• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Bekö, Sándor László (1)
  • Cuong, Ton Quoc (1)
  • Degen, Alexander (1)
  • Pisternick, Thorsten (1)
  • Renner, Steffen (1)
  • Rühl, Stephan (1)
  • Söntgen, Olaf (1)
  • Tutughamiarso, Maya Oktavia (1)
  • Wagner, Guido (1)
  • Wolf, Alexandra Kerstin (1)
+ more

Year of publication

  • 2009 (2)
  • 2012 (2)
  • 2014 (2)
  • 2002 (1)
  • 2003 (1)
  • 2004 (1)
  • 2006 (1)

Document Type

  • Doctoral Thesis (10)

Language

  • German (9)
  • English (1)

Has Fulltext

  • yes (10)

Is part of the Bibliography

  • no (10)

Keywords

  • Kraftfeld (1)
  • Kraftfeld-Rechnung (1)
  • Kristallstrukturanalyse (1)
  • Parametrisierung (1)
  • Python (1)
  • Python <Programmiersprache> (1)
  • Tetraederstruktur (1)
  • force field (1)
  • parameterization (1)

Institute

  • Biochemie und Chemie (9)
  • Pharmazie (1)

10 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Kristallstruktur-Design und konzeptionelle Entwicklung zur frühzeitigen Erkennung von supramolekularen Komplexen (2009)
Cuong, Ton Quoc
Das Ziel dieser Arbeit ist die Synthese von nicht-kovalenten supramolekularen Komplexen, um nachfolgend aus den Kristallstrukturen dieser Verbindungen bessere Einsichten über die H-Brückenwechselwirkungen zwischen den organischen Molekülen zu erlangen. Um an dieses Ziel zu kommen, wurde ein Konzept zur gezielten Synthese von supramolekularen Komplexen entwickelt. Die Steuerung des Co-Kristallisationsprozesses ist keine einfache Aufgabe, deshalb darf der Verlauf einer solchen Synthese von nicht-kovalenten Verbindungen nicht einfach dem Zufall überlassen werden. Der Start erfolgt mit einer gründlichen Auswahl der Verbindungen durch Intuition mit Hilfsmitteln (Chemikalienkataloge und chemische Datenbanken). In einem Selektionsabschnitt werden chemische Datenbanken, analytische Methoden und rechnergestützte Programme zu Hilfe genommen. Aussichtsreiche Kandidaten werden mit dem Programm SUPRA getestet; so zeigt sich, ob das gewünschte H-Brückenmuster prinzipiell realisierbar ist. Auch die verschiedenen Vorproben zum Test auf H-Brücken gebundene Komplexe (siehe Kapitel 8 und 9) liefern wertvolle Informationen. Mit den so ausgewählten Kandidaten wurden schließlich Kristallisationsversuche angesetzt. Falls möglich können Strukturvorhersagen der jeweiligen Komplexe mit Hilfe von Strukturvorhersageprogrammen getroffen werden (siehe Kapitel 7). Die erhaltenen Co-Kristalle werden anschließend am Einkristalldiffraktometer gemessen und darauf folgend die Kristallstrukturen gelöst. Um die Reaktionsbedingungen zur Bildung von bestimmten supramolekularen Komplexen kontrollieren zu können, wurden die Gitterenergie des Komplexes berechnet und die Schmelzpunkte bestimmt. Mit Kenntnis der Gitterenergie des Komplexes, der Edukte bzw. der Pseudokomplexe kann die Reaktionsbedingung so eingestellt werden, dass nur eine bestimmte Verbindung bei einer vorgegebenen Reaktionsbedingung auskristallisiert. Der Einfluss bzw. die Auswahl von Lösungsmitteln darf bei Co-Kristallisationsprozessen nicht vernachlässigt werden. Der erste Abschnitt dieser Arbeit befasst sich mit der Synthese von supramolekularen Komplexen aus Komponenten, die ausschließlich zwei Protonen-Akzeptoren bzw. zwei Protonen-Donoren (AA-DD-Muster) beinhalten. Die fehlgeschlagenen Experimenten passen zur Trefferquote dieser Verbindungsklasse in der CSD. Der Grund für diesen Misserfolg ist grundsätzlich auf die geometrische Anordnung der freien Elektronenpaare der Akzeptoren zurückzuführen. Sind Sauerstoffatome an solchen H-Brückenmustern als H-Akzeptoren beteiligt, ist es oft nicht möglich, eine lineare Anordnung der H-Donorengruppe mit diesen Sauerstoffatomen als Akzeptoren zu bewerkstelligen. Nach erfolglosen Bemühungen wandten wir uns Verbindungen zu, die mindestens drei Akzeptoren bzw. Donoren im jeweiligen Molekül aufweisen. Für dieses Experiment wurden zunächst starre, kleine organische Moleküle ausgesucht. Das AAA-DDD-Muster konnte im gesamten Verlauf dieser Arbeit nicht hergestellt werden. Es ist nicht leicht, eine Verbindung zu synthetisieren, bei der alle H-Akzeptorgruppen auf einer Seite benachbart angeordnet sind. Eine Literaturaussage, dass Verbindungen mit dem AAA-DDD-Muster die stabilsten aller dreifach gebildeten Wasserstoffbrückenbindungen sind, konnte daher nicht experimentell verifiziert werden. Unsere Gruppe hat daraufhin versucht, die bekannten H-Brückenmuster aus den Watson-Crick-Basenpaarungen (AAD-DDA) sowie das ADA-DAD-Muster nachzuahmen. Nur mit dem Muster ADA-DAD konnten Erfolge erzielt werden. Die entsprechenden Komplexe konnten nicht nur erfolgreich synthetisiert, sondern auch durch die Einführung sterisch anspruchsvoller Substituenten die Bildung von unerwünschten Wasserstoffbrückenmustern gezielt verhindert werden. Nachdem die Synthese von zahlreichen Komplexen gelang, sind wir zu pharmazeutischen Wirkstoffen übergegangen. Mit diesem Schritt soll eine Brücke zur Pharmazie geschlagen werden. Vier pharmazeutische Wirkstoffe mit definiertem Wasserstoffbrückenmuster wurden ausgesucht und anschließend mit den passenden Gegenstücken zur Kristallisation angesetzt. Nur für Trimethoprim konnten Co-Kristalle erhalten werden. Mit diesem Wirkstoff konnte anschließend gezeigt werden, wie sich Moleküle in bestimmten chemischen Umgebungen im Festkörper anpassen und ihre geometrische Anordnung ändern, um die bestmöglichen Wechselwirkungen zu erreichen. Sämtliche Kristallstrukturen von Trimethoprim, die in der CSD in neutraler Form aufzufinden sind, demonstrieren, wie flexibel diese Verbindung in Abhängigkeit von der Umgebung ihre Konformation ändert. In dieser Arbeit konnte auch gezeigt werden, wie Kristallisationsbedingungen verändert werden sollten, um den gewünschten Komplex herstellen zu können. Die Schmelzpunktbestimmung sowie die Kombination mit der Gitterenergie dienten dazu, für die gegebenen Verbindungen die passenden Bedingungen für den Kristallisationsprozess zu ermitteln. Die Schmelztemperaturen von drei in der Struktur ähnlichen Komplexen liegen jeweils zwischen den Schmelztemperaturen ihrer Ausgangsverbindungen, was zu der Annahme verleitet, dass bei höheren Temperaturen die Verbindungen mit höheren Schmelztemperaturen und somit stabileren Kristallgittern bevorzugt gebildet werden. Wird die Temperatur gesenkt, so könnten alle Formen von Kristallen (die der Edukte, Pseudokomplexe und der supramolekularen Komplexe) in einer einzigen Probe anfallen. Um die Gültigkeit dieser Annahme zu überprüfen, bedarf es der Durchführung von Pulveraufnahmen der gesamten Proben. Diese konnten aufgrund der geringen Mengen an Kristallsubstanz nicht realisiert werden. In Zukunft wird das Augenmerk besonders auf die Erforschung von supramolekularen Komplexen mit anspruchsvolleren Freiheitsgraden gelegt. Diese Komplexe sollen mehrere Rotationsfreiheitsgrade besitzen bzw. aus mehr als vier H-Brücken komplementär zusammengesetzt sein. Darüber hinaus ist unsere Gruppe immer noch bemüht, Komplexe zu co-kristallisieren, die am Ende die Muster bzw. die Konstellationen aufweisen, die von vornherein konzeptionell ausgearbeitet wurden.
Wasserstoffbrücken als strukturbildendes Element : Synthese und Berechnung supramolekularer Komplexe (2004)
Degen, Alexander
