Refine
Document Type
- Doctoral Thesis (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Gentherapie (2)
- gene therapy (2)
- Allergie (1)
- Fusionsinhibitor (1)
- Glykoprotein GP 41 (1)
- HIV (1)
- HIV infection (1)
- HIV-Infektion (1)
- Immunkrankheit (1)
- M87o (1)
Institute
- Medizin (4)
- Georg-Speyer-Haus (3)
- Biochemie und Chemie (2)
- Biowissenschaften (2)
- Pharmazie (2)
To date it is not clear at which stage of differentiation mature T cell leukaemia/lymphoma is initiated. Previous studies in our group showed that mature T cells are relatively resistant to transformation. We wanted to further investigate the transformation potential of NPM-ALK, p21SNFT and the viral oncoprotein Tax on mature T cells. First, we analyzed the effects on T cell growth in vitro after transducing human T cell lines with gammaretroviral vectors encoding these genes. No growth or proliferation promoting effect of all three genes was observed. In the second part of the project, we transduced murine, mature T cells and/or haematopoietic stem cells (HPCs/HSCs) and transplanted these cells into Rag-1 deficient recipients. All mice transplanted with NPM-ALK transduced monoclonal mature T cells (OT-1) developed leukaemia/lymphoma. In contrast, only few NPM-ALK transduced polyclonal T cell and HPC/HSC transplanted mice developed leukaemia/lymphoma. From the p21SNFT group, only two mice transplanted with transduced OT-1 T cells developed leukaemia/lymphoma, which showed high eGFP and interestingly CD19 expression. No malignancies were observed in Tax transplanted animals so far. Furthermore, the recipients do not show any eGFP marking in the periphery. In conclusion, our results show that compared to polyclonal T cells, monoclonal T cells are transformable after gammaretroviral transfer of NPM-ALK and p21SNFT.
Für eine erfolgreiche Gentherapie ist zunächst ein effizientes Gentransfersystem nötig, das das Transgen in möglichst vielen Zellen einbaut und es aktiv hält. Damit sich dann der Anteil der geschützten Zellen vergrößert, muss eine Selektivität der genmodifizierten Zellen gegenüber den nativen Zellen gegeben sein, wobei die Sicherheit nicht außer Acht gelassen werden darf, da ein ungünstiger Einbau des Transgens eine Insertionsmutagenese und somit Tumoren induzieren kann. Der durch die Arbeitsgruppe von Laer entwickelte retrovirale Vektor M87o codiert den membranständigen Fusionsinhibitor maC46 (membran-anchored C-Peptid 46), der den Eintritt von HIV (Human Immunodeficiency Virus) in die Zielzelle effektiv verhindert. Diese Gentherapie mit M87o wurde in einer klinischen Studie an T-Lymphozyten von 10 weit fortgeschrittenen AIDS (Acquired Immune Deficiency Syndrome)-Patienten durchgeführt, wobei die Therapie gut verträglich war und keine Toxizität zeigte. Allerdings hatten die Patienten auch keinen klaren Vorteil von der Therapie. In der vorliegenden Arbeit wurden SIN Vektoren (Self-inactivating Vektoren) in 5 verschiedenen Konstruktionen getestet, um die optimale Vektordesign zu ermitteln und eine langfristige hohe Expression zu ermöglichen. Da die SIN Vektoren im Vergleich zu konventionellen gammaretroviralen Vektoren ein geringeres Risiko bezüglich der Insertionsmutagenese aufweisen, stellen sie ein sichereres Vektorsystem dar. Um eine bessere Transgenexpression zu erzielen, wurde in den SIN Vektoren entweder ein zellulärer Promotor oder ein viraler SFFV (spleen focus forming virus) als internen Promotor verwendet. Zusätzliche regulatorische Elemente, wie wPRE (Woodchuck Posttranscriptional Regulatory Element), cHS4 (chicken Hypersensitive Site) Insulator und SAR (Scaffold Attachment Region) Element wurden dann in unterschiedlichen Kombinationen zu stärkeren und langanhaltenden Expressionen integriert, wobei wPRE die RNA Prozessierung verbessert und somit die RNA Stabilität erhöht und SAR und cHS4 Insulator dem Silencing entgegenwirken und so die Expression aufrechterhalten. Diese fünf SIN Konfigurationen wurden untereinander und mit dem klassischen gammaretroviralen Vektor M87o bezüglich des Titers, der Expressionsstärke und der Langzeit-Genexpression verglichen. Dazu wurden zunächst humane T-Zelllinien PM-1 und primäre humane T-Zellen als Testzellen verwendet. Die Versuche wurden dann mit murinen T-Zellen wiederholt, die in die immundefiziten Mäuse transplantiert wurden, um die Genexpression in vivo weiter zu verfolgen. Die SIN Konstrukte zeigten jedoch eine deutlich schwächere Expression als die LTR (Long Terminal Repeat)-getriebene Vektoren und nur ein Konstrukt mit dem viralen Promotor und wPRE zeigte eine annähernd so hohe Expression wie die konventionellen Vektoren. Während der virale SFFV Promotor eine höhere Expressionsstärke gegenüber dem zellulären EF1α (Elongationsfaktor 1 alpha) Promotor zeigte, hatte der cHS4 Insulator nur geringfügige Einflüsse sowohl auf den Titer als auch auf die Expressionsstärke. Der Vektor mit dem SAR-Element zeigte zwar die geringsten Titer und Expressionsstärke, aber in Langzeitbeobachtung wies er sowohl in vitro als auch in vivo eine relativ konstante Anzahl von transgenpositiven Zellen auf. SIN Vektoren, in denen mit einer Kombination von wPRE und SAR-Element die RNA Prozessierung verbessert und das methylationsbedingte Silencing verhindert wird, könnten eine weitere Optimierungsmöglichkeit des Gentransfersystems bei der Gentherapie darstellen.
