Refine
Year of publication
Document Type
- Doctoral Thesis (16)
Language
- English (16)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- Color Superconductivity (1)
- Hartree-Näherung (1)
- Jet-Medium-Wechselwirkungen (1)
- Kernastrophysik (1)
- Mach cone (1)
- Machkegel (1)
- Mesons (1)
- Nuclear Astrophysics (1)
- Quantenhadrodynamik (1)
- Quark-Gluon-Plasma (1)
Institute
I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3He), the A and A* phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A* phase is favored. It is shown that the 2SC phase is identical to the A* phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity.
Hinreichend kalte und dichte Quarkmaterie ist ein Farbsupraleiter. Ähnlich wie Elektronen in einem gewöhnlichen Supraleiter bilden Quarks Cooper-Paare. Während bei Elektronen der Austausch von Phononen zu einer Anziehung führt, ist im Falle von Quarks der Antitriplett-Kanal der starken Wechselwirkung attraktiv. Arbeiten in den letzten Jahren haben verschiedene Phasen von farbsupraleitender Quarkmaterie untersucht und sich dabei vor allem auf Phasen konzentriert, m denen der Gesamtspin eines Cooper-Paares verschwindet. In der vorliegenden Dissertation habe ich hauptsächlich Farbsupraleiter diskutiert, deren Cooper-Paare im Spin-Triplett-Kanal kondensieren, d.h. die Cooper-Paare haben den Gesamtspin 1. Diese Art von Supraleiter ist möglicherweise relevant für Systeme in der Natur, wie z.B. das Innere von Neutronensternen. Denn bei der Spin-0-Farbsupraleitung wird vorausgesetzt, dass die Fermi-Impulse zweier Quark-Flavor gleich ist oder zumindest hinreichend klein, was für realistische Systeme, also für nicht zu große Dichten, fragwürdig ist. Diese Einschränkung gibt es im Falle von Spin-1-Farbsupraleitern nicht, da hier Quarks des gleichen Flavors Cooper-Paare bilden. Ich habe in meiner Dissertation die verschiedenen möglichen Phasen eines Spin-1-Farbsupraleiters systematisch klassifiziert. Dies wurde mit Hilfe von gruppen-theoretischen Methoden durchgeführt, basierend auf der Tatsache, dass die Farbsupraleitung durch das theoretische Konzept der spontanen Symmetriebrechung beschrieben werden kann. Ähnlich wie bei supraflüssigem Helium-3 gibt es eine Vielzahl theoretisch möglicher Phasen. Ich habe die physikalischen Eigenschaften von vier dieser Phasen untersucht, nämlich der polaren und planaren Phasen sowie der A- und CSL-(color-spin-locked)Phasen. Mit Hilfe der QCD-Lückengleichung wurde die Energielücke sowie die kritische Temperatur bestimmt. Es stellt sich heraus, dass die Energielücke eines Spin-1-Farbsupraleiters um 2-3 Größenordnungen kleiner ist als die eines Spin-0-Farbsupraleiters, d.h. sie liegt im Bereich von 10 - 100 keV. Zwei besondere Eigenschaften der Energielücke werden diskutiert, nämlich eine 2-Lücken-Struktur, die in zwei der untersuchten Fälle auftritt, sowie mögliche Anisotropien, insbesondere Nullstellen der Lückenfunktion. Die Berechnung der kritischen Temperatur zeigt, dass es durchaus farbsupraleitende Materie in einer Spin-1-Phase im Innern von Neutronensternen geben kann, da die Temperatur von alten Neutronensternen im Bereich von einigen keV oder sogar darunter liegt. Darüber hinaus wurde die Frage untersucht, ob ein Farbsupraleiter auch ein gewöhnlicher Supraleiter ist. In diesem Zusammenhang ist die Frage von Interesse, ob ein Spin-1-Farbsupraleiter gewöhnliche Magnetfelder aus seinem Innern verdrängt, was sicherlich Auswirkungen auf die Observablen eines Neutronensterns hätte. Tatsächlich stellt sich heraus, dass ein Spin-1-Farbsupraleiter, im Gegensatz zu einem Spin-0-Farbsupraleiter, einen elektronmagnetischen Meissner-Effekt aufweist. Dieses Ergebnis wurde mit Hilfe von gruppentheoretischen Überlegungen vorausgesagt und mit Hilfe einer detaillierten Berechnung der Photon-Meissner-Massen bestätigt.
