin (3)
- solid-state NMR (3)
- Molekülstruktur (2)
- RNA (2)
- 2-Photonen (1)
- Ackerschmalwand (1)
- Arzneimitteldesingn (1)
- Arzneimittelentwicklung (1)
- Azide (1)
- C. elegans (1)
Institute
- Biochemie und Chemie (33)
- Biochemie, Chemie und Pharmazie (24)
- Physik (2)
- Biowissenschaften (1)
- Pharmazie (1)
The present work wishes to contribute with information on two members of the primary active transporter group, which differ both in structure and function: Wilson Disease Protein which uses the energy released by ATP hydrolysis to transport copper across cell membranes, and Proteorhodopsin, which uses the energy of light to build up a proton gradient across the bacterial cell membrane, both heterologously expressed in Xenopus laevis oocytes. The surface detection experiments using HA-tagged WNDP confirm the proposed topology of WNDP. The HA-tag per se does not interfere with the function of WNDP, as shown for WNDP HA56 by ATP-dependent phosphorylation after expression in Sf9 cells. Sequence modifications within the WNDP HA56 template-construct reveal some interesting features: i) the N-terminal domain, which contains the 6 metal binding sites, is not necessary for plasma membrane targeting; ii) elevated surface expression of WNDP was observed when the carboxy terminus containing the tri-Leu motif is missing, which suggests that this motif might be involved in the retrieval of the protein from the plasma membrane; iii) the mutations TGE>AAA (proposed to lock the protein in the E1 conformation and lead to constitutive plasma membrane localisation) and D1027A (phosphorylation deficient) did not interfere with the surface localisation of the protein; iv) the mutations CPC>SPS (copper transport deficient) and H1069Q (phosphorylation deficient, most common mutation in Wilson Disease) reduced plasma membrane expression to less then 50%. Western blot analysis shows that the overall expression level of all constructs is similar to that of the reference construct WNDP HA56. These findings suggest that motifs involved in copper binding and catalytic activity do not interfere with plasma membrane targeting of WNDP in Xenopus oocytes. However, the H1069Q mutation could interfere with the distribution of WNDP protein within the cells. In the case of Proteorhodopsin, data presented in this work support earlier observations according to which proteorhodopsin can operate as an outwardly and inwardly directed light-driven ion pump. The residues proposed to play the roles of proton donor (E108) and acceptor (D97) are important for proton translocation. In the absence of an anionic residue at position 97 no outward pumping takes place, but inward charge translocation may occurs under appropriate conditions. An M-like state similar to that known from BR detectably accumulates under neutral pH conditions or under conditions where reprotonation of the Schiff base from the cytoplasmic side is slowed down, as in case of the mutants at position 108. Under acidic conditions PR pumps inwardly under the concerted action of pH and transmembrane potential. The experiments performed in parallel with PR and BR wild-types brought not only interesting information about similarities and differences between the two retinylidene ion pumps, but also led to the observation that the life-time of the M state in BR wild-type can be extended in addition to hyperpolarising transmembrane potentials also by extracellular acidic pH, when the proton gradient through the cell membrane is directed opposite to the ion transport (i.e. when the electrochemical gradient opposing the direction of proton transport increases). Direct photocurrent measurements of HA-tagged PR and BR have shown that the inserted tag may interfere with the functionality of the protein. Next to E108 and D97 in PR other residues in the vicinity of the retinal binding pocket contribute to the translocation of protons, as exemplified by the mutant L105Q: additionally to changing the absorption maximum of the protein, this mutant is a less effective proton pump than the wild type. The example of PR suggests that transduction of light energy by – and reaction mechanisms of retinylidene ion pumps have not been entirely deciphered by the extensive studies of bacteriorhodopsin.
Integral membrane proteins (IMPs) account for 20-40% of all open reading frames in fully sequenced genomes and they are target of approximately 60% of all modern drugs. So far, cellular expression systems are often very insufficient for the high-level production of IMPs. Toxic effects, instability or formation of inclusion bodies are frequently observed effects that prevent the synthesis of sufficient amounts of functional protein. I have successfully established an individual cell-free (CF) expression system to overcome these IMP synthesis difficulties. The CF system was established in two different expression modes. If no hydrophobic compartment is provided, the IMPs precipitate in the reaction mixture. Interestingly, these insoluble proteins are found to differ from inclusion bodies as they readily solubilize in mild detergents and the bacterial small multi drug transporter EmrE, expressed in the insoluble mode was shown to reconstitute into liposomes in an active form. Alternatively, IMPs can be synthesized in a soluble way by supplementing the CF system with detergents. A comprehensive overview of 24 commonly used detergents was provided by analyzing their impact on the CF system as well as their ability to keep three structurally very different proteins in solution. The class of long chain polyoxyethylene-alkyl-ethers turned out to be most suitable for soluble expression of a-helical EmrE, the bacterial b-barrel type nucleoside transporter Tsx and the porcine vasopressin receptor type 2, resulting in several mg of protein per mL of reaction mixture. So far IMPs have almost completely been excluded from solution nuclear magnetic resonance (NMR) analyses. I could demonstrate that CF expression enables efficient isotopic labeling of IMPs for NMR analysis and further facilitates selective labeling strategies with combinations of 13C and 15N enriched amino acids that have not been feasible before. Four different G-protein coupled receptors (GPCRs) were successfully CF expressed in preparative scale and for the human endothelin B receptor (ETB), ligand binding ability was observed. A series of truncated ETB derivatives containing nested terminal deletions have been CF produced and functionally characterized. The core area essential for Endothelin-1 binding as well as a central region responsible for ETB oligomer formation was confined to a 39 amino acid fragment including the proposed transmembrane segment 1. The binding constant (KD) of ETB was determined to 6 nM for circular ET-1 by SPR and 29 nM for linear ET-1 by TIRFS. This data indicate a large potential of the established individual CF expression system for functional IMP synthesis.