Die Ausbreitung von HIV stellt ein kontinuierlich wachsendes Problem dar [132]. Durch Einführung der hochaktiven antiretroviralen Therapie (HAART) konnte die Morbidität und Mortalität der HIV-Infektion deutlich gesenkt werden, jedoch limitieren Resistenzbildungen des Virus und Toxizität der Medikamente den Erfolg. Eine mögliche Therapiealternative bietet die HIV-Gentherapie. Hierbei werden Zellen eines Patienten genetisch modifiziert, so dass sie ein antivirales Genprodukt exprimieren. In der Arbeitsgruppe von Laer (Georg-Speyer-Haus, Frankfurt) wurde der retrovirale Vektor M87o entwickelt, der das antivirale, membranverankerte Peptid maC46 kodiert. Dieses hemmt als Fusionsinhibitor effizient den Viruseintritt von HIV. Als Zielzellen einer HIV-Gentherapie können neben TLymphozyten, den eigentlichen Zielzellen von HIV, auch deren Vorläufer, die hämatopoetischen Stammzellen, verwendet werden. Durch Generierung der gesamten Hämatopoese sollte dies zur Expression des antiviralen Transgens in allen Blutzelllinien führen. Besonders wichtig hierbei ist, dass die Funktion der hämatopoetischen Stammzellen durch die genetische Modifikation möglichst nicht gestört wird. Ziel der vorliegenden Arbeit war es daher, toxische Effekte von M87o auf die Repopulierungsfähigkeit hämatopoetischer Stammzellen auszuschließen. Neben den Toxizitätsanalysen sollte auch die Langzeitexpression des retroviralen Vektors nach Transplantation genetisch modifizierter T- und Stammzellen untersucht werden. Eine stabile Expression des Transgens ist vor allem in T-Lymphozyten als Hauptzielzellen von HIV ausschlaggebend für den Erfolg der Gentherapie. Daher war ein weiteres Ziel dieser Arbeit, die Transgenexpression in vivo besonders in T-Lymphozyten im Verlauf zu untersuchen. Hierzu wurden in einem syngenen Mausmodell hämatopoetische Stammzellen mit dem retroviralen Vektor M87o transduziert und in bestrahlte Rag1-defiziente Mäuse transplantiert. Damit mögliche toxische Effekte von M87o auf die Hämatopoese nicht durch den Anteil untransduzierter Zellen im Transplantat maskiert werden, wurde in einer Versuchgruppe der Anteil transduzierter Stammzellen durch MACS-Sortierung auf über 95% angehoben. bAls Kontrollgruppen wurden untransduzierte, aber gleichermaßen kultivierte Stammzellen sowie mit dem Kontrollvektor M87c transduzierte Stammzellen transplantiert. Im folgenden Beobachtungszeitraum von 18-20 Wochen wurde regelmäßig das periphere Blut der Empfängertiere analysiert sowie nach Tötung der Tiere die einzelnen Zellpopulationen der hämatopoetischen Organe Blut, Lymphknoten und Milz charakterisiert. Hierbei konnte keine Toxizität durch M87o nachgewiesen werden. Zwar wurde für M87o-angereicherte Stammzelltransplantate eine verminderte bzw. verzögerte Lymphozytenrepopulierung beobachtet, dies war jedoch wahrscheinlich auf eine eingeschränkte „Fitness“ der Stammzellen durch den Sortierungsprozess und eine geringere Zellzahl im Transplantat zurückzuführen. M87o-transduzierte Stammzellen waren schließlich in der Lage, die komplette Lymphopoese zu generieren. Im Blut, Lymphknoten und Milz der Rezipienten konnten NK-, T- und B-Zellen nachgewiesen werden. Die lymphatische Differenzierung wurde also durch M87o nicht beeinträchtigt. Eine Aussage über die Toxizität von M87o auf die Myelopoese konnte leider nicht getroffen werden. Nach subletaler Bestrahlung der Empfängertiere und damit nur teilweisen Ablation des endogenen Knochenmarks wurden die meisten Zellen der myeloischen Linie durch die Wirts-Stammzellen generiert. Es müssen somit hinsichtlich der Unbedenklichkeit von M87o noch weitere präklinische Untersuchungen erfolgen, bei denen durch letale Bestrahlung der Empfängertiere lediglich die durch Spenderzellen differenzierte Myelopoese analysiert werden kann. Bei den Untersuchungen zur Transgenexpression nach Transplantation genetisch modifizierter Stammzellen konnte eine Langzeitexpression des maC46-Peptids auf allen lymphatischen Zelllinien (T-, B- und NK-Zellen) nachgewiesen werden. Dies zeigt also, dass eine stabile und effiziente Integration des Transgens und somit eine langfristige Expression in vivo möglich ist. Im Verlauf konnten jedoch bei nahezu allen Tieren fallende Anteile M87o-exprimierender Lymphozyten nachgewiesen werden. Dieser beobachtete Expressionsverlust war variabel hinsichtlich des zeitlichen Auftretens sowie zelltypabhängig. Die höchsten Anteile M87o-exprimierender Zellen zeigten sich innerhalb der B-Lymphozyten. Im Rahmen der M87o-Expressionsanalyse nach Transplantation genetisch modifizierter T-Lymphozyten wurden T-Lymphozyten mit unterschiedlicher Transduktionseffizienz in Rag1-defiziente Mäuse transplantiert. Unterschiede in der Langzeitexpression in Abhängigkeit von der ins Genom integrierten Kopienzahl des Vektors konnten hierbei nicht eindeutig gezeigt werden. Bei einigen Tieren konnte eine relativ langfristige in vivo Expression des maC46-Peptids nachgewiesen werden, bei anderen hingegen nachlassende Transgenexpressionen. Insgesamt war die Aussagekraft hier jedoch durch eine nach Transplantation auftretende schwere Kolitis bei den Versuchstieren und somit limitierte Beobachtungszeit stark eingeschränkt.
