Refine
Document Type
- Doctoral Thesis (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Cardiac regeneration (1)
- Coronaries (1)
- Developmental Biology (1)
- Zebrafish (1)
- endothelial cell (1)
- npas4l (1)
- pronephric duct (1)
- vasculogenesis (1)
Institute
- Biowissenschaften (11)
Ischemic heart disease caused by occlusion of coronary vessels leads to the death of downstream tissues, resulting in a fibrotic scar that cannot be resolved. In contrast to the adult mammalian heart, the adult zebrafish heart can regenerate following injury, enabling the study of the underlying cellular and molecular mechanisms. One of the earliest responses that take place after cardiac injury in adult zebrafish is coronary revascularization. Previous transcriptomic data from our lab show that vegfc, a well-known regulator of lymphatic development, is upregulated early after injury and peaks at 96 hours post cryoinjury, coinciding with the peak of coronary endothelial cell proliferation. To test the hypothesis that vegfc is involved in coronary revascularization, I examined its expression pattern and found that it is expressed by coronary endothelial cells after cardiac damage. Using a loss-of-function approach to block Vegfc signaling, I found that it is required for coronary revascularization during cardiac regeneration. Notably, blocking Vegfc signaling resulted in a significant reduction in cardiomyocyte regeneration. Using transcriptomic analysis, I identified the extracellular matrix component gene emilin2a and the chemokine gene cxcl8a as effectors of Vegfc signaling. During cardiac regeneration, cxcl8a is expressed in epicardium-derived cells, while the gene encoding its receptor cxcr1 is expressed on coronary endothelial cells. I found that overexpressing emilin2a increases coronary revascularization, and induces cxcl8a expression. Using loss-of-function approaches, I observed that both cxcl8a and cxcr1 are required for coronary revascularization after cardiac injury.
Altogether, my findings indicate that Vegfc acts as an angiocrine factor that plays an important role in regulating cardiac regeneration in zebrafish. Mechanistically, Vegfc promotes the expression of emilin2a, which promotes coronary proliferation, at least in part by enhancing Cxcl8a-Cxcr1 signaling. This study helps in understanding the mechanisms underlying coronary revascularization during cardiac regeneration, with promising therapeutic applications for human heart regeneration.
Interleukin-11 signaling is a global molecular switch between regeneration and scarring in zebrafish
(2022)
The two diametrically opposing outcomes after tissue damage are regeneration and fibrotic scarring. After injury, adult mammals predominantly induce fibrotic scarring, which most often leads to patient lethality. Fibrotic scarring is the deposition of excessive extracellular matrix that matures and hinders tissue function. The scarring response is mainly orchestrated by myofibroblasts, which arise only upon tissue damage, from various cellular origins, including tissue resident fibroblasts, endothelial cells and circulating blood cells. On the contrary, species like zebrafish, possess the remarkable capacity to regenerate their damaged tissues. After injury, instead of inducing a myofibroblast-mediated fibrogenic gene program, cells in these species undergo regenerative reprogramming at the transcriptional level to activate vital cellular processes needed for regeneration, including proliferation, dedifferentiation, and migration. Several pro-regenerative mechanisms have been identified to date. Most of them, if not all, are also important for tissue homeostasis and hence, are not injury specific. Therefore, the central aim of this study is to identify injury-specific mechanisms that not only induce regeneration, but also limit fibrotic scarring.
To test the notion that fibrotic scarring limits regeneration, I first compared the scarring response in the regenerative zebrafish heart after cryoinjury with what is known in the non-regenerative adult mouse heart. I found that zebrafish display ~10-fold less myofibroblast differentiation compared to adult mouse after cardiac injury. With these findings, I hypothesized that zebrafish employ mechanisms to actively suppress scarring response. Using a novel comparative transcriptomic approach coupled with genetic loss-of-function analyses, I identified that Interleukin-6 (Il-6) cytokine family-mediated Stat3 is one such pro-regenerative pathway in zebrafish.