Die 5-Lipoxygenase (5-LO) ist eines der Schlüsselenzyme der Leukotrienbiosynthese. Sie katalysiert zunächst die Umsetzung der freigesetzten Arachidonsäure(AA) zu 5-Hydroperoxyeicosatetraensäure (5-HpETE), in einem zweiten Reaktionsschritt wandelt sie diese in Leukotrien A4 (LTA4) um. Leukotriene sind potente Entzündungsmediatoren und spielen eine wichtige Rolle bei entzündlichen und allergischen Reaktionen. Außerdem wird die Beteiligung an verschiedenen Krebsarten kontrovers diskutiert.
Sie besteht aus 673AS, ist 78 kDa schwer und gliedert sich wie alle bisher bekannten Lipoxygenasen in eine N-terminale C2-ähnliche, regulatorische Domäne(AS 1–114) (C2ld), die für die Membran- und Calciumbindung sowie die Interaktion mit dem Coactosin-like Protein (CLP) verantwortlich ist, und in eine C-terminale, katalytische Domäne (AS 121–673), die das Nicht-Häm-gebundene Eisen im aktiven Zentrum trägt. Ein weiteres Strukturmerkmal sind zwei ATP-Bindungsregionen, eine befindet sich in der C2ld (AS 73–83), die andere auf der katalytischen Domäne (AS 193–209), das molare Verhältnis von 5-LO zu ATP konnte dabei auf 1:1 festgelegt werden [167].
Bereits 1982 wurde in einer Veröffentlichung von Parker et al. beschrieben, dass 5-LO aus Rattenzellen in Gegenwart von Calcium auf einer Gelfiltration dimerisieren kann [204], 2008 schließlich wurde von Aleem et al. publiziert, dass humane 12-LO aus Thrombozyten Dimere bilden kann [219]. Somit konnte es möglich sein, dass auch die humane 5-LO zur Dimerisierung fähig ist.
Zunächst wurde aufgereinigtes Enzym mit nativer Gelelektrophorese und anschließender Coomassiefärbung oder Western Blot untersucht, dabei konnten mehrere Banden pro Bahn detektiert werden. Um dieses Phänomen weiter zu untersuchen, wurde im Anschluss eine Gelfiltration etabliert; da die C2ld der 5-LO recht hydrophob ist, war es nötig, 0,5% T20 zum Elutionspuffer PBS/EDTA zuzusetzen, da das Enzym ansonsten unspezifisch mit dem Säulenmaterial interagiert und für seine Größe zu spät eluiert hätte. In Anwesenheit von T20 eluierte 5-LO in zwei getrennten Peaks, die exakt zu den vorher mit Referenzproteinen bestimmten Elutionsvolumina des Monomers und Dimers passten. Weiter wurde getestet, ob niedermolekulare Substanzen einen Einfluss auf das Dimerisierungsverhalten haben, allerdings konnte weder durch Ca2+noch durch ATP eine Verstärkung der Dimerisierung beobachtet werden. Dahingegen konnte, nach Vorinkubation mit GSH und Diamid, das alleinige Monomer auf der Gelfiltration nachgewiesen werden, nach Vorinkubation nur mit Diamid, lag das gesamte Protein ausschließlich als Dimer vor. Durch Gelelektrophorese mit oder ohne Zusatz von ß-Mercaptoethanol und LILBID-MS konnte die Ausbildung von intermolekularen Disulfidbrücken bestätigt werden. Ein Bindungsassay mit radioaktivem 35S-GSH konnte die kovalente Bindung des GSH an die 5-LO bestätigen. Quantifizierungsstudien mit Ellmans Reagens zeigten, dass mindestens eins der Oberflächencysteine mit GSH modifiziert wurde. Die von der Gelfiltration erhaltenen Fraktionen wurden auf enzymatische Aktivität getestet und in allen 5-LO-haltigen Fraktionen konnte Aktivität gefunden werden. Leider war es nicht möglich, eine Aussage darüber zu treffen, ob das Mono- oder das Dimer aktiver war. Es liegt offenbar in einem Fließgleichgewicht vor, da erneute Injektion des Monomerpeaks im bekannten Elutionsprofil aus zwei Peaks resultierte. Außerdem führt die Anwesenheit von 0,5% T20 während des Aktivitätstests zu einer Hemmung des Enzyms und weniger detektierbaren 5-LO-Produkten; es fiel vor allem auf, dass so gut wie keinerlei trans- und epitrans-LTB4, die nicht-enzymatischen Zerfallprodukte der 5-HpETE, nachzuweisen waren. Betrachtet man die Struktur der 5-LO, so findet man zehn Cysteine an der Oberfläche; die Cysteine 159, 300, 416 und 418 liegen dabei in einem Interface. Mutiert man diese Cysteine zu Serinen, so verschwindet der Dimer-induzierende Effekt des Diamids, wohingegen die Mutante weiterhin glutathionylierbar bleibt. Interessanterweise zeigt diese Mutante auch eine wesentlich weniger ausgeprägte Hemmung durch T20. Um eine Aussage treffen zu können, ob auch 5-LO aus humanen Zellen Dimere bilden kann, wurde 5-LO-haltiger S100 aus polymorphkernigen Leukozyten (PMNL) untersucht. Dabei konnte mit Western Blot und einem Aktivitätsnachweis gezeigt werden, dass die 5-LO in einem breiten Bereich von der Gelfiltration eluiert. Das deutet darauf hin, dass sie in PMNL ebenfalls dimerisiert vorliegen kann. In Gegenwart von Ca2+kam es zu einer Verschiebung der 5-LO zu höhermolekularen Gewichten, wobei dieses Phänomen nicht bei S100 aus transformierten E.coli auftrat, was auf einen gerichteten Komplex nach Calciuminduktion in PMNL hindeutet.