Gene therapy is a promising therapeutic strategy that emerged from the attractive idea of targeting therapy at the molecular level. For many patients who suffer from genetic and acquired diseases that cannot be effectively treated by conventional treatment approaches gene therapy remains a huge hope of cure in spite of the hurdles regarding efficacy and safety that need to be overcome. The development of efficient gene transfer vehicles, mainly retroviral vectors, led to the first successful gene therapy trial, to treat patients suffering from X-linked severe combined immunodeficiency syndrome (X-SCID) using gene modified stem cells (Hacein-Bey-Abina, Le Deist et al. 2002). Despite the success of this trial, it revealed the danger of retroviral insertional mutagenesis as a major adverse event of gene therapy using gene-modified stem cells (Hacein-Bey-Abina, von Kalle et al. 2003). In contrast to stem cells, T cells are relatively resistant to insertional mutagenesis and transformation even after transduction with potent oncogenes using retroviral vectors (Newrzela, Cornils et al. 2008). However, mature T cells can self-renew, proliferate and survive for long periods. These criteria are supposed to render T cells prone to transformation. Therefore, the questions of mature T cells transformability and the control mechanism limiting their transformation are still elusive.
Drug toxicity and viral resistance limit long-term efficacy of antiviral drug treatment for HIV
infection. Thus, alternative therapies need to be explored. Previously, group of “Prof. von Laer”
tested the infusion of T lymphocytes transduced with a retroviral vector (M87o) that expresses an
HIV entry inhibitory peptide (maC46). Gene-modified autologous T cells were infused into 10
HIV-infected patients with advanced disease and multidrug resistant virus during antiretroviral
combination therapy. T cell infusions were tolerated well with no severe side effects. A
significant increase of CD4 counts was observed post infusion. At the end of the one-year
follow-up, the CD4 counts of all patients were still around or above baseline. Gene-modified
cells could be detected in peripheral blood, lymph nodes and bone marrow throughout the oneyear
follow-up, whereby marking levels correlated with the cell dose. No significant changes of
viral load were observed during the first four months. Four of the seven patients that changed
their antiviral drug regimen thereafter responded with a significant decline in plasma viral load.
In conclusion, the transfer of gene-modified cells was safe, led to sustained levels of gene
marking and may improve immune competence in HIV-infected patients with advanced disease
and multidrug resistant virus. However, the low level of gene marking and the lack of substantial
long-term in vivo accumulation of gene-protected cells observed in this trial clearly demonstrate
the requirement for new vectors with new strategy.
In this thesis self‐inactivating lentiviral vectors harboring internal promoters and RNA elements
were therefore evaluated for their potential use in a clinical gene‐therapy trial. The results from
this work provide the basis for the selection of a suitable candidate vector for extensive
preclinical testing. Apart from being capable of transducing non‐dividing cells, lentiviral vectors
incorporate a number of additional features that are of potential value for gene therapeutic
applications. These include a larger packaging capacity, higher titers than γ‐retroviral vectors
and, most importantly, a reduced risk of deregulating cellular genes due to its natural integration
profile. The use of internal promoters to drive expression of the therapeutic transgene maC46
should further improve the safety profile of these new‐generation vectors, while an additional
artificial splice acceptor (SA) into the 5‟UTR of the transgene over all elevate transgene
expression. The rationale for this is that hematopoietic stem and progenitor cells will be
Summary
98
protected from enhancer‐mediated transactivation effects and also from potential side effects due
to the aberrant expression of maC46 while at the same time the full clinical benefit for the
patients is maintained.
In order to find a suitable candidate for preclinical studies, two candidate therapeutic vectors
harboring different regulatory elements were selected based on results from pilot experiments.
The internal promoters used to drive expression of codon optimized maC46 were the PGK
promoter and MPSV promoter. This work focuses on the transgene expression levels in
lymphoid cells and antiviral activity. The issues of long term expression, propensity to
methylation mediated silencing of the promoters, and genotoxicity were also touched. In a first
step the performance of different vectors was evaluated in the human T cell lines. Based on
promising data from ex vivo human peripheral blood mononuclear cells, the vector carrying the
MPSV promoter along with intron were selected for in vivo transplantation experiments.