Il-6 cytokine family consists of Il-6, Interleukin-11 (Il-11), Ciliary neurotrophic factor, Leukemia inhibitory factor, Oncostatin M, and Cardiotrophin-like cytokine factor 1. Il-6 family ligands signal through their specific receptors and a common receptor subunit (Il6st or Gp130). Using gene expression analyses after adult heart and adult caudal fin injuries in zebrafish, I identified that both the Il-11 cytokine encoding paralogous genes (il11a and il11b) are the highest expressed and induced among the Il-6 family cytokines. Hence, I chose Il-11 signaling as a candidate pathway for further analysis. To investigate the role of Il-11 signaling, I generated genetic loss-of-function mutants for both the ligand (il11a and il11b) and the receptor (il11ra) encoding genes. Using various tissue regeneration models across developmental stages in these mutants, I identified that Il-11/Stat3 signaling is indispensable for global tissue regeneration in zebrafish.
To investigate the cellular and molecular mechanisms by which Il-11 signaling promotes regeneration, I performed transcriptomics comparing the non-regenerative il11ra mutant hearts and fins with that of the wild types, respectively. I identified that Il-11 signaling orchestrates both global and tissue-specific aspects of regenerative reprogramming at the transcriptional level. In addition, I also found that impaired regenerative reprogramming in the il11ra mutant hearts and fins resulted in defective cardiomyocyte and osteoblast repopulation of the injured area, respectively.
On the other hand, by deep phenotyping the scarring response in il11ra mutant hearts and fins, I identified that Il-11 signaling limits myofibroblast differentiation. Furthermore, I found that cardiac endothelial cells and fibroblasts are one of the major responders to injury-induced Il-11 signaling. Using lineage tracing, I found that both the endothelial and fibroblast lineages in the non-regenerative il11ra mutants commit to a myofibroblast fate, spearheading the scarring response. In addition, using cell type specific manipulations, I showed that Il-11 signaling in cardiac endothelial cells allows cardiomyocyte repopulation of the injured area. Finally, using human endothelial cells in culture, I uncovered a novel feedback mechanism by which Il-11 signaling limits fibrogenic gene expression by inhibiting its parent activator and a master regulator of tissue fibrosis, TGF-β signaling.
Overall, I identified Interleukin-11/Stat3 signaling as the first global regulator of regeneration in zebrafish. Briefly, I showed that Interleukin-11 signaling promotes regeneration by regulating two crucial cellular aspects in response to injury – (1) it promotes regenerative reprogramming, thereby allowing cell repopulation of the injured area and (2) it limits mammalian-like fibrotic scarring by inhibiting myofibroblast differentiation and TGF-β signaling. Altogether, these zebrafish data, together with the contradicting mammalian data strongly indicate that the secrets of tissue regeneration lie downstream of IL-11 signaling, in the differences between regenerative and non-regenerative species. Furthermore, I establish the non-regenerative il11ra mutant as an invaluable zebrafish model to study mammalian tissue fibrosis.
The heart is the first functional organ that develops in the embryo. To become a functional organ, it undergoes several morphogenetic processes. These morphogenetic events involve different cell types, that interact with each other and respond to the surrounding extracellular matrix, as well as intrinsic and extrinsic mechanical forces, assuming different behaviors. Additionally, transcription factor networks, conserved among vertebrates, control the development.
To have a better understanding of cell behavior during development, it is necessary to find a model system that allows the investigation in vivo and at single-cell resolution. Thanks to the common evolutionary origin of the different cardiac structures, together with the conserved molecular pathways, the two-chambered zebrafish heart offers many advantages to study cell behavior during cardiac morphogenesis. Here, using the zebrafish heart as a model system, I uncovered the cell behavior behind two of the main cardiac morphogenetic events: cardiac wall maturation and cardiac valve formation.
In the first part of this study, I investigated how the cardiac wall is maintained at the molecular level. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required for myocardial wall integrity. Global loss of snai1b leads to the extrusion of CMs away from the cardiac lumen, a process we show is dependent on cardiac contractility. Examining CM junctions in snai1b mutants, we observed that N-cadherin localization was compromised, thereby likely weakening cell-cell adhesion. In addition, extruding CMs exhibit increased actomyosin contractility basally, as revealed by the specific enrichment of canonical markers of actomyosin tension - phosphorylated myosin light chain (active myosin) and the α-catenin epitope α-18. By comparing the transcriptome of wild-type and snai1b mutant hearts at the early stages of CM extrusion, we found the dysregulation of intermediate filament genes in mutants including the upregulation of desmin b. We tested the role of desmin b in myocardial wall integrity and found that CM-specific desmin b overexpression led to CM extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 is a critical regulator of intermediate filament gene expression in CMs and that it maintains the integrity of the myocardial epithelium during embryogenesis, at least in part by repressing desmin b expression.