Außerdem wurde im Rahmen dieser Arbeit der Bindemodus von Sulindac an die 5-LO mittels Crosslinking untersucht. Dabei konnte gezeigt werden, dass konzentrationsabhängig der einfache Komplex aus 5-LO und CLP abnimmt, dafür aber ein hochmolekularer Komplex, der beide Enzyme enthält, entsteht. Weder das Prodrug Sulindac noch der weitere Metabolit Sulindacsulfon oder andere Inhibitoren, die ebenfalls an der C2ld angreifen sollen, zeigten diesen Effekt. Leider konnte nicht weiter geklärt werden, was diesen Effekt verursacht, allerdings liegt die Vermutung nahe, dass es zu einer Aggregation kommt. Weitere Untersuchungen könnten wichtige Hinweise auf das Design von neuen Arzneistoffen bringen, um selektivere und damit nebenwirkungsärmere Inhibitoren zu finden.
In der vorliegenden Arbeit wurde die Dynamik zweier grundlegend verschiedener, deaktivierender Mechanismen von Retinalproteinen untersucht. In einem dritten Projekt wurde die Photodynamik einer Dreifachmutante von visuellem Rhodopsin erforscht, von der eine Mutation zu kongenitaler (angeborener) Nachtblindheit führt und zwei andere Mutationen das Protein über eine Disulfidbrücke stabilisieren. Die Ergebnisse dieser drei Projekte sind im Folgenden zusammengefasst.
Die Aktivität des mikrobiellen Proteorhodopsins als lichtgetriebene Protonenpumpe kann photoinduziert unterbunden werden. Dies erfolgt durch die Absorption von blauem Licht durch das Retinal bei deprotonierter Schiff‘schen Base. Vor dieser Arbeit war allerdings nur wenig über den Mechanismus und die Kinetik dieses Effekts bekannt. Das einzige Retinalprotein, an dem diese Deaktivierungsdynamik auf molekularer Ebene zeitaufgelöst untersucht wurde, ist Bakteriorhodopsin. Doch auch an diesem System wurde die ultraschnelle Primärreaktion in der photoinduzierten Deaktivierungsdynamik - die Photoisomerisierung des 13-cis-Retinals - bisher nicht zeitaufgelöst gemessen.
In dieser Arbeit wurde ein Weg gefunden, diesen Prozess auf einer Sub-Pikosekundenzeitskala zu detektieren. Dazu wurde eine Proteorhodopsinmutante genutzt, in der der primäre Protonendonor E108 durch Glutamin ersetzt ist. Diese Mutante weist eine signifikante Erhöhung der Lebensdauer des M-Intermediats auf. Im photostationären Gleichgewicht führt diese veränderte Kinetik zu einer erheblich erhöhten Akkumulation des Proteins im M-Zustand, die ausreicht, um photoinduzierte Absorptionsänderungen der Deaktivierungsdynamik sowohl im sichtbaren als auch im mittleren Infrarotbereich auf ultrakurzer Zeitskala zu detektieren. Dieses Projekt erfolgte in Kooperation mit dem Arbeitskreis Glaubitz (Goethe-Universität Frankfurt am Main).
Es zeigte sich, dass die Anregung des Retinals von Proteorhodopsin im M-Zustand zur Isomerisierung von 13-cis zu all-trans führt, die nach wenigen Pikosekunden abgeschlossen ist. Der zweite und abschließende Schritt ist die Reprotonierung der Schiff'schen Base. Es stellte sich heraus, dass dieser Prozess auf einer Nanosekundenzeitskala abläuft und über einen Protonentransfer vom primären Protonenakzeptor D97 zur Schiff'schen Base ermöglicht ist.
Die in dieser Arbeit vorgestellte Methodik zur Untersuchung der deaktivierenden Photodynamik von Proteorhodopsin auf ultraschneller Zeitskala, könnte in Zukunft auf weitere mikrobielle Rhodopsine angewandt werden. So ist die Studie der Deaktivierungsdynamik von Channelrhodopsinen von großem Interesse für optogenetische Anwendungen. Eine lichtgesteuerte Kontrolle der Ionenkanalöffnung und -schließung sollte die Präzision in der Regulierung ionischer Permeation erheblich verbessern.