In summary, the ex vivo data suggested the long term survival of lentiviral gene modified cells,
along with maintained expression of introduced genes. It was observed that the expression of
these constructs depends strongly on the activation and differentiation status of the targeted T
cells. This regulation was not linked to any specific promotor. In vivo study shows that maC46
can be introduced into murine multiple hematopoietic lineages via lentiviral vector and expressed
at high levels in their mulilineage progeny, without altering the hematopoiesis. There was no
sign of any kind of hematopoietic or lymphoid malignancies. Although gene-modified
lymphocytes persisted in-vivo, the downregulation of transgene expression was consistent with
the ex-vivo observation. In contrast to that the T cells transplanted group showed delayed
engraftment of donor cells and there was no expression of C46 in blood and lymphatic organs. .
In conclusion, when considering HIV gene therapy focusing CD4+ T cells, potential problems of
T cell activation status as related to the desired clinical effect must be addressed. These results
might open the way for a gene therapy targeting mainly or exclusively activated T cells and
could be exploited for immunostimulatory as well as suppressive approaches.
Retroviral vectors are powerful tools in clinical gene therapy as they integrate permanently into the target cell genome and thus guarantee long-term expression of transgenes. Therefore, they belong to the most frequently used application platforms in clinical gene therapy involving a broad range of different target cells and tissues. However, stable genomic integration of retroviral vectors can be oncogenic, as reported in several animal models and in clinical trials. In particular, γ-retroviral vectors, which derive from naturally mutagenic γ-retroviruses, integrate semirandomly into the host genome with regard to the target sequence, but have a preference for regions of active transcription and regulatory elements of transcriptionally active genes. The integration can result in overexpression of adjacent genes or disruption of ‘target’ gene expression. Moreover, γ-retroviral integration can cause modified transcripts and proteins through alternative or aberrant splicing or through premature termination of transcription.
Initially, the event of insertional mutagenesis and subsequent induction of leukemia by the genotoxicity of a γ-retroviral vector was described in a mouse model after genetic modification of hematopoietic stem cells (HSCs). Vector-related activation and overexpression of the oncogene ecotropic viral integration site-1 (Evi1) fostered clonal outgrowth and leukemogenesis. Additional genotoxic events of γ-retroviral vectors were observed in clinical HSC gene therapy trials for X-linked severe combined immune deficiency (SCID-X1), chronic granulomatous disease (X-CGD), and Wiskott-Aldrich Syndrome (WAS). But, genotoxicity induced by γ-retroviral vectors has never been described in clinical gene therapy trials involving adoptive transfer of genetically modified mature T lymphocytes. This fact is surprising, since T cells are long-lived and have a high capacity of self-renewal.
In a previous study, the susceptibility towards oncogenic transformation of mature T cells and HSCs after genetic modification was compared. It could be demonstrated that T-cell receptor (TCR)-polyclonal mature T cells are far less prone to transformation after γ-retroviral transfer of (proto-)oncogenes in vivo than HSCs. Additional experiments revealed that TCR-oligoclonal (OT-I and P14) mature T cells are transformable in the same setting and give rise to mature T-cell lymphomas (MTCLs).
In the present thesis, the susceptibility of mature T cells towards insertional mutagenesis was investigated. Within the first part of the thesis, retroviral integration sites (RISs) from 33 murine MTCLs were retrieved and subsequently analyzed in terms of integration pattern, detection of common integration sites (CIS) and gene ontology (GO). As these bioinformatic results demonstrated that insertional mutagenesis most likely contributed to mature T-cell lymphomagenesis, the susceptibility of mature T cells was directly assessed in a mouse model. Therefore, murine TCR-oligoclonal OT-I T cells were transduced with an enhanced green fluorescent protein (EGFP) encoding γ-retroviral vector and gene-modified T cells were transplanted into RAG1-/- mice. After 16 months, including one round of serial transplantation, a case of MTCL emerged. Tumor cells were characterized by CD3, CD8, TCR and ICOS expression. Integration site analysis via ligation-mediated polymerase chain reaction (LM-PCR) revealed a proviral insertion in the Janus kinase 1 (Jak1) gene. Subsequent overexpression of Jak1 could be demonstrated on transcriptional and protein level. Furthermore, T-cell lymphoma cells were characterized by an activated Jak/STAT-pathway as signal transducer and activator of transcription 3 (STAT3) was highly phosphorylated. The overexpression of Jak1 was causally implicated in tumor growth promotion as specific pharmacological inhibition of Jak1 using Ruxolitinib significantly prolonged survival of mice transplanted with these Jak1-activated tumor cells. A concluding systematic metaanalysis of available gene expression data on human mature T-cell lymphomas/leukemias confirmed the relevance of Jak/STAT overexpression in sporadic human T-cell tumorigenesis.
This was the first reported case of an insertional mutagenesis event in mature T cells in vivo. Thus, the results obtained in this thesis underline the importance of long-term monitoring of genetically modified T cells in vivo and the evaluation of vector toxicology and safety in T-cell based gene therapies. In particular, the transduction of T cells with a recombinant TCR or CAR (chimeric antigen receptor) bears a risk enhancement, as normal T-cell homeostasis is perturbed besides the general risk of insertional mutagenesis.