In the second part of this study, I focused on the behavior of valve cells during cardiac development. Using the zebrafish atrioventricular valve, I focus on the valve interstitial cells which confer biomechanical strength to the cardiac valve leaflets. We find that initially AV endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the extracellular matrix (ECM) between the two EC monolayers, undergo an endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a pro-migratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b, a well-known regulator of epithelial-to-mesenchymal transition. This study shows for the first time that Nfatc1 regulates zebrafish VICs formation regulating valve EMT in part by regulating twist1b expression. Moreover, it proposes the zebrafish valve as an excellent model to study the cellular and molecular process that regulate VIC development and dysfunction.
In conclusion, my work: 1) identified an unsuspected role of Snai1 in maintaining the integrity of the myocardial epithelium, opening new avenues in its role in regulating cellular contractility; 2) uncovered the function of Nfatc1 in the establishment of the VIC, establishing a new model to study valve development and function.
Cardiac trabeculation is one of the essential processes required for the formation of a competent ventricular wall, whereby clusters of ventricular cardiomyocytes (CMs) from a single layer delaminate and expand into the cardiac jelly to form sheet-like projections in the developing heart (Samsa et al., 2013). Several congenital heart diseases are associated with defects in the formation of these trabeculae and lead to embryonic lethality (Jenni et al., 1999; Zhang et al., 2013, Jenni et al., 2001; Towbin 2010). It has been experimentally shown that lack of Nrg1/ErbB2/ErbB4, Angipoetin1/Tie2, EphrinB2/B4, BMP10, or any component of the Notch signaling pathway can cause defective trabeculation. Moreover, changes in blood flow and/or contractility can also affect trabeculation (Samsa et al., 2013). Together, these observations demonstrate that cardiac trabeculation is a highly dynamic and regulated process.
Trabeculation is a morphogenetic process that requires control over cell shape changes and rearrangements, similar to those observed during EMT. Epithelial cells within an epithelium are polarized and establish cell-cell junctions with the neighboring cells (Ikenouchi et al., 2003; Ferrer-vaquer et al., 2010), thus epithelial cell polarity is an important feature to maintain cell shape and tissue structure. During developmental processes such as cell migration and cell division or in disease states epithelial polarity might be disrupted. As a consequence of this alteration, cells lose their tight cell-cell adhesions, undergo cytoskeletal rearrangements, change their shape and gain migratory properties becoming mesenchymal cells (Micalizzi et al., 2010). In epithelial cells, apicobasal polarity is regulated by a conserved set of core complexes, including the PAR, Scribble and Crumbs complexes (Kemphues et al., 1988; Bilder and Perrimon, 2000; Teppas et al., 1984). The polarity proteins composing these complexes interact in a well organized and coordinated-manner creating molecular asymmetry along the apicobasal axis of the cell. In turn, this crosstalk regulates the maturation and stabilization of the junctions between cells and cytoskeleton in order to strengthen cell polarization (Roignot et al., 2013). Amongst the different polarity complex, Crumbs has been shown to be a key regulator of apicobasal polarity during development in both vertebrates and invertebrates (Tepass et al., 1990; Fan et al., 2004).
Here, taking advantage of zebrafish as a model organism, I study in vivo at single cell resolution changes in CM apicobasal polarity during cardiac trabeculation. Moreover, I show which factors regulate CM apicobasal polarity during this process. In addition, I dissect the role of the polarity complex Crumbs in regulating CM junctional rearrangements and the formation of the trabecular network.