Die Proteorhodopsinmutante E108Q wurde außerdem in ihrer primären Photodynamik sowohl bei grünem als auch blauem Anregungslicht untersucht. Es zeigte sich in beiden Fällen eine Dynamik, die der des Wildtyps sehr ähnlich ist. Eine Beobachtung unterscheidet sich jedoch wesentlich vom Wildtyp. Das K-Intermediat der E108Q-Mutante scheint nach einigen hundert Pikosekunden zumindest partiell zu zerfallen, woraufhin sich eine Signatur im blauen Spektralbereich bildet. Blitzlichtphotolysemessungen lassen vermuten, dass diese blau absorbierende Species im zwei- bis dreistelligen Nanosekundenbereich wieder zerfallen sein muss.
Der zweite Teil dieser Arbeit beschäftigt sich mit dem Photozerfall von visuellem Rhodopsin. Es ist bekannt, dass die Signaltransduktion durch Wechselwirkung zwischen aktiviertem Rhodopsin und Arrestin unterbunden wird. Im ersten Abschnitt wurde der Einfluss der Arrestin-1-Variante p44 auf die Photodynamik visuellen, bovinen Rhodopsins untersucht. In einer Kooperation mit dem Arbeitskreis Schwalbe (Goethe-Universität Frankfurt am Main) konnte gezeigt werden, dass Arrestin erheblichen Einfluss auf die Zerfallsdynamik von Meta II und Meta III hat. Es wurde festgestellt, dass die Wechselwirkung von p44 mit photoaktiviertem Rhodopsin eine erhöhte Population des Intermediats Meta III bewirkt, mit der Folge einer zweifach langsameren Freisetzungskinetik des all-trans-Retinals. Diese Beobachtung weist auf eine physiologische Rolle des Zustands Meta III in der Retinalhomöostase hin.
Gegenstand einer zweiten Studie mit dem Arbeitskreis Schwalbe ist zum einen die Rhodopsinmutation G90D, die mit kongenitaler (angeborener) stationärer Nachtblindheit zusammenhängt, und zum anderen die Doppelmutation N2C und D282C, die zur Ausbildung einer stabilisierenden Disulfidbrücke zwischen den im extrazellulären Bereich eingeführten Cysteinen führt. Im Rahmen dieser Arbeit wurde die Photodynamik des Wildtyps, der Doppelmutante und der stabilisierten G90D-Mutante (Mutationen G90D, N2C und D282C) sowohl auf einer ultrakurzen Zeitskala als auch auf einer Minutenskala untersucht.
According to the World Health Organization (WHO) bacterial resistance to antibiotic drug therapy is emerging as a major public health problem around the world. Infectious diseases seriously threaten the health and economy of all countries. Hence, the preservation of the effectiveness of antibiotics is a world wide priority. The key to preserving the power of antibiotics lies in maintaining their diversity. Many microorganisms are capable of producing these bioactive products, the so called antibiotics. Specifically in microorganisms, polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS) produce these natural bioactive compounds. Besides being used as antibiotics these non-ribosomal peptides and polyketides display an even broader spectrum of biological activities, e.g. as antivirals, immunosuppressants or in antitumor therapy. The wide functional spectrum of the peptides and ketides is due to their structural diversity. Mostly they are cyclic or branched cyclic compounds, containing non-proteinogenic amino acids, small heterocyclic rings and other unusual modifications such as epimerization, methylation, N‐formylation or heterocyclization. It is has been shown that these modifications are important for biological activity, but little is known about their biosynthetic origin.
PKS and NRPS are multidomain protein assembly lines which function by sequentially elongating a growing polyketide or peptide chain by incorporating acyl units or amino acids, respectively. The growing product is attached via a thioester linkage to the 4’-phosphopantetheine (4’-Ppant) arm of a holo acyl carrier protein (ACP) in PKSs or holo peptidyl carrier protein (PCP) in NRPSs and is passed from one module to another along the chain of reaction centers. The modular arrangement makes PKS and NRPS systems an interesting target for protein engineering. More than 200 novel polyketide compounds have already been created by module swapping, gene deletion or other specific manipulations. Unfortunately, however, engineered PKS often fail to produce significant amounts of the desired products. Structural studies may faciliate yield improvement from engineered systems by providing a more complete understanding of the interface between the different domains. While some information about domain-domain interactions, involving the most common enzymatic modules, ketosynthase and acyltransferase, is starting to emerge, little is known about the interaction of ACP domains with other modifying enzymes such as methyltransferases, epimerases or halogenases.
To further improve the understanding of domain-domain interactions this work focuses on the curacin A assembly line. Curacin A, which exhibits anti-mitotic activity, is from the marine cyanobacterium Lyngbya majuscula. This outstanding natural product contains a cyclopropane ring, a thiazoline ring, an internal cis double bond and a terminal alkene. The biosynthesis of curacin A is performed by a 2.2 Mega Dalton (MDa) hybrid PKS-NRPS cluster. A 10-enzyme assembly catalyzes the formation of the cyclopropane moiety as the first building block of the final product. Interestingly, for these enzymes the substrate is presented by an unusual cluster of three consecutive ACPs (ACPI,II,III). Little is known about the function of multiple ACPs which are supposed to increase the overall flux for enhanced production of secondary metabolites.