Die nicht-kovalente Synthese sowie die Berechnung der supramolekularen Komplexe wurden anhand dreier unterschiedlicher Stoffklassen demonstriert. Ziel war es, supramolekulare Dimere zu kristallisieren, die durch zwei Wasserstoffbrücken zusammengehalten werden. Die zuerst untersuchten Indol-Derivate waren potentiell selbstkomplementär. Während der Donor im starren Indol-Ring lag, befand sich der Akzeptor in der Seitenkette, was zu konformationell flexiblen Verbindungen führte. Durch Variation des Abstandes von Donor und Akzeptor, was einer Verlängerung der Seitenkette durch zusätzliche CH2-Gruppen entsprach, sollte herausgefunden werden, bei welcher geometrischen Anordnung dimere Komplexe entstehen Die Ergebnisse zeigten, daß die gewünschten Dimere erst bei einer Kettenlänge von drei CH2-Gruppen um Kristall zu beobachten waren. Diese konformationell flexiblen Verbindungen wiesen somit große Unterschiede zwischen berechneter und realer Komplexgeometrie auf, die darauf zurückzuführen sind, daß im Kristall eine Vielzahl von Molekülen wechselwirken, während in der Rechnung mit dem Kraftfeldprogramm MOMO nur zwei Moleküle berücksichtigt werden. Somit führt die „Sandwich“-Form zu einer günstigeren van-der-Waals-Energie als die planare Form. Im zweiten Abschnitt dieser Arbeit konzentrierten sich unsere Untersuchungen auf die Substanzklasse der Acetylhydrazone, welche ebenfalls potentiell selbstkomplementäre Verbindungen darstellen. Im Gegensatz zu den Indol-Derivaten wurde hier der Abstand zwischen Donor und Akzeptor konstant gehalten, um zu untersuchen, wie sich unterschiedliche Reste der Acetylhydrazone auf die Konformation der Moleküle und somit auch auf die Komplexgeometrie auswirken. Zu diesem Zweck wurde eine Reihe von Verbindungen mit Resten unterschiedlicher sterischer Hinderung synthetisiert. Ziel war es auch in dieser Verbindungsklasse gezielt Dimere mit zwei Wasserstoffbrücken zu kristallisieren. Eine Suche in der CSD zeigte schnell, daß Acetylhydrazone zwei Vorzugskonformationen besitzen: eine, in der Donor und Akzeptor eine anti-Anordnung besitzen, was in der Regel zu kettenförmigen Wasserstoffbrücken führt, und eine syn-Anordnung, die zu den gewünschten Dimeren führen sollte. Es galt nun zu untersuchen, welche dieser Reste zur syn-Konformation führt und welches die Vorzugskonformation der Acetylhydrazone ist. Die Untersuchungen zeigten, daß zwei sterisch anspruchsvolle Reste zur syn-Anordnung von Donor und Akzeptor führen und somit zu Dimeren im Kristall. Verbindungen mit zwei sterisch wenig anspruchsvollen Resten lagen hingegen in der anti-Konformation vor und bildeten wie erwartet Polymere. Für die Acetylhydrazone konnte folgende These aufgestellt werden: Die syn-Konformation entsteht, wenn beide Reste drei oder mehr (Kohlenstoff-) Atome besitzen, anderenfalls entsteht die anti-Anordnung. Die Rechnungen lieferten, bis auf eine Ausnahme, supramolekulare Dimere mit zwei Wasserstoffbrücken. Für jene Verbindungen, die ebenfalls in der syn-Konformation in Dimeren kristallisieren, ist die Übereinstimmung zwischen der berechneten und der realen Komplexgeometrie sehr gut. Im letzten Kapitel dieser Arbeit sollten heteromolekulare Komplexe, also solche, die aus zwei unterschiedlichen Molekülen bestehen, untersucht werden. Die erste der eingesetzten Verbindungen sollte zwei Donor-Gruppen enthalten, während die zweite Verbindung zwei Akzeptoren besitzen sollte. Dabei wurde eine Reihe von Diol-Dion-Komplexen untersucht. Dabei gelang es nur einen dieser Komplexe zu kristallisieren und experimentell zu untersuchen. Leider lagen keine Dimere vor, sondern es bildete sich ein 2:1-Komplex (Diol/Dion), der kettenförmige Wasserstoffbrücken ausbildete. Erfreulich war hingegen, daß eine Konformationänderung des Dions zu beobachten war; denn gegenüber der Kristallstruktur der reinen Verbindung lag 25 im Komplex als planare Verbindung vor. Gleichzeitig wurden die möglichen Komplexgeometrien mit MOMO berechnet. Die meisten der berechneten Komplexe wiesen Dimere mit den gewünschten zwei Wasserstoffbrücken auf.
Entwicklung von Methoden zur Konformationsanalyse supramolekularer Komplexe in Kraftfeldprogrammen (2003)
Söntgen, Olaf
Im Verlauf der vorliegenden Arbeit wurde mit dem SUPRA-Algorithmus ein Verfahren zur Berechnung der Struktur Supramolekularer Komplexe programmiert und in das Kraftfeldprogramm MOMO implementiert. Bei der Konformationsanalyse Supramolekularer Komplexe ergibt sich das Problem, dass die Anzahl der notwendigen Rechenschritte mit der Größe der zu berechnenden Struktur, genauer mit der Anzahl vorhandener Torsionsfreiheitsgrade, exponentiell ansteigt. Dieses Problem wurde umgangen, indem die Rechnung in drei kleinere Abschnitte aufgeteilt wurde. Es werden nacheinander drei Konformationsanalysen durchgeführt. Zuerst erfolgt jeweils eine Konformationsanalyse für die beiden beteiligten Einzelmoleküle. Deren Strukturen dienen dann wiederum als Eingabe für die dritte, eigentliche Konformationsanalyse des Supramolekularen Komplexes. Ziel dieser Arbeit war dann unter anderem zu überprüfen, ob trotz der Vereinfachungen diese Vorgehensweise effiziente Ergebnisse liefert. Zu Beginn wurden Berechnungen für den Komplex Adenin-Uracil durchgeführt, die Resultate stimmten mit experimentell gefundenen Paarungsmustern (Watson-Crick, reverse Watson- Crick, Hoogsteen, reverse Hoogsteen) überein. Eine weitere Rechnung am Komplex Cytosin- Guanin fand als Ergebnis Watson-Crick- und reverse Watson-Crick-Paarung. Die besten Ergebnisse wurden unter Verwendung des Ladungsmodells von Gasteiger und Marsili sowie der Wasserstoffbrücken-Potenzialfunktion von Vedani und Dunitz ohne Berücksichtigung der van-der-Waals-Wechselwirkungen erhalten. Diese Kraftfeldeinstellungen wurden im weiteren Verlauf der Arbeit als die optimalen Parameter für den SUPRA-Algorithmus beibehalten. Anschließend wurden zwei Komplexe fluormodifizierter Basenpaare berechnet, um die in einem RNA-Duplex experimentell aufgefundenen C-H...F-C-Brücken rechnerisch zu reproduzieren. Nur für eines der beiden Basenpaare konnte dieses Wasserstoffbrücken- Bindungsmuster erhalten werden, für das andere Dimer wurde die erwartete Struktur nicht gefunden. Es sollte deshalb der gesamte RNA-Duplex berechnet werden. Hierzu war das Programm MOMO nur sehr bedingt geeignet, und zwar sowohl was den Aufbau des Doppelstranges betraf als auch die Energie- und Geometrieberechnung. Trotz umfangreicher Versuche gelang es nicht, die Doppelhelixstruktur im Verlauf der Energieminimierung beizubehalten. Durch Anpassung der Kraftfeldparameter konnte aber eine stark aufgeweitete Helixstruktur berechnet werden, in welcher die modifizierten Basen nach dem experimentell gefundenen Muster gepaart waren. Außerdem wurde der SUPRA-Algorithmus anhand eines Dipyridon-Komplexes auf seine Fähigkeit getestet, Moleküle mit mehreren Torsionsfreiheitsgraden zu berechnen. Hier ergab sich wegen der konformationellen Flexibilität eine Rechenzeit von über drei Wochen. Das Ergebnis der Rechnung stimmte gut mit der experimentell gefundenen Struktur überein. Am Beispiel zweier Komplexe selbstkomplementärer Diketopiperazine sowie eines Komplexes aus N,N'-Di(tert-butyl)-melamin und 5,5-Dimethylbarbitursäure wurden Rechnungen von Komplexen aus mehr als zwei Molekülen durchgeführt. Es zeigte sich eine gute Übereinstimmung der Ergebnisse mit den bekannten Kristallstrukturen. Als letztes wurden anhand zweier selbstkomplementärer Acetylhydrazon- und dreier Diketon- Diol-Komplexe fünf unbekannte Strukturen doppelt wasserstoffbrücken-gebundener Dimere vorhergesagt. Anschließend sollte jeweils die Kristallstruktur bestimmt und mit dem Ergebnis der Vorhersage verglichen werden. Im Fall der Diketon-Diol-Komplexe gelang bisher keine Züchtung eines entsprechenden Mischkristalls, sondern die beteiligten Komponenten kristallisierten einzeln aus. Bei den zwei Acetylhydrazonen dagegen konnten Kristalle erhalten werden. Eine der Kristallstrukturen wies das mit dem SUPRA-Algorithmus vorhergesagte Dimer auf. Im Verlauf der Arbeit zeigte sich des Öfteren, dass die gewählte Strategie, die Anzahl der Startstrukturen bei der Konformationsanalyse zu begrenzen, um ein exponentielles Ansteigen der Rechenschritte zu verhindern, erfolgreich war. Mehrmals fanden sich als Ergebnis der Rechnung Strukturen von komplexgebundenen Molekülen, die sich stark von der Startkonformation eines Einzelmoleküls unterschieden, so zum Beispiel im Falle des Dipyridon-Komplexes oder der Diketon-Diol-Komplexe. Für die Zukunft sind weitere Kristallisationsversuche der Acetylhydrazone geplant, um eventuelle Polymorphe aufzufinden, bei denen sich auch eine Übereinstimmung mit der zweiten vorhergesagten Struktur zeigt. Weiterhin ist beabsichtigt, die Packungsenergien der gefundenen Kristallstruktur sowie einer theoretischen Kristallstruktur, die in ihrem Wasserstoffbrückenbindungs-Muster der mit MOMO gemachten Vorhersage entspricht, zu berechnen und zu vergleichen. Durch Einführung verschiedener Liganden in das Acetylhydrazon und Vergleich der daraus resultierenden Packungsmuster sollen Regeln über die den Kristallisationsprozess bestimmenden Einflussfaktoren abgeleitet werden. Weiterhin soll eine Reihe von anderen Verbindungsklassen synthetisiert, strukturell untersucht und berechnet werden, um so weitere Vergleiche zwischen theoretischen Vorhersagen und Kristallstruktur anstellen zu können. Für das Programm MOMO wäre wünschenswert, den Multipol-Ansatz in die Vollversion zu integrieren, um eine exaktere Berechnung von Basenstapelungs- und anderen p-p- Wechselwirkungen zu erreichen. Darüber hinaus sollte eine Parametrisierung des von S. Monz verbesserten Abraham-Ladungsmodells vorgenommen werden. Beides würde zu einer Verbesserung der Beschreibung intermolekularer Wechselwirkungen führen, welche für den SUPRA-Algorithmus relevant sind.