Resistenz polyklonaler, reifer T-Zellen gegenüber der Transformation durch retrovirale Transduktion
(2008)
Nach den ersten Erfolgen der Gentherapie bei angeborenen Immundefekten wurden einige Fälle von Leukämie nach gammaretroviralem Gentransfer in Blutstammzellen bei Patienten mit „severe combined immunodeficiency“ (SCID-X1) veröffentlicht. Diese entfachten eine Diskussion über das Risiko der Insertionsmutagenese bei der Verwendung gammaretroviraler Vektoren. Durch eine insertionsbedingte Transaktivierung potentieller Onkogene und damit verbundenen malignen Veränderungen können gammaretroviral transduzierte Blutstammzellen Leukämien hervorrufen. Aber nicht nur Blutstammzellen werden als Zielzellen in der Gentherapie genutzt. In der Gruppe von Laer wurde in den letzten Jahren eine neue Gentherapie der HIV-1 Infektion entwickelt. Hierbei werden dem Patienten genetisch geschützte, autologe T-Lymphozyten infundiert. Die Gefahr einer Leukämie durch Insertionsmutagenese sollte im Zuge dieser Studie für reife T-Lymphozyten evaluiert werden. In einer vergleichenden Analyse wurde untersucht, ob der gammaretrovirale Gentransfer in reife T-Lymphozyten die gleiche Genotoxizität birgt wie in hämatopoetische Stammzellen. Hierzu wurden reife T-Lymphozyten und hämatopoetische Progenitoren von C57BL/6(Ly5.1)-Mäusen mit multiplen Kopien gammaretroviraler Vektoren transduziert, die für die potenten T-Zell Onkogene LMO2, TCL1, dTrkA oder das Kontrollgen GFP kodierten. Es wurden sehr hohe Transduktionseffizienzen mit bis zu 70% für reife T-Lymphozyten und bis zu 98% für hämatopoetische Progenitoren erzielt, um möglichst leukämiefördernde Bedingungen zu schaffen. Nach Transplantation in kongene Rag-1 defiziente Empfängertiere (Ly5.2) entwickelten Onkogen-modifizierte Stammzellen nach einer charakteristischen Latenzperiode Leukämien/Lymphome. Am häufigsten wurden unreife, CD8+CD4+ doppelpositive T-Vorläufer Leukämien/Lymphome beobachtet. In einigen Rezipienten führte außerdem eine Überexpression von TCL1 in hämatopoetischen Stammzellen zu der Entwicklung von reifzelligen T-Zell Leukämien/Lymphomen und B-Zell Leukämien/Lymphomen. Die Integrationsanalyse ergab oligo- bis monoklonale Tumore, wobei keine offensichtlich tumorfördernden, die gammaretroviralen Insertionen flankierenden Gene identifiziert werden konnten. Bemerkenswerterweise entwickelte keines der T-Zell transplantierten Empfängertiere ein/e Lymphom/Leukämie, obwohl auch diese Zellen mit den gleichen Vektoren modifiziert wurden und über einen sehr langen Zeitraum persistierten. Um die Kontrollmechanismen dieser Resistenz näher zu untersuchen, wurde eine für den TCR monoklonale, adulte T-Zell Population mit dTrkA transduziert. Nach einer kurzen Latenzperiode entwickelten sich reifzellige T-Zell Leukämien/Lymphome. Anscheinend existiert eine Verbindung zwischen der relativen Transformationsresistenz reifer T-Lymphozyten und dem Konkurrenzverhalten verschiedener T-Zell Klone um stimulatorische MHC-TCR Nischen. Weiterhin wurde in vitro durch gammaretroviralen Transfer von LMO2 ein immortalisierter T-Zell Klon generiert. Dieser zeigte zwar nach einer langen Beobachtungszeit einen CD8-CD4-doppelnegativen Phänotyp, aber auch einen rekombinierten TCR. In vitro überwuchs er eine unmanipulierte Kompetitorpopulation, konnte jedoch nach Transplantation kein/e T-Zell Lymphom/Leukämie induzieren. Die LM-PCR Analyse des Klons lieferte eine sehr interessante Integration zwischen den Genen für die alpha-Ketten des IL-2 und des IL-15 Rezeptors, welche dadurch konstitutiv exprimiert wurden. Dies könnte das erste Beispiel für eine insertionsbedingte Immortalisierung eines adulten T-Zell Klons sein. In der vorliegenden Arbeit konnte zum ersten Mal eindeutig gezeigt werden, dass polyklonale, reife T-Zell Populationen in vivo eine hohe Transformationsresistenz aufweisen. Durch bestimmte Bedingungen können jedoch durchaus maligne Veränderung adulter, reifer T-Lymphozyten induziert werden. Für die Sicherheitsabschätzung gammaretroviraler Gentherapie-Studien mit reifen T-Lymphozyten sind die vorgestellten Ergebnisse von großer Bedeutung und könnten darüber hinaus Aufschluss über die populationsdynamischen Kontrollmechanismen reifer T-Zell Leukämien/Lymphome geben.