This work is dedicated to the investigation of nuclear matter at non-zero temperatures within an effective hadronic model based on the Walecka model. It includes fermions as well as a vector omega meson and a scalar sigma meson where for the latter a quartic self-interaction has been considered. The coupling constants have been adapted to the saturation properties of infinite nuclear matter. A set of self-consistent Schwinger-Dyson equations has been set up for all included particles within the Cornwall-Jackiw-Tomboulis formalism. This has been expanded to non-zero temperatures via the imaginary time formalism. Beside tree-level two different stages of approximations have been considered: the Hartree approximation which takes into account the double-bubble diagram for the scalar meson, and an improved approximation where in addition two-particle irreducible sunset diagrams for all fields were included. In the Hartree-approximation the Schwinger-Dyson equations can be solved by quasi-particle ansaetze, while in the improved approximation spectral functions with non-zero widths have to be introduced. The Schwinger-Dyson equations are solved by the fully dressed propagators. Comparing the two levels of approximation shows the influence of finite widths on the temperature dependence of the particle properties. The consideration of finite widths in fact has a significant influence on the transition from a phase of heavy nucleons to a transition of light nucleons, observed in the Walecka-model. The temperature dependence is weakend when finte widths are taken into account.
The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window.
In this thesis, I study the phase diagram of dense, locally neutral three-flavor quark matter as a function of the strange quark mass, the quark chemical potential, and the temperature, employing a general nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange quark mass, the ground state of quark matter corresponds to the color–flavor-locked (CFL) phase. At some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL (gCFL) phase. I also find several other phases, for instance, a metallic CFL (mCFL) phase, a so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase. I also study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of a Nambu–Jona-Lasinio (NJL) model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength. In addition, I study the effect of neutrino trapping on the phase diagram of dense, locally neutral three-flavor quark matter within the same NJL model. The phase diagrams in the plane of temperature and quark chemical potential, as well as in the plane of temperature and leptonnumber chemical potential are presented. I show that neutrino trapping favors two-flavor color superconductivity and disfavors the color–flavor-locked phase at intermediate densities of matter. At the same time, the location of the critical line separating the two-flavor color-superconducting phase and the normal phase of quark matter is little affected by the presence of neutrinos. The implications of these results for the evolution of protoneutron stars are briefly discussed.
This thesis investigates the jet-medium interactions in a Quark-Gluon Plasma using a hydrodynamical model. Such a Quark-Gluon Plasma represents a very early stage of our universe and is assumed to be created in heavy-ion collisions. Its properties are subject of current research. Since the comparison of measured data to model calculations suggests that the Quark-Gluon Plasma behaves like a nearly perfect liquid, the medium created in a heavy-ion collision can be described applying hydrodynamical simulations. One of the crucial questions in this context is if highly energetic particles (so-called jets), which are produced at the beginning of the collision and traverse the formed medium, may lead to the creation of a Mach cone. Such a Mach cone is always expected to develop if a jet moves with a velocity larger than the speed of sound relative to the medium. In that case, the measured angular particle distributions are supposed to exhibit a characteristic structure allowing for direct conclusions about the Equation of State and in particular about the speed of sound of the medium. Several different scenarios of jet energy loss are examined (the exact form of which is not known from first principles) and different mechanisms of energy and momentum loss are analyzed, ranging from weak interactions (based on calculations from perturbative Quantum Chromodynamics, pQCD) to strong interactions (formulated using the Anti-de-Sitter/Conformal Field Theory Correspondence, AdS/CFT). Though they result in different angular particle correlations which could in principle allow to distinguish the underlying processes (if it becomes possible to analyze single-jet events), it is shown that the characteristic structure observed in experimental data can be obtained due to the different contributions of several possible jet trajectories through an expanding medium. Such a structure cannot directly be connected to the Equation of State. In this context, the impact of a strong flow created behind the jet is examined which is common to almost all jet deposition scenarios. Besides that, the transport equations for dissipative hydrodynamics are discussed which are fundamental for any numerical computation of viscous effects in a Quark-Gluon Plasma.