The first task in this work was to elucidate the structural effect of the triplet ACP repetition by nuclear magnetic resonance (NMR). The initial data show that the excised ACPI, ACPII or ACPIII proteins resulted in [15N, 1H]-TROSY spectra with strong chemical shift perturbations (CSPs), suggesting an effect on the structure. The triplet ACP domains display a high sequence identity (93- 100%) making structural investigation using usual NMR techniques due to high peak overlap impossible. To enable the investigation of the triplet ACP in its native composition we developed a powerful method, the three fragment ligation. Segmental labeling allows incorporating isotopes into one single domain in its multidomain context. As a result we could prepare the triplet ACP with only one domain isotopically labeled and therefore assign the full length protein. In this way our method paved the way to study the structural effects of the triplet ACP repetition. We could show unexpectedly, that, despite the fact that the triplet repeat of CurA ACPI,II,III has a synergistic effect in the biosynthesis of CurA, the domains are structurally independent.
In the second part of this work, we studied the structure of the isolated ACPI domain. Our results show that the CurA ACPI undergoes no major conformational changes upon activation via phosphopantetheinylation and therefore contradicts the conformational switching model which has been proposed for PCPs. Further we report the NMR solution structures of holo-ACPI and 3-hydroxyl-3-methylglutaryl (HMG)-ACPI. Data obtained from filtered nuclear overhauser effect (NOE) experiments indicate that the substrate HMG is not sequestered but presented on the ACP surface.
In the third part of this work we focussed on the protein-protein interactions of the isolated ACPI with its cognate interaction partners. We were especially interested in the interaction with the halogenase (Cur Hal), the first enzyme within the curacin A sub-cluster, acting on the initial hydroxyl-methyl-glutaryl (HMG) attached to ACPI. Primarily we studied the interaction using NMR titration and fluorescence anisotropy measurements. Surprisingly no complex between ACPI and Cur Hal could be detected. The combination of an activity assay using matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy and mutational analysis revealed several amino acids of ACPI that strongly decrease the activity of CurA Hal. Mapping these mutations according to their effect on the Cur Hal activity onto the structure of HMG-ACPI displays that these amino acids surround the substrate and form a consecutive surface. These results suggest that this surface is important for Cur Hal recognition and selectivity. Our research presented herein is an excellent example for protein-protein interactions in PKS systems underlying a specific recognition process.
Die Tumorprotein-Familie des Proteins p53 besteht aus drei Familienmitgliedern p53, p63 und p73 mit diversen Funktionen als Transkriptionsfaktoren. p53 war das erste Mitglied dieser Familie, das im Jahre 1979 entdeckt wurde und wurde zunächst als krebsverursachendes Protein eingeordnet, weil es in vielen Tumorgeweben in erhöhter Menge vorgefunden wurde. Es wurde allerdings festgestellt, dass der Großteil dieser gefundenen p53-Proteine funktionsunfähig durch Mutationen in ihrer Aminosäuresequenz waren. Unmutiertes p53 hingegen führt zu einem Stopp von Zellteilung oder sogar Zelltod, sofern die Zellen genetischem Stress durch Strahlung oder mutagene Chemikalien ausgesetzt sind. Heute wird p53 als eines der wichtigsten Tumor-Unterdrückungsproteine betrachtet. Die beiden anderen Familienmitglieder p63 und p73 existieren in einer Vielzahl von Isoformen. Neben carboxyterminaler alternativer mRNA-Prozessierung (α, β, γ, usw. Isoformen) führen zwei unabhängige Promotoren auch zu zwei unterschiedlichen Aminotermini. Hier wird zwischen ΔN- und TA-Isoformen unterschieden. Im Falle von p63 treten zwei dominante Isoformen auf, ΔNp63α und TAp63α. Während ΔNp63α eine Rolle in der Differenzierung von Haut spielt, wurde TAp63α bisher ausschließlich in Eizellen gefunden. Dort hat es die Funktion eines Sensors, der die genetische Integrität der weiblichen Keimbahn sicherstellt. Es liegt in Eizellen in hoher Konzentration vor, allerdings in einer komplett inaktiven Form. Werden Schäden im der Erbgut der Eizelle festgestellt, so wird das Protein aktiviert und kann so den Prozess des Zelltods der Eizelle einleiten. Mutationen oder das Fehlen des p63-Genes führen zu Missbildungen während der Entwicklung und zu unvollständig ausgebildeter Haut. Im Falle von p73 gibt es ebenfalls mehrere Isoformen, wobei die Funktionen und Relevanzen der einzelnen Isoformen bisher nicht komplett geklärt werden konnten. Eine p73-negative Maus hat einen diffusen Phänotyp, der sich durch niedrige Intelligenz, fast sterile Männchen und chronische bronchiale Infektion auszeichnet. Generell sind alle Mitglieder der p53-Familie tetramere Proteine und sind nur in diesem Zustand auch aktiv. Die einzige Ausnahme stellt, wie oben beschrieben, TAp63α dar, das in einem inaktiven dimeren Zustand vorliegt und nur durch Modifikation durch zwei unabhängige Kinasen aktiviert werden kann. Dabei geht es in den tetrameren Zustand über und ist daraufhin aktiv.