The role of the homeobox transcription factor Meis2b in zebrafish heart development and asymmetry
(2018)
Zebrafish heart development: The heart of the zebrafish is the first organ to form and function during embryonic development, and is composed by one atrium and one ventricle. Between 5-17 somites stage, the cardiomyocyte precursors form the bilateral cardiac fields in the anterior lateral plate mesoderm (ALMP); where the endocardial precursors are located anterior to the cardiac fields (Zeng, Wilm et al. 2007). Then, the pools of endocardial andmyocardial precursors fuse at the midline and form the heart disc; where atrial cardiomyocytes are located around, the ventricular cardiomyocytes are located in the centerof the heart disc, and the future endocardium is located in a ventral position relative to the cardiomyocytes (Bakkers 2011). After the heart disc is formed, the cardiomyocyte progenitors start to migrate and rotate asymmetrically to form the heart tube (de Campos-Baptista, Holtzman et al. 2008, Rohr, Otten et al. 2008, Smith, Chocron et al. 2008). This process is followed by a rightward bending of the heart tube, and the arterial and venous poles rotate at different speed and directions (a process known as heart looping) (Smith, Chocron et al. 2008). The heart looping process results in a ventricle located on the right side and a more posterior atrium located on the left side with respect to the midline; at this point the atrium and ventricle are separated by a fine segment called the atrioventricular canal, where the valves will be formed (Staudt and Stainier 2012). The second heart field (SHF) is a pool of cardiac progenitors that are specified later during the formation of the heart disc and until the heart looping stages. The SHF contributes withcells to the distal side of the ventricle, the outflow and inflow tracts, and is important for the specification of the cardiac conduction system (de Pater, Clijsters et al. 2009, Hami, Grimes et al. 2011, Zhou, Cashman et al. 2011, Witzel, Jungblut et al. 2012, Guner-Ataman, Paffett-Lugassy et al. 2013)....
The adult mammalian heart is a non-regenerative organ that fails to recover neither functionally nor structurally after insults. Although, reports show that the presences of mitotic nuclei after pathological or physiological cardiac stress in humans, it is widely accepted that the regenerative capacity of the human heart is immensely inadequate to restore the loss of cardiomyocytes (CMs) (Beltrami et al., 2001; Kajstura et al., 1998). Consequently, myocardial infarctions (MIs) are the primary cause of cardiovascular morbidity and mortality. MIs is the irreversible loss of cardiac myocytes due to prolonged myocardial ischemia caused by an imbalance of the metabolic demand of the myocardium and myocardial blood flow (Whelan et al., 2010). Patients with MIs often die prematurely because of heart failure, resulting from irreversible scar formation on the ventricular wall and undermined heart function (Jessup and Brozena, 2003). Despite early intervention and advancements of medical devices for prevention, MIs are still untreatable, unless the heart transplantation approach considered, which is very limited by heart donation (Augoustides and Riha, 2009). Therefore, there is a high demand for standard therapy for heart failure that can restore the loss of CMs, prompt myocardial regeneration, and eventually, reduce morbidity and mortality rate of the disease.
Contrary to the adult mammalian heart, zebrafish display an extraordinary capacity for heart regeneration after the cardiac insult (Poss et al., 2002). This regenerative response relies on the ability of CMs to proliferate and replenish the lost tissue. Zebrafish is indeed one of the most commonly used experimental models for developmental and regenerative biology studies (Gemberling et al., 2013; Gonzalez-Rosa et al., 2017). For decades, the process of cardiac regeneration has been investigated using various cardiac injury models. The most commonly used and well-established injury methods are ventricular apical resection (Poss et al., 2002; Raya et al., 2003), cryoinjury (Chablais et al., 2011; Schnabel et al., 2011), as well as genetic and chemical ablation of heart cells (Curado et al., 2007; Wang et al., 2011). The origin of new cells is one of the most fundamental questions to be addressed during organ regeneration in any regenerative organism, and understanding of such phenomenon is crucial to design effective therapeutic strategies for non-regenerative organisms (Gonzalez-Rosa et al., 2017; Tanaka and Reddien, 2011).