Strukturlösung aus Pulverdaten mit PATSEE (2002)
Rühl, Stephan
Die Lösung unbekannter Strukturen aus Pulverbeugungsdaten ist keineswegs eine Routineanwendung, und es steht noch einiges an Arbeit an, um die vorhandenen Methoden so weit zu automatisieren, daß sie von Nichtspezialisten, auch solchen mit kristallographischen Kenntnissen, direkt verwendet werden können. In dieser Arbeit konnte überzeugend dargelegt werden, daß die Anwendung des älteren Verfahrens der Fragmentsuche eine sehr gute Möglichkeit bietet, den Schwierigkeiten der Strukturlösung aus Pulverdaten erfolgreich zu begegnen. Durch graduelle Steigerung des Schwierigkeitsgrads bzw. der Komplexität der Strukturlösung von der anfänglichen Verwendung simulierter Pulverbeugungsdaten bekannter Strukturen über die Messung von Pulverbeugungsdiagrammen bekannter Strukturen bis hin zur Lösung unbekannter Strukturen konnte die sinnvolle Anwendbarkeit des Fragmentsuchprogramms PATSEE zweifelsfrei belegt werden. Die in den einzelnen Stadien der Untersuchungen diskutierten Einflüsse, wie die benötigte minimale Fragmentgröße oder die Fragmentqualität, lieferten entscheidende Hinweise für das Aufstellen einer einfachen Strategie zur Strukturlösung aus Pulverdaten mit PATSEE. So konnte gezeigt werden, daß für einen sinnvollen Strukturlösungsversuch in der Regel mehr als 50% des relativen Streubeitrags aller Atome in der asymmetrischen Einheit benötigt werden und daß sich diese Grenze nur durch die Verwendung qualitativ hochwertiger Pulverbeugungsdaten, wie sie an modernen Synchrotronringen erhalten werden können, durchbrechen läßt. Auch die Variation eines Torsionsfreiheitsgrads im Zuge der Rotationssuche kann entscheidende Vorteile verschaffen, wenn zwei für sich genommen zu kleine starre Bereiche miteinander kombiniert werden. Außerdem konnte die prinzipielle Verwendbarkeit sowohl mittels Kraftfeldmethoden berechneter als auch experimentell bestimmter Fragmente, wie sie in der CSD in großer Zahl bereitstehen, bestätigt werden. Die in PATSEE verwendete Vielzahl an Gütekriterien zur Beurteilung einer Lösung konnte auch im Falle von Pulverdaten im wesentlichen überzeugen. Zwar ist die Diskriminierung zwischen richtigen und falschen Lösungen bei weitem nicht so eindeutig in bezug auf alle Gütekriterien, aber zumindest wird eine sehr gute Bewertung hinsichtlich von CFOM - dem Gütekriterium, nach dem die Lösungen sortiert werden - und den beiden R-Werten RE(1) und RE(2) erreicht. Als etwas problematisch hat sich die Rotationssuche erwiesen, die nur auf der Beurteilung eines einzigen Gütekriteriums beruht. Da aber gerade der Rotationssuche als erstem Schritt der Fragmentsuche eine wichtige Bedeutung zukommt, ist der Anwender zu großer Sorgfalt bei deren Durchführung verpflichtet. Eine Grenze für Strukturlösungsversuche mit PATSEE stellen derzeit Strukturen mit mehreren Molekülen in der asymmetrischen Einheit dar. Da im einfachsten Fall (Z'= 2) bereits ein komplettes Molekül als Suchfragment einen relativen Streubeitrag von unter 50% aufweist, wird eine erfolgreiche Orientierung und Positionierung mit PATSEE nur noch für hervorragende Datensätze möglich sein. Für noch schwierigere Fälle (Z'> 2) oder für Verbindungen, bei denen nicht das gesamte Molekülgerüst als Suchfragment verwendet werden kann, bestehen dann praktisch keine Aussichten mehr auf eine erfolgreiche Strukturlösung mit PATSEE. Basierend auf diesen Ergebnissen, konnten PATSEE-Parameter empfohlen werden, die sowohl für große Fragmente als auch für den Grenzbereich der minimal benötigten Fragmentgröße gute Erfolgsaussichten für die Strukturlösung gewährleisteten. Dabei wichen die empfohlenen Parameter nur in geringem Maße von den für Einkristalldaten optimierten Werten ab. Anhand zweier unbekannter Strukturen konnte die empfohlene Strategie verifiziert werden. Zusätzlich wurde für eine der beiden Strukturen eine Einkristallstrukturbestimmung vorgenommen, welche die aus Pulverdaten gelöste Struktur bestätigte. Auch wenn einerseits die prinzipielle Anwendbarkeit der Fragmentsuche mit PATSEE auf Pulverbeugungsdaten bewiesen werden konnte und andererseits eine allgemeine Strategie zur Vorgehensweise geliefert wurde, sind doch noch nicht alle interessanten Fragestellungen geklärt. Hier sind zum einen die unbefriedigenden Möglichkeiten bei Strukturen mit mehreren Molekülen in der asymmetrischen Einheit zu nennen. Eine sinnvolle Erweiterung der Zahl simultan suchbarer Fragmente in PATSEE könnte diesen Schwachpunkt beheben. Zugleich könnte mit dieser Erweiterung die Anwendbarkeit auf flexiblere Molekülgeometrien ausgedehnt werden, so daß im Endeffekt eine Steigerung der einsetzbaren Fragmentgröße erreicht wird. Diese Erweiterung sollte bei der enormen Rechenleistung moderner Computersysteme kein unüberwindliches Hindernis darstellen, so daß die benötigte Zeit für einen PATSEE-Lauf mit mehreren zu suchenden Fragmenten auf maximal einige wenige Stunden ansteigen würde. Alternativ wäre zu überlegen, ob nicht das Aufheben der strikten Trennung von Rotationssuche und Translationssuche, also eine 6-dimensionale Fragmentsuche, die bisweilen zu beobachtenden Probleme der Rotationssuche beheben würde. Auch bei dieser Änderung der Vorgehensweise in PATSEE könnten moderne Computer sinnvoll eingesetzt werden. Vorteilhaft für die Strukturlösung wäre hier die Kombination der sehr erfolgreichen Diskriminierung der Gütekriterien bei der Translationssuche mit der bisher kritischen Bestimmung der Orientierung. Eine zweite Fragestellung, die im Rahmen dieser Arbeit nicht geklärt werden konnte, betrifft die Anwendbarkeit auf makromolekulare Verbindungen, die über eine große interne Regelmäßigkeit verfügen, wie beispielsweise kleinere Peptide mit alpha-helikaler Struktur oder einer beta-Faltblattstruktur. Verschiedene Testreihen an derartigen Verbindungen belegen die prinzipielle Machbarkeit, und außerdem konnte bereits in mindestens einem ähnlich gelagerten Fall [17] gezeigt werden, daß derartige Strukturlösungsversuche bei sehr großen Verbindungen durchführbar sind. Insbesondere wegen der erheblichen Schwierigkeiten bei der Kristallisation derartiger Verbindungen und dem großen wissenschaftlichen Interesse an ihrer Struktur könnten erfolgversprechende Ansätze zur Strukturlösung aus Pulverdaten einen wichtigen Beitrag in der Pharmazie, der Pharmakologie, der Biologie und nicht zuletzt in der Medizin leisten.
Development and application of fast fuzzy pharmacophore-based virtual screening methods for scaffold hopping (2006)
Renner, Steffen