Alle drei Proteine haben (anhand ihrer längsten Isoform beschrieben) eine konservierte Domänenstruktur. Am Aminoterminus befindet sich zunächst die transaktivierende-Domäne (TAD), die für Interaktionen mit transkriptionellen Koaktivatioren relevant ist. Danach folgt die stark konservierte Desoxyribonukleinsäure (DNA) bindende Domäne (DBD). Sie stellt sicher, dass der Transkriptionsfaktor sequenzspezifisch an der richtigen Stelle auf die DNA bindet. Weitergehend folgt die Tetramerisierungsdomäne (TD), welche den oligomeren Zustand des Proteins herstellt. Im Falle von p53 endet das Protein an dieser Stelle, bei p63 und p73 folgen noch das Sterile-Alpha-Motiv (SAM) und die Transkription-inhibierende Domäne (TID). Die SAM Domäne wird generell als Interaktionsdomäne beschrieben, es konnte allerdings bis dato kein Interaktionspartner gefunden werden. Die TID hat einen negativen Einfluss auf die transkriptionelle Aktivität der Proteine. Im Falle von TAp63α interagiert sie zusätzlich mit der TAD um den Dimeren Zustand zu stabilisieren.
Histon Acetylasen
Die Acetylierung von Histonen ist neben deren Methylierung die wichtigste Modifikation. Sie ist essenziell für die Transkription innerhalb aller eukaryontischen Lebewesen, da sie durch die Modifikation von Histonen die DNA für die DNA-Polymerase II zugänglich macht. Es gibt insgesamt fünf verschiedene, nicht näher miteinander verwandte Familien von Histonacetylasen. Diese Studie beschäftigt sich ausschließlich mit der KAT3 Familie, bestehend aus den Proteinen p300 und CBP. Beide sind hochgradig konserviert, in gefalteten Bereichen der Proteine erreicht die Sequenzidentität fast 100%. Beide Proteine scheinen sehr ähnliche Aufgaben zu erfüllen, die jedoch nicht komplett identisch sind. Die Fehlfunktion von einem Allel von CBP führt zum Krankheitsbild des Rubinstein-Taybi-Syndrom (RTS), während ein Mangel an p300 sich in Mäusen auf das Gedächtnis auswirkt. Der komplette Verlust beider Allele eines der Proteine ist immer tödlich, genauso wie auch Verlust jeweils eines Allels bei beiden Proteinen. Insgesamt vier unabhängige Domänen in p300/CBP sind in der Lange die transaktivierende Domänen der p53-Familie zu binden. Bei zwei der Domänen handelt es sich um Zinkfinger-Proteine (Taz1 und Taz2), die anderen beiden sind kleine, ausschließlich α-helikale Domänen (Kix und IBiD).
Diese Studie beschäftigt sich mit der Lösung von Strukturen von der transaktivierenden Domäne von p63 und p73 mit der p300-Domäne Taz2. Außerdem wurden die Auswirkungen von direkten Acetylierungen von TAp63α charakterisiert und der Effekt von einem potenten p300/CBP Inhibitor auf Oozyten unter genotoxischem Stress analysiert. Zusätzlich wurde die Phosphorylierungskinetiken von Tap63α wärend der Aktivierung durch Kinasen untersucht.
...
Antibiotic resistance of pathogenic bacteria is a major worldwide problem. Bacteria can resist antibiotics by active efflux due to multidrug efflux pumps. The focus of this study has been the mycobacterial multidrug transporter TBsmr because it belongs to the small multidrug resistance (SMR) family whose members are a paradigm to study multidrug efflux due to their small size. SMR proteins are typically 11-12 kDa in size and have a four-transmembrane helix topology. They bind cationic, lipophilic antibiotics such as ethidium bromide (EtBr) and TPP+, and transport them across the membrane in exchange for protons. To understand the molecular mechanism of multidrug resistance, we have to gain information about the structure and function of these proteins. The research described in this thesis aimed to deduce details about the topology, transport cycle and key residues of TBsmr using biophysical techniques. Solid-state NMR (ssNMR) can provide detailed insight into structural organization and dynamical properties of these systems. However, a major bottleneck is the preparation of mg amounts of isotope labeled protein. In case of proteoliposomes, the problem is compounded by the presence of lipids which have to fit into the small active volume of the ssNMR rotor. In Chapter 3, an enhanced protein preparation is described which yields large amounts of TBsmr reconstituted in a native lipid environment suitable for further functional and structual studies. The achieved high protein-to-lipid ratios made a further characterization by ssNMR feasible. The transport activity and oligomeric state of the reconstituted protein in different types of lipid was studied as shown in Chapter 4. The exact oligomeric state of native SMR proteins is still uncertain but a number of biochemical and biophysical studies in detergent suggest that the minimal functional unit capable of binding substrate is a dimer. However, binding assays are not ideal since a protein may bind substrate without completing the transport cycle which can only be shown for reconstituted protein in transport assays.By combining functional data of a TPP+ transport assay with information about theoligomeric state of reconstituted TBsmr obtained by freeze-fracture electron microscopy, it could be shown that lipids affect the function and the oligomeric state of the protein, and that the TBsmr dimer is the minimal functional unit necessary for transport. The transport cycle must involve various conformational states of the protein needed for substrate binding, translocation and release. A fluorescent substrate will therefore experience a significant change of environment while being transported, which influences its fluorescence properties. Thus the substrate itself can report intermediate states that form during the transport cycle. In Chapter 5, the