After a brief introduction on QCD and effective models in the first chapter, I analyze the dependence of the QCD transition temperature on the quark (or pion) mass in the second chapter. I found that a linear sigma model, which links the transition to chiral symmetry restoration, predicts a much stronger dependence of T_c on m_pi than seen in present lattice data for m_pi >~ 0.4 GeV. On the other hand, an effective Lagrangian for the Polyakov loop requires only small explicit symmetry breaking to describe T_c(m_pi) in the above mass range. In the third and fourth chapter, I study the linear sigma model with O(N) symmetry at nonzero temperature in the framework of the Cornwall-Jackiw-Tomboulis formalism. Extending the set of two-particle irreducible diagrams by adding sunset diagrams to the usual Hartree-Fock (or Hartree) contributions, I derive a new approximation scheme which extends the standard Hartree-Fock (or Hartree) approximation by the inclusion of nonzero decay widths.
The aim of this thesis is to provide a complete and consistent derivation of second-order dissipative relativistic spin hydrodynamics from quantum field theory. We will proceed in two main steps. The first one is the formulation of spin kinetic theory from quantum field theory using the Wigner-function formalism and performing an expansion in powers of the Planck constant. The essential ingredient here is the nonlocal collision term. We will find that the nonlocality of the collision term arises at first order in the Planck constant and is responsible for the spin alignment with vorticity, as it allows for conversion between spin and orbital angular momentum.
In the second step, this kinetic theory is used as the starting point to derive hydrodynamics including spin degrees of freedom. The so-called canonical form of the conserved currents follows from Noether’s theorem.
Applying an HW pseudo-gauge transformation, we obtain a spin tensor and energy-momentum tensor with obvious physical interpretation. Promoting all components of the HW tensors to be dynamical, we derive
second-order dissipative spin hydrodynamics. The additional equations of motion for the dissipative currents are obtained from kinetic theory generalizing the method of moments to include spin degrees of freedom.
We discuss aspects of the phase structure of a three-dimensional effective lattice theory of Polyakov loops derived from QCD by strong coupling and hopping parameter expansions. The theory is valid for the thermodynamics of heavy quarks where it shows all qualitative features of nuclear physics emerging from QCD. In particular, the SU(3) pure gauge effective theory also exhibits a first-order thermal deconfinement transition due to spontaneous breaking of its global Z₃ center symmetry. The presence of heavy dynamical quarks breaks this symmetry explicitly and consequently, the transition weakens with decreasing quark mass until it disappears at a critical endpoint. At non-zero baryon density, the effective theory can be evaluated either analytically by the so-called high-temperature expansion which does not suffer from the sign problem, or numerically by standard Monte-Carlo methods due to its mild sign problem. The first part of this work devotes to a systematic derivation of the effective theory up to the 6th order in the hopping parameter κ. This method combined with the SU(3) link update algorithm provides a way to simulate the O(κ⁶) effective theory. The second part involves a study of the deconfinement transition of the pure gauge effective theory, with and without static quarks, at all chemical potentials with help of the high-temperature expansion. Our estimate of the deconfinement transition and its critical endpoint as a function of quark mass and all chemical potentials agrees well with recent Monte-Carlo simulations. In the third part, we investigate the N ſ ∈ {1,2} effective theory with zero chemical potential up to O(κ⁴). We determine the location of the critical hopping parameter at which the first-order deconfinement phase transition terminates and changes to a crossover. Our results for the critical endpoint of the O(κ²) effective theory are in excellent agreement with the determinations from simulations of four-dimensional QCD with a hopping expanded determinant by the WHOT-QCD collaboration. For the O(κ⁴) effective theory, our estimate suggests that the critical quark mass increases as the order of κ-contributions increases. We also compare with full lattice QCD with N ſ = 2 degenerate standard Wilson fermions and thus obtain a measure for the validity of both the strong coupling and the hopping expansion in this regime.
This thesis has light mesons and their vacuum interactions as its topic. In particular, the work examines the question where the scalar antiquark-quark states are found in the physical spectrum -- in the energy region below or above 1 GeV. Contrary to the naive expectation, the mentioned states are found in the region above 1 GeV. This has consequences for the building of order parameters for the chiral symmetry breaking of Quantum Chromodynamics (QCD).