The goal of this thesis was the development, evaluation and application of novel virtual screening approaches for the rational compilation of high quality pharmacological screening libraries. The criteria for a high quality were a high probability of the selected molecules to be active compared to randomly selected molecules and diversity in the retrieved chemotypes of the selected molecules to be prepared for the attrition of single lead structures. For the latter criterion the virtual screening approach had to perform “scaffold hopping”. The first molecular descriptor that was explicitly reported for that purpose was the topological pharmacophore CATS descriptor, representing a correlation vector (CV) of all pharmacophore points in a molecule. The representation is alignment-free and thus renders fast screening of large databases feasible. In a first series of experiments the CATS descriptor was conceptually extended to the three-dimensional pharmacophore-pair CATS3D descriptor and the molecular surface based SURFCATS descriptor. The scaling of the CATS3D descriptor, the combination of CATS3D with different similarity metrics and the dependence of the CATS3D descriptor on the threedimensional conformations of the molecules in the virtual screening database were evaluated in retrospective screening experiments. The “scaffold hopping” capabilities of CATS3D and SURFCATS were compared to CATS and the substructure fingerprint MACCS keys. Prospective virtual screening with CATS3D similarity searching was applied for the TAR RNA and the metabotropic glutamate receptor 5 (mGlur5). A combination of supervised and unsupervised neural networks trained on CATS3D descriptors was applied prospectively to compile a focused but still diverse library of mGluR5 modulators. In a second series of experiments the SQUID fuzzy pharmacophore model method was developed, that was aimed to provide a more general query for virtual screening than the CATS family descriptors. A prospective application of the fuzzy pharmacophore models was performed for TAR RNA ligands. In a last experiment a structure-/ligand-based pharmacophore model was developed for taspase1 based on a homology model of the enzyme. This model was applied prospectively for the screening for the first inhibitors of taspase1. The effect of different similarity metrics (Euc: Euclidean distance, Manh: Manhattan distance and Tani: Tanimoto similarity) and different scaling methods (unscaled, scaling1: scaling by the number of atoms, and scaling2: scaling by the added incidences of potential pharmacophore points of atom pairs) on CATS3D similarity searching was evaluated in retrospective virtual screening experiments. 12 target classes of the COBRA database of annotated ligands from recent scientific literature were used for that purpose. Scaling2, a new development for the CATS3D descriptor, was shown to perform best on average in combination with all three similarity metrics (enrichment factor ef (1%): Manh = 11.8 ± 4.3, Euc = 11.9 ± 4.6, Tani = 12.8 ± 5.1). The Tanimoto coefficient was found to perform best with the new scaling method. Using the other scaling methods the Manhattan distance performed best (ef (1%): unscaled: Manh = 9.6 ± 4.0, Euc = 8.1 ± 3.5, Tani = 8.3 ± 3.8; scaling1: Manh = 10.3 ± 4.1, Euc = 8.8 ± 3.6, Tani = 9.1 ± 3.8). Since CATS3D is independent of an alignment, the dependence of a “receptor relevant” conformation might also be weaker compared to other methods like docking. Using such methods might be a possibility to overcome problems like protein flexibility or the computational expensive calculation of many conformers. To test this hypothesis, co-crystal structures of 11 target classes served as queries for virtual screening of the COBRA database. Different numbers of conformations were calculated for the COBRA database. Using only a single conformation already resulted in a significant enrichment of isofunctional molecules on average (ef (1%) = 6.0 ± 6.5). This observation was also made for ligand classes with many rotatable bonds (e.g. HIV-protease: 19.3 ± 6.2 rotatable bonds in COBRA, ef (1%) = 12.2 ± 11.8). On average only an improvement from using the maximum number of conformations (on average 37 conformations / molecule) to using single conformations of 1.1 fold was found. It was found that using more conformations actives and inactives equally became more similar to the reference compounds according to the CATS3D representations. Applying the same parameters as before to calculate conformations for the crystal structure ligands resulted in an average Cartesian RMSD of the single conformations to the crystal structure conformations of 1.7 ± 0.7 Å. For the maximum number of conformations, the RMSD decreased to 1.0 ± 0.5 Å (1.8 fold improvement on average). To assess the virtual screening performance and the scaffold hopping potential of CATS3D and SURFACATS, these descriptors were compared to CATS and the MACCS keys, a fingerprint based on exact chemical substructures. Retrospective screening of ten classes of the COBRA database was performed. According to the average enrichment factors the MACCS keys performed best (ef (1%): MACCS = 17.4 ± 6.4, CATS = 14.6 ± 5.4, CATS3D = 13.9 ± 4.9, SURFCATS = 12.2 ± 5.5). The classes, where MACCS performed best, consisted of a lower average fraction of different scaffolds relative to the number of molecules (0.44 ± 0.13), than the classes, where CATS performed best (0.65 ± 0.13). CATS3D was the best performing method for only a single target class with an intermediate fraction of scaffolds (0.55). SURFCATS was not found to perform best for a single class. These results indicate that CATS and the CATS3D descriptors might be better suited to find novel scaffolds than the MACCS keys. All methods were also shown to complement each other by retrieving scaffolds that were not found by the other methods. A prospective evaluation of CATS3D similarity searching was done for metabotropic glutamate receptor 5 (mGluR5) allosteric modulators. Seven known antagonists of mGluR5 with sub-micromolar IC50 were used as reference ligands for virtual screening of the 20,000 most drug-like compounds – as predicted by an artificial neural network approach – of the Asinex vendor database (194,563 compounds). Eight of 29 virtual screening hits were found with a Ki below 50 µM in a binding assay. Most of the ligands were only moderately specific for mGluR5 (maximum of > 4.2 fold selectivity) relative to mGluR1, the most similar receptor to mGluR5. One ligand exhibited even a better Ki for mGluR1 than for mGluR5 (mGluR5: Ki > 100 µM, mGluR1: Ki = 14 µM). All hits had different scaffolds than the reference molecules. It was demonstrated that the compiled library contained molecules that were different from the reference structures – as estimated by MACCS substructure fingerprints – but were still considered isofunctional by both CATS and CATS3D pharmacophore approaches. Artificial neural networks (ANN) provide an alternative to similarity searching in virtual screening, with the advantage that they incorporate knowledge from a learning procedure. A combination of artificial neural networks for the compilation of a focused but still structurally diverse screening library was employed prospectively for mGluR5. Ensembles of neural networks were trained on CATS3D representations of the training data for the prediction of “mGluR5-likeness” and for “mGluR5/mGluR1 selectivity”, the most similar receptor to mGluR5, yielding Matthews cc between 0.88 and 0.92 as well as 0.88 and 0.91 respectively. The best 8,403 hits (the focused library: the intersection of the best hits from both prediction tasks) from virtually ranking the Enamine vendor database (ca. 1,000,000 molecules), were further analyzed by two self-organizing maps (SOMs), trained on CATS3D descriptors and on MACCS substructure fingerprints. A diverse and representative subset of the hits was obtained by selecting the most similar molecules to each SOM neuron. Binding studies of the selected compounds (16 molecules from each map) gave that three of the molecules from the CATS3D SOM and two of the molecules from the MACCS SOM showed mGluR5 binding. The best hit with a Ki of 21 µM was found in the CATS3D SOM. The selectivity of the compounds for mGluR5 over mGluR1 was low. Since the binding pockets in the two receptors are similar the general CATS3D representation might not have been appropriate for the prediction of selectivity. In