Despite the robust cardiac regenerative potential, to date, only a handful of lineage tracing experiments have been reported in zebrafish heart regeneration. It was proposed that the cellular source of the renewed cardiac tissue might arise from progenitor or stem cells (Lepilina et al., 2006), through CMs dedifferentiation (Jopling et al., 2010; Kikuchi et al., 2010), transdifferentiation from other cell types in the heart tissue, and/or direct proliferation of the existing CMs (Kikuchi and Poss, 2012). Fate-mapping studies using transgenic lines driven by the myl7 promoter have shown that pre-existing CMs contribute to myocardial regeneration. However, myl7 expression is activated at early developmental stages in cardiac progenitor cells and hence precluding the identification of genuinely mature CMs in adult stages. Therefore, the cellular origin of the regenerating CMs remains elusive. Moreover, CM heterogeneity in the developing and adult zebrafish heart has never been explored to provide full insight into the process of regeneration. Therefore, I set out to identify genes exclusively expressed by either immature or mature CMs, generate promoter-driven reporter and CreERT2 lines to characterize the reporters during zebrafish heart development, and regeneration, and eventually to determine the contribution of the immature CMs to the regenerating CMs....
A novel role for mutant mRNA degradation in triggering transcriptional adaptation to mutations
(2020)
Robustness to mutations promotes organisms’ well-being and fitness. The increasing number of mutants in various model organisms, and humans, showing no obvious phenotype (Bouche and Bouchez, 2001; Chen et al., 2016b; Giaever et al., 2002; Kok et al., 2015) has renewed interest into how organisms adapt to gene loss. In the presence of deleterious mutations, genetic compensation by transcriptional upregulation of related gene(s) (also known as transcriptional adaptation) has been reported in numerous systems (El-Brolosy and Stainier, 2017; Rossi et al., 2015; Tondeleir et al., 2012); however, the molecular mechanisms underlying this response remained unclear. To investigate this phenomenon, I develop and study multiple models of transcriptional adaptation in zebrafish and mouse cell lines. I first show that transcriptional adaptation is not caused by loss of protein function, indicating that the trigger lies upstream, and find that the response involves enhanced transcription of the related gene(s). Furthermore, I observe a correlation between levels of mutant mRNA degradation and upregulation of related genes. To investigate the role of mutant mRNA degradation in triggering the response, I generate mutant alleles that do not transcribe the mutated gene and find that they fail to induce a transcriptional response and display stronger phenotypes. Transcriptome analysis of alleles displaying mutant mRNA degradation revealed upregulation of a significant proportion of genes displaying sequence similarity with the mutated gene’s mRNA, suggesting a model whereby mRNA degradation intermediates induce transcriptional adaptation via sequence similarity. Further mechanistic analyses suggested RNA-decay factors-dependent chromatin remodeling, and repression of antisense RNAs to be implicated in the response. These results identify a novel role for mutant mRNA degradation in buffering against mutations. Besides, they hold huge implications on understanding disease-causing mutations and shall help in designing mutations that lead to minimal transcriptional adaptation-induced compensation, facilitating studying gene function in model organisms.
Glucose homeostasis is tightly regulated by insulin production from ß-cells and glucagon production from α-cells. Changes in the balance of these hormones lead to Diabetes Mellitus (DM), which is foreseen to be the 7th leading cause of death by 2030, warranting a high demand to identify new therapeutics. DM is characterized by a reduction in ß-cell mass and reduced insulin production from ß-cells. α-cell development and fate mainly depend on the activity of the homeodomain-containing transcription factor Aristaless related homeobox (Arx). Conditional loss- of- function of Arx in α-cells leads to their conversion into functional insulin-producing ß-cells and thus an expansion of ß-cell mass. Therefore, inhibition of Arx is an interesting target for the expansion of ß-cells. The zebrafish model provides a fast, cost-effective and reliable translational platform for drug discovery in an in vivo setting. Here, we screened ~6217 small molecules on a transgenic zebrafish line (TgBAC(arxa:Luc2)) in which the arx promoter drives the expression of the luciferase gene which allows a sensitive and quantitative readout of promoter activity. Small molecule screening allowed us to identify 36 candidate repressors of arxa promoter activity. Furthermore, we started to validate these candidates in other assays. Preliminary results showed that DMAT (a potent CK2 inhibitor) and CNS-1102 (NMDA receptor inhibitor) increase functional ß-cell regeneration. By lineage tracing α-cells during ß-cell regeneration, we could show that both DMAT and CNS-1102 promote α- to ß-cell transdifferentiation. Here, we propose that Casein kinase II and NMDA receptor as potential molecular targets that could be exploited for the treatment of diabetes by generating functional beta-cells from the non-beta-cell progenitor, particularly alpha-cells in situ.