Seit der Einführung der antiretroviralen Therapie (HAART) ist die Mortalität von HIV-Infizierten in der westlichen Welt zwar deutlich zurückgegangen, die HIV-Infektion ist jedoch bis heute nicht heilbar. Die derzeitige Therapie unterdrückt zwar sehr effektiv die Virusreplikation, kann aber nicht das Virus vollständig eliminieren und somit die Infizierten nicht heilen. Die daher notwendige Langzeitbehandlung wird wiederum durch die relativ hohe Toxizität der Medikamente und durch das Auftreten resistenter Virusvarianten limitiert. Die Suche nach neuen Therapienansätzen und Wirkstoffklassen ist daher immer noch von größter Wichtigkeit. Die HIV-Gentherapie stellt neben der konventionellen antiretroviralen Therapie eine mögliche zusätzliche Behandlungsform dar. Die Arbeitsgruppe von Laer hat am Georg-Speyer-Haus retrovirale Vektoren entwickelt, die membrangebundene (ma) HIV-Eintrittsinhibitoren, sog. C Pepitde, kodieren. Das durch den Prototyp-Vektor M87 kodierte maC36-Peptid zeigte eine moderate Inhibition des Viruseintritts. In einem Optimierungsprozess wurde der Vektor M87o generiert. M87o kodiert im Vergleich zu M87 ein wirksameres maC-Peptid (maC46) und weist auch eine wesentlich höhere Expressionsstärke und dadurch eine stärkere inhibitorische Wirkung als der Prototypvektor auf. Ziel dieser Arbeit war es zunächst, HIV Varianten, die resistent gegenüber dem M87o–Genprodukt maC46 sind, in vitro zu generieren und anschließend den Resistenzmechanismus aufzuklären. In einer Kollaboration mit der Gruppe um M. Dittmar aus Heidelberg war durch Passage des HIV 1 Wildtyp (wt) Ba L-Isolats auf M87-transduzierten Zellen bereits das maC36-resistente Virusisolat Ba L_sel_MD generiert worden. Ba L_sel_MD wies zwei Resistenzmutationen in der gp41-Untereinheit des Hüllproteins auf: I556V (heptad repeat 1 Region) und N634K (heptad repeat 2 Region). Für die Mutation 634K war dabei gezeigt worden, dass sie auch zu einer leichten Reduktion der maC46-Sensibilität führt. In der vorliegenden Arbeit diente Ba L_sel_MD als Ausgang für die Selektion einer Virusvariante mit deutlich verminderter Sensibilität gegenüber maC46. Hierfür wurde Ba L_sel_MD über 149 Tage lang auf Zellen mit steigender maC46 Expressionshöhe passagiert und so das Isolat Ba L_FH1 generiert. Das Hüllprotein des selektierten Isolats war ausreichend, um einen maC46-resesistenten Phänotyp hervorzurufen. Das selektierte Hüllprotein war im Vergleich zu dem Ausgangsisolat ca. fünf- bis zehnfach weniger empfindlich gegenüber maC46. Die Sequenzierung des Ba L_FH1 Hüllproteingens zeigte, dass die Aminosäureausprägung an Position 634 des Ausgangsisolats (BaLsel_MD) konserviert worden war, während die Position 556 zur Wildtypsequenz revertiert war. Darüber hinaus wurden drei Mutationen in der gp120-Untereinheit des Hüllproteins (V2-Region (I187T), V3-Region (N305Y), C3-Region (E352K)), sowie eine Mutation in der heptad repeat 1 Region (A579T) der gp41-Untereinheit identifiziert. Für die reduzierte maC46-Empfindlichkeit waren in erster Linie die Mutation N305Y in der V3 Region und die Rückmutation 556I in Zusammenwirkung mit der bereits vorhandenen Mutation 634K verantwortlich. Die verbleibenden Mutationen hatten allenfalls modulierende Wirkung auf die maC46-Sensibilität. Die Resistenz ist vermutlich auf die beobachtete erhöhte Fusionsgeschwindigkeit des Hüllproteins von Ba L_FH1 im Vergleich zum Ausgangsisolat zurückzuführen, die interessanterweise mit einer reduzierten Corezeptoraffinität verknüpft war. Die erhöhte Fusionsgeschwindigkeit verkürzt das zeitliche Fenster, in welchem maC46 an seine Zielstruktur innerhalb des gp41 binden kann. Es scheinen zwei unterschiedliche Phasen des Eintrittprozesses durch die Mutationen verändert worden zu sein. Die Mutation in der V3-Region (N305Y) der gp120-Untereinheit beschleunigt wohl eine frühe Phase. Vermutlich ermöglicht diese Mutation, dass bestimmte Übergangszustände nach der Corezeptorbindung schneller durchlaufen werden können, indem die gp120/Corezeptorbindung destabilisiert wird. Die Rückmutation 556I beschleunigt wahrscheinlich in Zusammenspiel mit der bereits vorhandenen Mutation 634K die Ausbildung des 6 Helixbündels. Diese beiden Mutationen wirken somit auf eine späte Phase der Fusion. Obwohl bekannt ist, dass natürliche Variationen in gp120 die Sensibilität des HIV-Hüllproteins gegenüber C-Peptiden beeinflussen, konnte in der vorliegenden Arbeit zum ersten Mal gezeigt werden, dass solche Mutationen auch in vitro selektiert werden, um eine C-Peptidresistenz herbeizuführen.