both SOMs new active molecules were found in neurons that did not contain molecules from the training set, i. e. the approach was able to enter new areas of chemical space with respect to mGluR5. The combination of supervised and unsupervised neural networks and CATS3D seemed to be suited for the retrieval of dissimilar molecules with the same class of biological activity, rather than for the optimization of molecules with respect to activity or selectivity. A new virtual screening approach was developed with the SQUID (Sophisticated Quantification of Interaction Distributions) fuzzy pharmacophore method. In SQUID pairs of Gaussian probability densities are used for the construction of a CV descriptor. The Gaussians represent clusters of atoms comprising the same pharmacophoric feature within an alignment of several active reference molecules. The fuzzy representation of the molecules should enhance the performance in scaffold hopping. Pharmacophore models with different degrees of fuzziness (resolution) can be defined which might be an appropriate means to compensate for ligand and receptor flexibility. For virtual screening the 3D distribution of Gaussian densities is transformed into a two-point correlation vector representation which describes the probability density for the presence of atom-pairs, comprising defined pharmacophoric features. The fuzzy pharmacophore CV was used to rank CATS3D representations of molecules. The approach was validated by retrospective screening for cyclooxygenase 2 (COX-2) and thrombin ligands. A variety of models with different degrees of fuzziness were calculated and tested for both classes of molecules. Best performance was obtained with pharmacophore models reflecting an intermediate degree of fuzziness. Appropriately weighted fuzzy pharmacophore models performed better in retrospective screening than CATS3D similarity searching using single query molecules, for both COX-2 and thrombin (ef (1%): COX-2: SQUID = 39.2., best CATS3D result = 26.6; Thrombin: SQUID = 18.0, best CATS3D result = 16.7). The new pharmacophore method was shown to complement MOE pharmacophore models. SQUID fuzzy pharmacophore and CATS3D virtual screening were applied prospectively to retrieve novel scaffolds of RNA binding molecules, inhibiting the Tat-TAR interaction. A pharmacophore model was built up from one ligand (acetylpromazine, IC50 = 500 µM) and a fragment of another known ligand (CGP40336A), which was assumed to bind with a comparable binding mode as acetylpromazine. The fragment was flexible aligned to the TAR bound NMR conformation of acetylpromazine. Using an optimized SQUID pharmacophore model the 20,000 most druglike molecules from the SPECS database (229,658 compounds) were screened for Tat-TAR ligands. Both reference inhibitors were also applied for CATS3D similarity searching. A set of 19 molecules from the SQUID and CATS3D results was selected for experimental testing. In a fluorescence resonance energy transfer (FRET) assay the best SQUID hit showed an IC50 value of 46 µM, which represents an approximately tenfold improvement over the reference acetylpromazine. The best hit from CATS3D similarity searching showed an IC50 comparable to acetylpromazine (IC50 = 500 µM). Both hits contained different molecular scaffolds than the reference molecules. Structure-based pharmacophores provide an alternative to ligand-based approaches, with the advantage that no ligands have to be known in advance and no topological bias is introduced. The latter is e.g. favorable for hopping from peptide-like substrates to drug-like molecules. A homology model of the threonine aspartase taspase1 was calculated based on the crystal structures of a homologous isoaspartyl peptidase. Docking studies of the substrate with GOLD identified a binding mode where the cleaved bond was situated directly above the reactive N-terminal threonine. The predicted enzyme-substrate complex was used to derive a pharmacophore model for virtual screening for novel taspase1 inhibitors. 85 molecules were identified from virtual screening with the pharmacophore model as potential taspase1- inhibitors, however biochemical data was not available before the end of this thesis. In summary this thesis demonstrated the successful development, improvement and application of pharmacophore-based virtual screening methods for the compilation of molecule-libraries for early phase drug development. The highest potential of such methods seemed to be in scaffold hopping, the non-trivial task of finding different molecules with the same biological activity.
"Entwicklung und Implementierung einer Prozedur zur automatischen Parametrisierung des MOMO-Kraftfeldes" (2009)
Wagner, Guido
Kraftfelder sind ein vielseitiges Werkzeug zur schnellen Berechnung vielfältiger Moleküleigenschaften. Die Qualität der damit erhaltenen Vorhersagen ist auch ein Maß, wie gut die wichtigen Einflussgrößen verstanden und vor allem in das Kraftfeld-Modell integriert sind. Bei der Parametrisierung müssen viele Effekte gegeneinander ausbalanciert werden, da die Kraftfeldterme nicht unabhängig voneinander betrachtet werden können. Umfangreiche Testrechnungen sind erforderlich, um die notwendige Qualität der Parameter sicher zu stellen. Eine Automatisierung dieses Prozesses bringt nicht nur eine enorme Zeitersparnis, sie zwingt auch zur sorgfältigen Definition von Vorgaben und Qualitätskriterien. Die Formulierung einer Strategie in einem Programm anstelle von „intelligentem Raten“ fördert zudem ein tieferes Verständnis. Bei einer Änderung der Strategie muss nur das entsprechende Programm geändert werden, dem Entwickler bleibt der manuelle Test erspart. Automatische Methoden zur Plausibilitätsprüfung vermeiden Probleme durch Fehler bei der Dateneingabe von Hand. Die programmgesteuerte Erstellung aussagekräftiger Protokolle und Grafiken macht die Fülle der bei der Parametrisierung und Evaluierung eines Kraftfeldes anfallenden Informationen für den Benutzer überschaubar. Probleme und deren Zusammenhang können so leichter erfasst werden. Für das MOMO-Kraftfeld konnten auf diese Weise verbesserte und neue Parameter für Wasserstoffbrücken abgeleitet werden, zwei empirische Punktladungsmodelle und deren Verträglichkeit mit zwei quantenchemischen Modellen verbessert und prinzipielle Probleme bei deren Vereinbarkeit erkannt werden sowie die automatische Parametrisierung von Bindungslängen, Bindungswinkeln und Torsionswinkeln ermöglicht werden. Bei Letzterem konnte jedoch keine Verbesserung gegenüber den Originalparametern erreicht werden, was nicht weiter verwunderlich ist, da diese seit Jahrzehnten entwickelt worden sind, wohingegen Wasserstoffbrücken und Partialladungen erst später hinzugekommen sind und nicht so umfangreich wie die bindenden Kraftfeldterme getestet wurden. Voraussetzung für die hier gewählte Vorgehensweise, alle Arbeiten weitgehend zu automatisieren und Strategien immer in Programme umzusetzen, waren sehr umfangreiche Programmierarbeiten. Ziel war es, auf einfache Weise die Steuerung des Kraftfeldes aus kleineren Programmen, die spezielle Probleme bearbeiten, zuzulassen. Durch die Nutzung zahlreicher Open-Source-Projekte, die gemeinsam die gewünschte Funktionalität zur Verfügung stellen, konnte der Aufwand auf die dazu passende Implementierung des MOMO-Kraftfeldes und das Verbinden mit der von diesen Projekten bereitgestellten Software beschränkt werden. Der Kern des MOMO-Kraftfeldes wurde aus Geschwindigkeitsgründen in der Compilersprache C geschrieben, Datenein- und -ausgabe und die Programme zur Parametrisierung und Auswertung wurden in Python geschrieben.
Analyse und Vorhersage von Kristallstrukturen tetraederförmiger Moleküle und fehlgeordneter Phasen (2012)
Wolf, Alexandra Kerstin