existence of such a substrate-transporter complex for the TBsmr and its substrate EtBr could be shown. The pH gradient needed for antiport has been generated by co-reconstituting TBsmr with bacteriorhodopsin. The measurements have shown the formation of a pH-dependant, transient substrate-protein complex between binding and release of EtBr. This state was further characterized by determining the Kd, by inhibiting EtBr transport through titration with non-fluorescent substrate and by fluorescence anisotropy measurements. The findings support a model with a single occluded intermediate state in which the substrate is highly immobile. Liquid-state NMR is a useful tool to monitor protein-ligand interactions by chemical shift mapping and thus identify and characterize important residues in the protein which are involved in substrate binding. In agreement with previous studies (Krueger-Koplin et al., 2004), the detergent LPPG was found to be highly suitable for liquid-state NMR studies of the membrane protein TBsmr and 42% of the residues could be assigned, as reported in Chapter 6. However, no specific interactions with EtBr were found. This observation was confirmed by LILBID mass spectrometry which showed that TBsmr was predominantly in the non-functional monomeric state. Functional protein was prepared in proteoliposomes which can be investigated by solidstate NMR (Chapter 7). Besides the essential E13, the aromatic residues W63, Y40, and Y60 have been shown to be directly involved in drug binding and transport. Different isotope labeling strategies were evaluated to improve the quality of the NMR spectra to identify and characterize these key residues. In a single tryptophan mutant of reconstituted TBsmr W30A, the binding of ethidium bromide could be detected by 13C solid-state NMR. The measurements have revealed two populations of the conserved W63 residue with distinct backbone structures in the presence of substrate. There is a controversy about the parallel or anti-parallel arrangement of the protomers in the EmrE dimer (Schuldiner, 2007) but this structural asymmetry is consistent with both a parallel and anti-parallel topology.
Solid state NMR is a emerging method for the study of membrane proteins, which has received much interest in recent years. Limiting the study of many pharmacologically relevant targets, are the often long measuring times, required to obtain especially higher dimensional solid state NMR spectra of good quality. To address this problem, multiple methods where developed in this work, which can be categorized into two groups. The first set of methods aims at the quality of certain spectra, by implementing a spectral filter, which increases the fidelity of the measured data. The second set of methods, addresses the problem of long measuring times directly, by increasing the sensitivity per unit time, as could be shown, for example, on homo- and heteronuclear singlequantum-singlequantum correlation experiments. The gains in measuring time for the latter group of methods are typically in the order of 2-3, but some experiments allow multiple methods to be employed simultaneously, which can lead to a decrease in measuring time of a factor of up to 8. It is important to mention, that none of the methods introduced in this work require any equipment in addition to the conventional setup present in most sold state NMR laboratories and no changes or addition to the samples under study are required. Therefore the gains reported in this work come at no extra cost and require only minimal implementation effort on the side of the user.
Die in dieser Arbeit durchgeführten Untersuchungen an GXG Modellpeptiden konnten eindeutig zeigen, dass diese Peptide, auch ohne das Vorhandensein von langreichweitigen Wechselwirkungen, bestimmte Sekundärstrukturen präferieren. Ein Teil der beobachteten, auftretenden Strukturmotive lässt sich hierbei über den sterischen Anspruch der Seitenkette erklären, ein anderer Teil über die Ladung der Seitenkette. In Kombination mit anderen Spektroskopischen Methoden konnten zehn dieser Peptide genauestens untersucht werden. Hierbei zeigte sich, dass diese Peptide nicht nur die favorisierten Regionen des Ramachandran-Diagramms besetzen. Ein Vergleich mit dem Vorkommen bestimmter Aminosäuren, beispielsweise in loop Regionen von Proteinen, zeigt dass die Sequenz dieser loops nicht zufällig ist. Tatsächlich besitzt ein Teil der Aminosäuren, die besonders häufig an bestimmten loop Positionen vorkommen, bereits die intrinsische Vorliebe, die notwendige Konformation einzunehmen. Diese Aminosäuren und die umgebenden loops sind somit eventuell nicht nur das simple Verbindungsglied zwischen zwei Sekundärstrukturen, sondern kommen selbst als Ausgangspunkte für Peptid- bzw. Proteinfaltung in Frage.
Ein weiteres Augenmerk der Arbeit lag auf der Messung von skalaren und dipolaren Kopplungen an isotopenmarkierter RNA. Es wurden vier Pulssequenzen entwickelt, die es ermöglichen, 1J skalare bzw. dipolare Kopplungen in der Zuckerregion von 13C- markierter RNA mit hoher Präzision zu messen. Die entwickelten J-modulierten Experimente ermöglichen die Messung von 1J(H2’C2’), 1J(C1’C2’) sowie 1J(C2’C3’) Kopplungen selbst für größere RNA Moleküle. Die Detektion erfolgt hierbei auf den C1’H1’ Signalen, die Zuordnung der Kerne, deren Kopplung gemessen wird, ist nicht einmal erforderlich. Die Anwendbarkeit konnte für verschiedene Systeme mit 14 bis 70 Nukleotiden demonstriert werden. Die erreichte Präzision ermöglichte es außerdem auch sehr kleine Effekte, wie beispielsweise die Ausrichtung von RNA im Magnetfeld zu detektieren.