An den Folgen von AIDS sind bisher fast 20 Millionen Menschen gestorben. Mit der Einführung der hochaktiven antiretroviralen Therapie (HAART) konnte erstmals die Viruslast bei gleichzeitiger Erhöhung der CD4-Lymphozytenzahl effizient erniedrigt werden. Dadurch konnte zwar eine Kontrolle der Virusreplikation und damit verbunden eine längere Überlebenszeit erreicht werden, jedoch ist eine vollständige Eradikation des Virus bisher nicht möglich. Hohe Behandlungskosten, Nebenwirkungen der antiviralen Substanzen, ihre unzureichende Wirkung in manchen Körperkompartimenten und die rasche Verbreitung resistenter Viren schränken die Effektivität von HAART ein. Alternative Therapieformen zielen in den letzten Jahren verstärkt auf die HIV-Eintrittshemmung durch Inhibition der Membranfusion von Virus und Wirtszelle („Fusionsinhibitoren“). Peptide, die sich aus der „heptad repeat“ Region 2, HR2, des gp41 ableiten (C-Peptide), sind äußerst wirksame antivirale Substanzen. 2003 wurde T-20, ein 36 Aminosäure langes C-Peptid, als erster Fusionsinhibitor zugelassen. Sein breiter Einsatz ist jedoch aufgrund rascher Resistenzbildung, mangelnder oraler Verfügbarkeit, einer äußerst kurzen Serumhalbwertszeit sowie daraus resultierender hoher Therapiekosten limitiert. Aufgrund dessen sollte in der vorliegenden Arbeit mit der Entwicklung von RNA-Aptameren als HIV-Fusionsinhibitoren ein neuer therapeutischer Ansatz etabliert werden. Zur Isolierung dieser RNA-Aptamere wurden zwei hoch komplexe RNA-Bibliotheken in manuellen sowie automatisierten Selektionen gegen verschiedene Zielstrukturen auf dem HIV-1 gp41 mit Hilfe der SELEX-Technologie selektiert. Der Wirkmechanismus der isolierten RNA-Aptamere sollte analog zu den gp41 HR-abgeleiteten Peptiden auf der Hemmung der Ausbildung des Sechs-Helix-Bündels als fusionaktive Struktur beruhen. So sollten die RNA-Aptamere die Ausbildung der zentralen N coiled-coil Struktur verhindern (Selektion gegen HR1-Peptide) oder die Anlagerung der HR-2 Domänen an die konservierten hydrophoben Furchen des zentralen N coiled-coils inhibieren (Selektion gegen HR2-Peptide). Die gewählten Zielstrukturen wurden entweder als freie synthetische Peptide oder membrangebunden auf der Oberfläche von humanen T-Zellen präsentiert. Um die Selektion von serumstabilen Aptameren zu gewährleisten, wurden die RNA-Aptamere unter Einsatz von 2’-F- oder 2’-NH2-modifizierten Pyrimidinen transkribiert. Nach initialen Selektionsrunden wurden die isolierten Aptamerfraktionen in einer „single-round infection“ unter Einsatz von HIV-Pseudotypvektoren auf spezifische Inhibition des Eintritts von HIV in die Zielzellen analysiert. Die isolierten RNA-Aptamere waren in der Lage, den HIV-Eintritt zu inhibieren, ihre Wirksamkeit war allerdings im Vergelich zu der naiven Bibliothek gering. Nach Durchführung von verschiedenen Reifungsstrategien, um die Affinität der vorselektieren RNA-Fraktionen zum jeweiligen Zielepitop zu erhöhen, konnte die inhibitorische Wirkung der gereiften RNA-Fraktionen auf das 10Fache im Vergleich zu der Urspungsbibliothek verbessert werden. Die wirksamste RNA-Fraktion, 435UU, wurde aus einer Selektion einer aminomodifizierten N30 RNA-Bibliothek gegen das membranverankerte Fusionsprotein M435, bestehend aus gp41 C46 und dem membranproximalen HIV-Linker, und anschließender Kompetiton mit dem 2F5 Antikörper gewonnen. Die 435UU RNA-Fraktion konnte den Eintritt von HIV mit einer IC50 ≈ 200 nM spezifisch hemmen. Weiterhin konnte die spezifische Fusionsinhibition der 435UU Aptamerfraktion in einem Zell-Zellfusionsassay unter Einsatz von HIV env exprimierenden Zellen und einer humanen T-Zelllinie demonstriert werden. Die Affinität der 435UU-Fraktion wurde in einem Gelmobilitätsversuch bestimmt. Die moderate HIV-Eintrittshemmung beruhte auf einer schwachen Bindung (Kd ≈ 750 nM) an das Zielepitop auf dem gp41. Die Analyse von Einzelaptameren aus der 435UU RNA-Population ergab keine signifikanten Unterschiede in ihrem HIV-Neutralisationspotential. Des Weiteren konnten nur wenig gemeinsame Primärstrukturmotive bestimmt werden. Der Gehalt an inkorporierten Pyrimidinen in den 435UU-Einzelaptameren war allerdings mit ca. 70% vergleichsweise hoch. Unter Einsatz von randomisierten RNA-Transkripte mit definiertem Pyrimidingehalt konnte festgestellt werden, dass tendenziell ein höherer Gehalt an NH2-Pyrimidinen die HIV-Neutralisation fördert. Allerdings konnte keine eindeutige Korrelation zwischen der Bindung an das C46-HIVLinker Fusionskonstrukt und dem Pyrimidingehalt der Transkripte ermittelt werden. Die Sekundärstukturvorhersage ergab keine strukturelle Verwandtschaft unter den 435UU-Einzelaptameren noch konnten klar definierte Sekundärstrukturmotive gefunden werden. Die Selektion der 435UU-Aptamerfraktion erfolgte deshalb nich allein aufgrund ihres hohen Pyrimidingehaltes. Ein direkter Vergleich der 435UU Aptamerfraktion mit dem bisher einzigen RNA-Eintrittsinhibitor, einem anti-gp120 RNA-Aptamer, ergab zwar eine geringfügig schwächere HIV-Inhibition, jedoch ein wesentlich breiteres Wirkspektrum der isolierten anti-gp41 RNA-Aptamere wahrscheinlich durch ihren hoch konservierten Wirkmechanismus. Schlussendlich könnte die Wahl der Präsentation der Zielstrukturen sowie der Selektionsdurchführung die Gewinnung von RNA-Aptameren mit moderater Affinität fördern und gleichzeitig zum Verlust von hoch affinen RNA-Strukturen führen. In nachfolgenden Selektionen sollte deshalb die Selektionsstringenz erhöht sowie gegen membrangebundene Zielstrukturen selektiert werden, die die tatsächliche native gp41 Konformation darstellen.