Die Kristallstrukturen tetraederförmiger EX4-Moleküle mit E = C, Si, Ge, Sn, Pb und X = F, Cl, Br, I konnten in sieben Strukturtypen eingeteilt werden. In fast allen Verbindungen nehmen die Halogenatome eine verzerrte Kugelpackung (ccp, hcp, bcc, cp) ein. Die E-Atome besetzen in den dichtesten Kugelpackungen 1/8 aller Tetraederlücken, wobei sich für diese Atome ebenfalls eine Anordnung wie für verzerrte Kugelpackungen ergibt (cp, ccp, hcp). In den anderen Fällen (bcc, cp für die Anordnung der Halogenatome) ergibt sich für die Anordnung der E-Atome selbst ebenfalls eine verzerrte Kugelpackung (bcc, s). Dabei steht s für die Anordnung der E-Atome analog der Schwefelatome im Pyrit (FeS2). Jeder Strukturtyp unterscheidet sich in der Art der kürzesten Halogen-Halogen-Wechselwirkungen. Die in der Literatur für halogenierte organische Verbindungen beschriebenen Typen der Wechselwirkung lassen sich auch bei den EX4-Verbindungen finden. Die E-X-X-Winkel liegen in einem Bereich von 80-100° und 130-160° und sind damit etwas kleiner als für die halogenierten organischen Verbindungen. Mit Hilfe von Gitterenergieminimierungen konnten diverse potentielle Polymorphe für die EX4-Verbindungen vorhergesagt werden. Eine vollständige Kristallstrukturvorhersage wurde für SiBr4 durchgeführt. Für diese Vorhersage wurden die Van-der-Waals-Parameter neu bestimmt. Dazu wurde das Br-Br-Potential mit Hilfe von Vergleichsrechnungen an den beiden experimentellen Strukturen des GeBr4 in den Raumgruppentypen Pa3, Z = 8 (s/ccp), und P21/c, Z = 4 (hcp/hcp), optimiert. Für die Vorhersage des SiBr4 konnten zwei der vorhergesagten Strukturen durch extern durchgeführte Kristallisationsexperimente bestätigt werden. Eine Hochtemperaturmodifikation kristallisiert oberhalb von 168K im Raumgruppentyp Pa3, Z = 8 im Strukturtyp s/ccp. Diese Struktur konnte bei der Vorhersage auf Rang 9 gefunden werden. Die Tieftemperaturmodifikation, die unterhalb von 168K vorliegt, kristallisiert im Raumgruppentyp P21/c, Z = 4 (Strukturtyp hcp/hcp). Diese Struktur hat Rang 4 der Vorhersage. Die vorhergesagten und experimentellen Strukturen zeigen nur geringe Abweichungen voneinander. Für die tetraederförmigen E(CH3)4-Moleküle wurden für Tetramethylsilan und Tetramethylgerman vollständige Kristallstrukturvorhersagen durchgeführt. Die energetisch günstigste Struktur ist für beide Verbindungen im Raumgruppentyp Pa3 mit Z = 8 zu finden. Die energetisch zweitgünstigste Struktur hat den Raumgruppentyp Pnma mit Z = 4. Für Tetramethylsilan konnten die Strukturen mit Rang 1 und 2 experimentell bestätigt werden. Eine Hochdruckmodifikation des Tetramethylsilans kristallisiert im Raumgruppentyp Pa3 mit Z = 8. Diese Struktur entspricht der berechneten energetisch günstigsten Struktur auf Rang eins. Ihr konnte der Strukturtyp s/ccp zugeordnet werden. Mit Tieftemperatur-Röntgenpulverbeugungsexperimenten konnte eine Tieftemperaturmodifikation bei T = 100 K im Raumgruppentyp Pnma, Z = 4, mit Strukturtyp ccp/hcp gefunden werden. Gitterenergieberechnungen wurden für die Strukturanalysen von drei fehlgeordneten Phasen eingesetzt. Experimentell bestimmte Kristallstrukturen von Azulen und Pigment Red 194 haben den Raumgruppentyp P21/c, Z = 2. Die Moleküle befinden sich dabei auf einer Punktlage mit Inversionssymmetrie. Da beide Moleküle kein Inversionszentrum aufweisen, kommt es zu einer Orientierungsfehlordnung. Für die rechnerische Analyse der Fehlordnung wurden jeweils sechs geordnete Modelle ausgehend von den fehlgeordneten Strukturen erstellt, die möglichst wenige Moleküle pro Elemenarzelle aufweisen sollten. Gitterenergieberechnungen und die Auswertung der Boltzmann-Verteilung zeigten, dass in bei beiden Kristallstrukturen eine statistische Fehlordnung der Moleküle vorliegt, die sich aus mehreren geordneten Modellen aufbauen lässt. Bei Azulen ist eine geordnete Struktur im Raumgruppentyp Pa, Z = 4, energetisch etwas günstiger als die anderen Modell. Für Pigment Red 194 zeigte sich, dass die Fehlordnung unter der Annahme, dass nur die berechneten Modelle die fehlgeordnete Struktur bilden, mit über 99%iger Wahrscheinlichkeit aus den vier energetisch günstigsten Modellen Pc, Z = 2, P21, Z = 2, P21/c, Z = 4 und Pc, Z = 4 besteht. Die dritte untersuchte fehlgeordnete Struktur ist die des Natrium-p-chlorphenylsulfonat-Monohydrats. Die Fehlordnung bezieht sich hier nur auf die Phenylringe, die dort mit einer Besetzung von 50% zueinander senkrecht stehen. Mit Hilfe der Order-Disorder-Theorie konnten zwei geordnete Modelle im Raumgruppentyp P21/c und ein weiteres geordnetes Modell im Raumgruppentyp C1c1 (Z = 16, Z'= 2) aufgestellt werden. Gitterenergieminimierungen dieser Modelle zeigten, dass sich die Fehlordnung statistisch aus allen drei Modellen zusammensetzt. Das energetisch günstigste geordnete Modell im Raumgruppentyp P21/c, Z = 8 (Z' = 2), konnte als verzwillingte Struktur aus Einkristalldaten bestätigt werden.
Entwicklung eines neuartigen Solvatationsmodells für das Kraftfeldprogramm MOMO (2014)
Pisternick, Thorsten
Zur Vorhersage der Konformationen organischer Moleküle in wässriger Lösung wurde ein explizites Solvatationsmodell (TPA3) für das Kraftfeldprogramm MOMO entwickelt, getestet und erfolgreich angewendet. Für jede zu optimierende Konformation wird eine der räumlichen Ausdehnung entsprechende Solvathülle generiert. Dadurch werden zu große Solvathüllen mit vielen Wassermolekülen vermieden. Diesem ersten Schritt liegt das Aneinanderreihen von Eiselementarzellen und ungeordneten Wasserzellen zugrunde. Überschneidungen oder unrealistisch nahe Orientierungen von Wassermolekülen zu dem solvatisierten Molekül werden ausgeschlossen. Gleichzeitig wird sichergestellt, dass in der Umgebung von Wasserstoffbrücken-Donoren und -Akzeptoren im solvatisierten Molekül Wassermoleküle zu finden sind. Die Optimierung vereinfachter Wassermoleküle ohne molekularen Zusammenhalt basiert auf vektoriellen Ausgleichsbewegungen, in die die Bewegungsvektoren der minimierten Wassermolekül-Atome eingehen. Dadurch ist es möglich, ein einziges Potential für Coulomb- und vdw-Wechselwirkungen ohne Vernachlässigung der Rotation zu nutzen, was eine deutliche Rechenzeitoptimierung bedeutet. Die besondere Beachtung der Programmstruktur von MOMO und die sich daraus ergebende Interaktion des Solvatationsmodells mit nahezu allen relevanten Programmteilen des Kraftfeldprogramms ermöglicht trotz ihres kontinuierlichen Austauschs eine Unterscheidung von präzise behandelten nahen und vereinfachten fernen Wassermolekülen während der gesamten Minimierung. Gleichzeitig werden von jedem nahen Wassermolekül die Einzelenergiebeiträge der Wechselwirkungen mit dem solvatisierten Molekül direkt in den Potentialen gesammelt und durch Summation die Stabilisierungsenergie Estab bestimmt. Somit wird ein Nahbereich mit ungeordneten Wassermolekülen um ein solvatisiertes Molekül herum mit der gesamten in MOMO möglichen Präzision behandelt. Hierbei ist die Berechnung von Wasserstoffbrücken zwischen dem solvatisierten Molekül und umgebenden Wassermolekülen für Estab von entscheidender Bedeutung. Hingegen wird der Fernbereich ausgehend und basierend auf der Eisstruktur rechenzeitoptimiert behandelt. Dynamik und Durchmischung mit dem Nahbereich werden durch den auf der Minimierung der isolierten Atome basierenden TPA3-Algorithmus erreicht. Mit den erreichten Rechenzeitoptimierungen können systematische Konformationsanalysen an Di- und Tripeptiden in Wasser mit bis zu 2500 Konformationen problemlos durchgeführt werden. Mit den statistischen Auswertungsmethoden des Clusterings, der Medianbildung und der Datenrasterung ergaben sich aussagekräftige Energieflächen über Ramachandran-Diagrammen der berechneten Peptide. Die Visualisierung der Trajektorien und der Minimum-Konformationen der Peptide mit deren Wasserstoffbrücken und der daran beteiligten Wassermoleküle sowie die detaillierte Analyse der Energiebeiträge lieferten eine solide Interpretationsbasis der vorhergesagten Strukturen. Insgesamt wurden Konformationsanalysen im Vakuum und mit dem neu entwickelten TPA3-Solvatationsmodell an zehn Peptiden durchgeführt. Ungeschützte Peptide wurden in unterschiedlich protonierten Formen berechnet. Vergleichende Konformationsanalysen mit AMBER11 und TIP3P-Solvatationsmodell waren nur für die zwitterionische