Diese Arbeit zeigt außerdem zwei Beispiele für die gezielte Modifikation, um Lanthanid Bindungsstellen einführen zu können. Auf chemischen und biochemischen Weg konnte isotopenmarkierte, in vitro transkribierte RNA modifiziert werden. Die Ergebnisse zeigen eindeutig eine Bindung von Lanthanid-Ionen an die modifizierte RNA. Die auftretenden, eher kleinen Effekte, sind vermutlich auf die noch zu hohe Flexibilität der eingeführten Modifikationen. Vor allem bei der chemischen Modifikation besteht hier noch Potential zur Optimierung, nachdem die generelle Anwendbarkeit der Methode demonstriert wurde.
Der letzte Teil der Arbeit beschäftigt sich mit der Analyse von Kopplungsmustern zur Analyse und zum Vergleichen von Naturstoffen. Hier konnten aus einer Reihe von Derivaten eindeutig die identifiziert werden, die verglichen mit der Ausgangsstruktur, die gleiche Konformation besitzen. Die gewonnenen Ergebnisse decken sich hier mit durchgeführten biologischen Tests, die ebenfalls dasselbe Derivat als aktiv identifizieren konnten, was klar für eine Struktur-Aktivitäts-Beziehung spricht.
In der vorliegenden Arbeit werden Methoden und Anwendungen gezeigt, um skalare und dipolare Kopplungen im Bereich von Peptiden, Nukleinsäuren und kleinen Molekülen zu nutzen. Die durchgeführten Arbeiten reichen dabei von der speziellen Probenpräparation zur Messung von dipolaren Kopplungen bis hin zur Entwicklung neuer NMR-spektroskopischer Methoden zur Messung von Kopplungen mit höherer Präzision und an größeren Systemen als bisher.
G-protein-coupled receptors (GPCRs) from the largest family of receptors in the human body. They contain seven transmembrane helices. There are roughly 800-900 GPCR genes expressed in humans encoded by 4-5% of the human genome. These receptors are the most important signal transducers and play a crucial role in cell physiology and pathology, by using various extracellular stimuli to start complex intracellular signaling. GPCRs interact with a wide variety of stimuli from small molecules (photons, ions, amines) to large molecules (peptides, small proteins), and trigger downstream cascade effects by interacting with G-proteins, GPCR kinases, and ß-arrestin. Because of their crucial roles in many cellular functions, GPCRs are the most important drug targets for the pharmaceutical industry. Approximately 30% of the clinically approved drugs available in the market are against GPCRs. In this work achieved successful expression and purification of GPCRs from class-C and class-A families. Combined with biochemical experiments, DNP-ssNMR, and molecular simulation helped to decipher the mechanism of crosstalk between the allosteric modulator, and the orthosteric binding sites of the peptide receptor. The main findings and major highlights of this dissertation are outlined in the following paragraphs.
The calcium-sensing receptor (CaSR) belongs to the GPCR class-C family and contains a large extracellular domain. This receptor regulates Ca2+ homeostasis in blood and its absorption in the kidney and bone. To understand the molecular and structural mechanisms of these receptors their cDNAs were cloned into the pPICZ and pOET1 vectors to express them in Pichia pastoris and in Sf9 insect cells respectively. The CaSR was successfully expressed heterologously in Pichia pastoris and in the insect cell with high yield. The purified receptor purified in LMNG shows no aggregation in a monomeric state. Further optimization was performed to use it for cryo-EM sample preparation and structure determination. In 2nd part of the thesis, different mini G (mini Gs, mini Gi, mini Gqs, and mini Gsi) DNA constructs were made and expressed in E. coli. It's challenging to obtain active GPCR structures due to the instability of G-protein or G-protein-bound receptors. In this work, all mini-G proteins and chimera mini-G-protein-maltose binding protein (MBP) were cloned and expressed in E. coli and purified with a His-trap column with high purity.
In the last part of the thesis, to decipher the mechanism of allosteric modulation of orthosteric binding sites in the bradykinin receptor was produced and characterized in insect cells. Angiotensin I converting enzyme inhibitors (ACEIs), are very important drugs and are widely used for the treatment of hypertension, congestive heart failure, and diabetic neuropathy. These drugs target primarily the catalytic zinc center of the ACE. It has been shown that enalaprilat, a well-known ACEI, binds to a proposed zinc-binding site on hB1R and even directly activates the receptor. To obtain information on the influence of ACEIs on the receptor-peptide complex, and to have a better understanding of the molecular mechanism and structural plasticity of the bradykinin receptor and PAM, we used the three commercially available ACEIs captopril, enalaprilat, and lisinopril for our studies. An important result of this thesis is that though enalaprilat, captopril, and lisinopril all have similar functional properties in humans, each one regulates the orthosteric binding site of hB1R in a unique way. These findings provide atomic insights into the allosteric modulation of the bradykinin receptor. This study along with the effects of ACEI on the binding sites of receptors also deciphers the effects of the Zn2+ as well as the crosstalk between zinc binding sites and ACEI compounds. The binding of allosteric modulators induces distinct endogenous binding, which might aid in creating new possibilities in the pharmaceutical field.