Präklinische Untersuchungen zur Gentherapie der HIV-Infektion mit dem retroviralen Vektor M87o
(2007)
Mit der Einführung der hochaktiven antiretroviralen Therapie (HAART) 1995 wandelte sich die HIV-Infektion in den Industrieländern von einer akut lebensbedrohlichen zu einer chronisch verlaufenden und scheinbar gut kontrollierten Erkrankung. Das Virus wird allerdings nie vollständig aus dem Körper eliminiert, sodass die Betroffenen zeitlebens Medikamente einnehmen müssen. Die Langzeit-Medikation wird häufig von schweren Nebenwirkungen begleitet, führt zur Selektion resistenter Viren und muss häufig umgestellt werden. Gentherapeutische Verfahren, die die CD4+ Zielzellen durch die Expression antiviraler Gene vor der Infektion durch HIV schützen („intrazelluläre Immunisierung“), stellen viel versprechende Therapiealternativen dar. Der in der Arbeitsgruppe von Laer entwickelte retrovirale Vektor M87o (EGELHOFER et al. 2004, EGELHOFER 2004) exprimiert das 46 Aminosäuren lange membran-verankerte Peptid C46, das in der Lage ist, die gp41-vermittelte Fusion von Virus- und Zellmembran zu inhibieren. In Zelllinien und primären Lymphozyten konnte gezeigt werden, dass M87o die Infektion durch unterschiedliche HIV-Isolate sehr effektiv verhindert. Im Rahmen vorklinischer Untersuchungen konnte in vitro gezeigt werden, dass die retrovirale Transduktion mit M87o das Transformationsrisiko und damit das Risiko der Entstehung von Neoplasien nicht steigert. An primären peripheren T-Zellen konnte zeigt werden, dass M87o die Zielzellen weder phänotypische noch funktionelle verändert. Für die Untersuchung der retroviralen Gentherapie im Rhesusaffenmodell wurde zunächst ein Gentransferprotokoll für periphere Affenlymphozyten entwickelt, mit dem in Vorversuchen Gentransferraten von ca. 50% erreicht werden konnten. Das Transduktionsprotokoll wurde anschließend im Rahmen einer präklinischen Studie zur Toxizität und Immunogenität der M87o-Gentherapie, bei der Herstellung zweier Studientransplantate angewandt. Beide Zellpräparate wurden den Versuchstieren transplantiert. Während des Eingriffs traten keine akuttoxischen Reaktionen auf. M87o+-Zellen konnten bis 140 Tage nach der Transplantation mittels PCR nachgewiesen werden. Immunologische Untersuchungen (Cytokinfärbung, Proliferationsassay, ELISPOT) ergaben keine Hinweise auf zelluläre oder humorale Immunreaktionen. M87o-spezifische Antikörper waren im Serum nicht nachweisbar. Für die Durchführung einer klinischen Studie zur Toxizität und Wirksamkeit (Phase I/II) an HIV-infizierten Probanden wurde ein Protokoll zur Produktion M87o-modifizierter T-Zellen (mindestens 5 × 108 M87o+ CD4-T-Zellen pro Spender) entwickelt. In die klinische Prüfung wurden Patienten aufgenommen, die nach multiplem Therapieversagen durch das Auftreten multiresistenter HIV eine CD4-Zellzahl von 50 bis 200 µl-1 Blut, sowie eine Viruslast von >5.000 Kopien ml-1 Blut aufwiesen. Im Versuchsmaßstab konnte ein Transduktionsprotokoll erarbeitet werden, mit dem im Mittel 46% der CD4+ T-Zellen mit M87o transduziert werden konnten. Innerhalb von 10 Tagen expandierte die Zellzahl im Mittel um den Faktor 153, wobei die HIV-Replikation vollständig inhibiert wurde. Das Protokoll wurde erfolgreich vom Versuchsmaßstab in den klinisch relevanten Produktionsmaßstab übersetzt. In drei Versuchsläufen wurde im Mittel eine Transduktionsrate von 29% erreicht und die Zellzahl um den Faktor 44 vermehrt. Der Anteil an CD3+/CD4+ Zellen an der Gesamtpopulation lag im Mittel bei 91%. Insgesamt konnten mit dem etablierten Protokoll durchschnittlich 2,3 × 109 CD3+/CD4+/M87o+ Zellen, bei gleichzeitig vollständiger Inhibition der HIV-Replikation, generiert werden. Im Rahmen einer klinischen Studie zur Toxizität und Wirksamkeit der M87o-Gentherapie wurden 10 Studientransplantate gemäß dem im Rahmen dieser Arbeit entwickelten Protokoll hergestellt. Alle Transplantate wurden am Universitäts-Krankenhaus Eppendorf in Hamburg transfundiert und von den Patienten sehr gut vertragen.