Form möglich. Bei dem geschützten Alaninpeptid N-Acetyl-L-L-dialanin-N-methylamid zeigte sich eine Begünstigung der PPII-Struktur. Daneben trat ein Minimum im β-Faltblattbereich auf; eine Stabilisierung des αR-helikalen Bereichs wurde ebenfalls beobachtet. Dies entspricht den in der aktuellen Literatur zu findenden spektroskopisch erhaltenen Ergebnissen. Aufgrund nicht vorhandener Informationen bezüglich der Energiebeiträge durch das explizite TIP3P-Solvatationsmodell war die Auswertung der AMBER11-Konformationsanalysen auf die Verteilung der Konformationen im Ramachandran-Diagramm begrenzt und somit stark eingeschränkt. Bezüglich N-Acetyl-L-L-dialanin-Nmethylamid ergaben sich auch mit AMBER11 Häufungen im PPII- und β-Faltblatt-Bereich und darüber hinaus im αD-helikalen Bereich. Für Peptide mit negativ geladenen Seitenketten in der zentralen Position wurden Konformationen, die in Turns zu finden sind, als begünstigt berechnet. Bei Tripeptiden mit Aminosäuren, die Donoren D bzw. Akzeptoren A zur Wasserstoffbrückenbildung in ihren Seitenketten besitzen (Ala−Lys−Ala, Ala−Asp−Ala, Cys−Asn−Ser), wurden in allen Fällen zweifache Wasserstoffbrücken über verbrückende Wassermoleküle hinweg (D/A···H2O···D/A) beobachtet. Diese scheinen insbesondere bei Ala−Asp−Ala durch Beteiligung des Aspartatrestes und einem zweimalig negativen Energiebetrag von mehr als 10 kJ/mol Einfluss auf die Konformation zu nehmen und δ-Turn-Konformationen zu stabilisieren. Die AMBER11-Konformationsanalyse mit TIP3P-Modell ergab hingegen eine deutliche Häufung minimierter Konformationen für φ < 120°. Diese Häufung zeigt sich als deutlicher Streifen im Ramachandran-Diagramm bei φ ≈ 60°. Die α-helikalen Konformationen αD und αL sowie die C7 ax-Struktur sind von AMBER11 hier stark begünstigt. Die Konformationsanalyse mit TPA3-Solvatationsmodell an Ala−Lys−Ala zeigte mehrere Minima; die Konformationen im Bereich δR / PPII / C7 eq werden jedoch besonders stabilisiert. Ein verbrückendes Wassermolekül ist auch hier beteiligt. Bei den Tripeptiden mit sperrigen Seitenketten, wie Ala−Phe−Ala und Gly−Phe−Gly, wird eine sterische Abschirmung durch den Phenylrest deutlich, die zu einer Abschwächung der Begünstigung von PPII-Konformationen führt. Stattdessen sind α-helikale Konformationen favorisiert. Bei Gly−Phe−Gly scheint diese Abschirmung einen weniger starken Einfluss zu haben: im PPII- und β-Faltblattbereich sind wieder Minima vorhanden. Generell sind die Ergebnisse der MOMO/TPA3-Konformationsanalysen im Einklang mit der aktuellen Literatur und sehr plausibel für Peptide, bei denen (noch) keine eindeutigen Literaturergebnisse vorliegen. Die aktuelle Annahme, dass intramolekulare Wasserstoffbrücken in Peptiden Turn-Konformationen in Wasser stabilisieren könnten, wird mit den in dieser Arbeit mehrfach aufgetretenen zweifachen Wasserstoffbrücken über verbrückende Wassermoleküle erweitert. Mit AMBER11 konnte dagegen kaum Bezug zu experimentellen Literaturergebnissen hergestellt werden. Dies liegt vor allem daran, dass die für eine aussagekräftige Auswertung unverzichtbaren Energiebeiträge der Peptid-Wechselwirkungen mit einzelnen Wassermolekülen mit AMBER11 nicht zur Verfügung standen. AMBER11 eignet sich daher kaum als Referenz für die mit MOMO und dem neu entwickelten TPA3-Solvatationsmodell erhaltenen Ergebnisse.
Zur Polymorphie von organischen Pigmenten und pharmazeutischen Wirkstoffen (2014)
Bekö, Sándor László
Die vorliegende Arbeit ist das Extrakt umfangreicher Untersuchungen an ausgewählten organischen und metallorganischen Verbindungen im Hinblick auf ihre Polymorphie. Nicht nur die praktischen Arbeiten, wie Synthesen, Polymorphie-Screenings (nach eigens entwickeltem Vorgehen), die chemisch-physikalischen Charakterisierungen neuer polymorpher Formen, sondern auch die Kristallstrukturbestimmungen aus Röntgenbeugungsdaten wurden durchgeführt. Im Fokus der Untersuchungen standen Pigmentvorprodukte, Pigmente, pharmazeutische Wirkstoffe und weitere organische und metallorganische Verbindungen. Ein Auszug zu Pigmentvorprodukten bilden 2-Ammoniobenzolsulfonate, welche klassische Vorprodukte verlackter Hydrazonpigmente sind. Die bislang unbekannte tautomere Form und Kristallstruktur der CLT-Säure als Zwitterion konnte erfolgreich aus dem Zusammenspiel von IR-, Festkörper-NMR-Spektroskopie und Röntgen-Pulverdiffraktometrie ermittelt werden [1]. Mit Hilfe eines Polymorphie-Screenings konnten nicht nur zwei neue Pseudopolymorphe, sondern auch das Ansolvat der CLT-Säure selbst kristallisiert und ihre Strukturen aus Röntgen-Einkristalldaten bestimmt werden. Hierbei konnte das, aufgrund der Strukturbestimmung aus Röntgen-Pulverdaten proklamierten Tautomer der CLT-Säure verifiziert werden [2]. Mit Hilfe thermischer und röntgenographischer Untersuchungen an drei Derivaten der CLT-Säure, konnte der Einfluss des Substitutionsmusters (Chlor- und Methylsubstituenten) auf die Kristallpackung aufgezeigt werden [3]. Mit Hilfe eines Polymorphie-Screenings an der Iso-CLT-Säure konnten Reaktionen der zum Polymorphie-Screening eingesetzten Lösungsmittel und der Iso-CLT-Säure beobachtet und mittels thermischer und röntgenographischer Ergebnisse aufgeklärt werden. In zwei Fällen konnte eine Deprotonierung und im dritten Fall eine Desulfonierung beobachtet werden. Durch Erwärmen der deprotonierten und desulfonierten Verbindung(en) ist die Rückgewinnung der Iso-CLT-Säure möglich [4]. Ein Polymorphie-Screening an Pigment Red 53 lieferte vierundzwanzig neue Phasen, welche identifiziert und charakterisiert werden konnten. Ferner konnten von neun Phasen die Kristallstrukturen bestimmt werden (acht aus Röntgen-Einkristall- und eine aus Röntgen-Pulverdaten). Mit Hilfe dieser konnte ein Teil der Funktionalisierung von Lösungsmittelmolekülen in Pigment Red 53 aufgedeckt werden. Diverse Beziehungen pseudopolymorpher Formen zueinander konnten auf Basis der gewonnenen Erkenntnisse bestimmt werden [5]. Mit Hilfe der Ergebnisse aus den Untersuchungen zu Pigment Red 53 konnte mittels Modifizierung der bekannten Syntheseroute zu Pigment Red 53:2 die bekannte α-Phase erhalten werden. Weiterhin konnten neben zehn bekannten weitere fünfzehn neue Polymorphe identifiziert und weitestgehend charakterisiert werden. Die Kristallstrukturen von fünf bekannten und zwei neuen Phasen (sechs aus Röntgen-Einkristall- und eine aus Röntgen-Pulverdaten [6]) konnten bestimmt werden. Anhand der Ergebnisse aus den chemisch-physikalischen Charakterisierungen konnten Einzelbeziehungen zwischen den Phasen beobachtet werden. Die eigene Synthese von Pigment Red 57:1 resultierte in der bereits bekannten α-Phase. Ein Polymorphie-Screening an der α-Phase lieferte neben der bereits bekannten β-Phase elf neue Modifikationen. Schließlich konnte mit Hilfe der gesammelten Daten zur α-, β- und γ-Phase ein Zusammenhang zwischen De-/Rehydratation und dem damit einhergehenden Farbwechsel hergestellt und nachgewiesen werden [7]. Die bislang unbekannte Protonierung und Kristallstruktur von Nimustin-Hydrochlorid konnten erfolg-reich aus der Symbiose von Festkörper-NMR und Röntgen-Pulverdiffraktometrie des Handelsproduktes ermittelt werden [8]. Ebenso konnte die bislang unbekannte Kristallstruktur von 5′-Deoxy-5-fluorouridin konnte erfolgreich aus Röntgen-Pulverdaten des Handelsproduktes bestimmt werden [9]. Nach einem umfangreichen Polymorphie-Screening gelang es, Einkristalle von Tizanidin-Hydrochlorid zu erhalten und dessen Struktur aus Röntgen-Einkristalldaten zu bestimmen. Die bislang angenommene Tautomerie von Tizanidin im Festkörper und flüssiger Phase konnte mittels Röntgen-Einkristalldiffraktometrie und 1H-NMR korrigiert werden [10]. Während thermischer Untersuchungen wurden zwei bisher nicht beschriebene Polymorphe (ein Hochtemperatur- und ein Raumtemperaturpolymorph) gefunden. Schließlich konnte die Kristall-struktur des zweiten bei Raumtemperatur stabilen Polymorphs aus Röntgen-Pulverdaten bestimmt werden. Es konnte die Kristallstruktur von 4,5,9,10-Tetramethoxypyren [11], eines neuen 2:1 Co-Kristalls aus Chinolin und Fumarsäure [12] und einer biradikalen Azoverbindung [13] aus Röntgen-Pulverdaten bestimmt werden. Neben diesen Verbindungen konnten aus analytischen und röntgenographischen Untersuchungen an ausgewählten Stereoisomeren von Inositol dreizehn neue Phasen erhalten werden. Zudem konnten mehrere Schmelzpunkte mittels DSC-Messungen korrigiert oder als Phasenübergänge oder Zersetzungs-punkte identifiziert werden. Acht Strukturen geordneter Phasen konnten aus Röntgen-Pulverdaten bestimmt werden. Zusätzlich konnten fünf der dreizehn Phasen als Rotatorphasen identifiziert und deren Elementarzelle ermittelt werden [14]. Auf Basis einer neuen Syntheseroute konnten ein Cobalt(II)- und ein Zink(II)-fumarat-Anhydrat, welche im Vergleich zu den bisher bekannten Hydraten besser wasser-löslich sind, erhalten werden. Diese Anhydrate konnten zur Kristallisation eingesetzt werden und lieferten alle bisher bekannten und zusätzlich drei neue Kristallphasen (zwei neue Cobalt(II)-fumarat-Hydrate und ein neues Zink(II)-fumarat-Hydrat). Die Kristallstrukturen der drei neuen Kristallphasen konnten aus Röntgen-Einkristalldaten bestimmt werden [15 und 16]. [1] S. L. Bekö, S. D. Thoms, J. Brüning, E. Alig, J. van de Streek, A. Lakatos, C. Glaubitz & M. U. Schmidt (2010), Z. Kristallogr. 225, 382–387; [2] S. L. Bekö, J. W. Bats & M. U. Schmidt (2012), Acta Cryst. C 68, o45–o50; [3] S. L. Bekö, C. Czech, M. A. Neumann & M. U. Schmidt. "Doubly substituted 2-ammonio-benzenesulfonates: Substituent influence on the packing pattern", eingereicht; [4] S. L. Bekö, J. W. Bats, E. Alig & M. U. Schmidt (2013), J. Chem. Cryst. 43, 655–663; [5] S. L. Bekö, E. Alig, J. W. Bats, M. Bolte & M. U. Schmidt. "Polymorphism of C.I. Pigment Red 53", eingereicht; [6] T. Gorelik, M. U. Schmidt, J. Brüning, S. Bekö & U. Kolb (2009), Cryst. Growth Des. 9, 3898–3903; [7] S. L. Bekö, S. M. Hammer & M. U. Schmidt (2012), Angew. Chem. Int. Ed. 51, 4735–4738 und Angew. Chem. 124, 4814–4818; [8] S. L. Bekö, D. Urmann, A. Lakatos, C. Glaubitz & M. U. Schmidt (2012), Acta Cryst. C 68, o144–o148; [9] S. L. Bekö, D. Urmann & M. U. Schmidt (2012), J. Chem. Cryst. 42, 933–940; [10] S. L. Bekö, S. D. Thoms, M. U. Schmidt & M. Bolte (2012), Acta Cryst. C 68, o28–o32; [11] M. Rudloff, S. L. Bekö, D. Chercka, R. Sachser, M. U. Schmidt, K. Müllen & M. Huth. "Structural and electronic properties oft he organic charge transfer system 4,5,9,10-tetramethoxypyrene - 7,7,8,8-tetracyanoquinodimethane", eingereicht; [12] S. L. Bekö, M. U. Schmidt & A. D. Bond (2012), CrystEngComm 14, 1967–1971; [13] S. L. Bekö, S. D. Thoms & M. U. Schmidt (2013), Acta Cryst. C 43, 1513–1515; [14] S. L. Bekö, E. Alig, M. U. Schmidt & J. van de Streek (2014), IUCrJ 1, 61–73; [15] S. L. Bekö, J. W. Bats & M. U. Schmidt (2009), Acta Cryst. C 65, m347–m351; [16] S. L. Bekö, J. W. Bats & M. U. Schmidt. "One-dimensional zinc(II) fumarate coordination polymers", akzeptiert.
Co-Kristalle als Modellsysteme für die Untersuchung von Wirkstoff-Rezeptor-Wechselwirkungen (2012)
Tutughamiarso, Maya Oktavia
Diese Arbeit beschäftigt sich mit den Strukturen supramolekularer Komplexe, die aus einem Wirkstoff und einem Modellrezeptor bestehen. Um die spezifische Bindung durch H-Brückenbildung nachzuahmen, wurden Co-Kristallkomponenten ausgesucht, die komplementäre Bindungsstellen besitzen. Die Strukturen der erhaltenen Komplexe sowie einiger (pseudo)polymorpher Formen wurden mit Hilfe der Einkristallstrukturanalyse bestimmt. Ein Vergleich mit Kristallstrukturen ähnlicher Verbindungen ergab Hinweise auf die bevorzugten Konformationen sowie die am häufigsten gebildeten H-Brückenmotive. Theoretische Berechnungen mit den Programmen MOMO und GAUSSIAN wurden bei der Einstufung der Stabilität der Konformere und Tautomere sowie bei der Abschätzung der Komplexbildungsenergien eingesetzt. Zunächst wurden Co-Kristalle synthetisiert, deren Komponenten ausschließlich fixierte H-Brücken-bindungsstellen besitzen. Die Co-Kristallisationsversuche des Antimalariamittels Pyrimethamin mit Orotsäure führten zur Bildung einer neuen polymorphen Form, zwei Solvaten sowie dem gewünschten Co-Kristall. In dem ADA/DAD-Komplex zwischen dem Antibiotikum Nitrofurantoin und 2,6-Diacetamidopyridin werden die Co-Kristallkomponenten durch drei H-Brücken verbunden. In den Kristallstrukturen wird die energetisch ungünstigere sp-Konformation von Nitrofurantoin bevorzugt. In dieser Konfomation besitzt das Molekül eine positive und eine negative Seite; dies ermöglicht eine dichtere Kristallpackung. Aufgrund der Elektronegativitäten der O- und S-Atome sollte das Watson-Crick-Basenpaar zwischen den Nucleosiden 2-Thiouridin und Adenin, das durch eine N-H•••O-Brücke verbunden ist, stabiler sein als das entsprechende Wobble-Basenpaar mit einer N-H•••S-Brücke. Um die Stabilitäten der beiden H-Brücken zu untersuchen, wurden Co-Kristallisationsversuche mit dem Thyreostatikum 6-Propyl-2-thiouracil durchgeführt. Im Co-Kristall mit 2-Aminopyrimidin wird das R_2^2(8)-Heterodimer durch eine N-H•••N- und eine N-H•••S-Brücke verbunden, während N-H•••O-Brücken die 6-Propyl-2-thiouracilmoleküle zu Ketten verknüpfen. Aufgrund der ungünstigen intramolekularen Donor/Akzeptor-Abstände wird im Co-Kristall mit 2,6-Diacetamidopyridin der gewünschte ADA/DAD-Komplex nicht beobachtet. Stattdessen bildet 6-Propyl-2-thiouracil mit Hilfe zweier N-H•••S-Brücken R_2^2(8)-Homodimere, mit denen 2,6-Diacetamidopyridin nur durch eine N-H•••O-Brücke verbunden ist. Die Mitwirkung der N-H•••S-Brücke bei der „Basenpaarung“ kann dadurch erklärt werden, dass bei der Beteiligung der N-H•••O-Brücken an dem R_2^2(8)-Motiv N-H•••S-Brücken für die Kettenbildung zuständig wären; dieses Strukturmotiv wird jedoch in Kristallstrukturen selten beobachtet. Insgesamt zeigen diese Untersuchungen, dass C-O- und C-S-Gruppen konkurrenzfähige H-Brückenakzeptoren sind. Anschließend wurden mehrere Co-Kristalle des Antimykotikums 5-Fluorcytosin synthetisiert. Im Co-Kristall mit 2-Aminopyrimidin wird das gewünschte AD/DA-Heterodimer beobachtet. Ein ähnliches R_2^2(8)-Heterodimer könnte zwischen 5-Fluorcytosin und N-Acetylkreatinin gebildet werden, jedoch werden die Komponenten lediglich durch eine H-Brücke miteinander verknüpft. Energieberechnungen machen dies plausibel. Trotz der komplementären AAD/DDA-Bindungsstellen wird im Co-Kristall mit 6-Aminouracil das Heterodimer nur durch zwei H-Brücken verbunden. Die dadurch gewonnene Energie reicht offenbar aus, um den Energieunterschied zum AAD/DDA-Heterodimer zu kompensieren. Die Co-Kristalle des 5-Fluorcytosins mit 6-Aminoisocytosin sowie der Co-Kristall mit dem antiviralen Wirkstoff Aciclovir bestätigen die Stabilität des AAD/DDA-H-Brückenmusters, welches dem Watson-Crick-Basenpaar C-G ähnelt. Es gelang auch, das Konformations- und das Tautomerengleichgewicht durch eine spezifische Bindung zu beeinflussen. In den Co-Kristallen von 5-Fluorcytosin mit den beiden konformationell flexiblen Molekülen Biuret und 6-Acetamidouracil wird nur diejenige Konformation gefunden, die zur Bildung des gewünschten AAD/DDA-Heterodimers führt. Dabei liegt Biuret in der energetisch günstigeren trans-Form, 6-Acetamidouracil jedoch in der ungünstigeren cis-Form vor. Die drei AAD/DDA-Komplexe von 6-Methylisocytosin zeigen, dass durch die Bildung komplementärer H-Brückeninteraktionen Tautomere getrennt kristallisiert werden können: in den Co-Kristallen mit 5-Fluorcytosin findet man ausschließlich die 3H-Form, während in dem Komplex mit 6-Aminoisocytosin lediglich die 1H-Form vorliegt. In dieser Studie werden somit neue Einblicke in die Anwendung von Co-Kristallen als Modellsysteme für die Untersuchung von Wirkstoff/Rezeptor-Wechselwirkungen gewonnen. Um Wirkstoff/Rezeptor-Komplexe noch besser nachzuahmen, sollten zukünftig Co-Kristallisationsversuche mit größeren und flexibleren Modellrezeptoren vorgenommen werden. Weiterhin wäre die Berücksichtigung schwacher Wechselwirkungen bei der Synthese von Co-Kristallen von Interesse.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks