Refine
Document Type
- Doctoral Thesis (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Institute
Im Rahmen dieser Arbeit wurde die humane Leukotrien A4-Hydrolase untersucht.
Die hLTA4H ist ein bifunktionelles Enzym, welches neben der Hydrolaseaktivität, welche für die Umwandlung des instabilen LTA4 zu LTB4 verantwortlich ist, auch eine Peptidaseaktivität aufweist. Beide Enzymaktivitäten spielen bei Entzündungsprozessen eine wichtige Rolle, weshalb die LTA4H ein interessantes pharmakologisches Target darstellt. Aufgrund der gegensätzlichen Eigenschaften der beiden Aktivitäten der LTA4H (Produktion des proinflammatorischen LTB4 durch die Hydrolase-Aktivität, sowie der Abbau des PGP-Tripeptids durch die Peptidase-Aktivität) wird deutlich, dass die Entwicklung selektiver Hydrolase-Inhibitoren von Vorteil ist.
Das Protein der humanen LTA4H konnte erfolgreich kloniert werden und in E. coli-Zellen exprimiert werden. Zur Gewinnung des reinen rekombinanten Proteins konnte ein Aufreinigungsprotokoll mittels Nickel-Affinitätschromatographie sowie anschließender Größenausschlusschromatographie etabliert werden. Durch die Testung unterschiedlicher Lysemethoden konnte die Ausbeute deutlich erhöht werden.
Um herauszufinden, ob es durch den potentiellen Inhibitor zu einer Hemmung der Enzymaktivität kommt, muss diese detektiert werden können. Hierfür wurde ein geeignetes fluoreszenzbasiertes Testsystem zur Detektion der Enzymaktivität der hLTA4H entwickelt. Dies lässt auch die Quantifizierung der Wirksamkeit der möglichen Inhibitoren zu. Mit Hilfe eines pharmakophorbasierten Ansatzes wurden 22 Testsubstanzen für die in vitro Testung ausgewählt. Nach der Evaluierung dieser Substanzen wurden weitere 14 Derivate der besten Verbindung ausgewählt und ihre inhibitorischen Eigenschaften an rekombinanter LTA4H getestet. Die Ergebnisse wurden mittels Differential Scanning Fluorimetrie validiert, wofür ein einfaches Protokoll etabliert werden konnte.
Im Rahmen dieser Arbeit wurden weiterhin 5 bereits bekannte Inhibitoren der LTA4H ausgewählt, um sie hinsichtlich ihres thermodynamischen Profils zu untersuchen. Hierzu wurden die ausgewählten Inhibitoren mittels Isothermer Titrationskalorimetrie vermessen. Die Dissoziationskonstanten der untersuchten Inhibitoren wurden ebenfalls mittels Differential Scanning Fluorimetrie bestimmt, wobei sich zeigte, dass diese Methode nicht zur präzisen Messung von Protein/Ligand Interaktionen herangezogen werden kann. Mittels eines in silico Ansatzes zur Vorhersage von stabilisierten und destabilisierten Wassermolekülen in der Bindetasche konnten die thermodynamischen Daten im strukturellen Kontext interpretiert werden. Durch diese Kombination konnten neue Erkenntnisse zum Design neuer Inhibitoren der LTA4H gewonnen werden.
Identifizierung und Charakterisierung neuer Inhibitoren der C2-ähnlichen Domäne der 5-Lipoxygenase
(2011)
Die 5-Lipoxygenase (5-LO) katalysiert die ersten beiden Schritte der Leukotrien (LT)-Biosynthese (Samuelsson et al., 1987). Das Substrat Arachidonsäure (AA) wird im ersten Schritt zu einem Fettsäurehydroperoxid, der 5(S)-Hydroperoxy-6-trans-8,11,14-cis-Eikosatetraensäure (5-HpETE) oxidiert. Durch Dehydrierung entsteht im zweiten Reaktionsschritt das instabile Epoxid LTA4. Weiter wandeln zwei Synthasen das LTA4 zum einen in LTB4 oder zum anderen in die Cysteinyl-LTs C4, D4 und E4 um (Samuelsson et al., 1987). Die 5-LO wird in Zellen myeloiden Ursprungs exprimiert und kommt vor allem in reifen Leukozyten vor.
LTs spielen eine wichtige Rolle bei der angeborenen Immunantwort und vermitteln vor allem entzündliche und allergische Reaktionen (Funk 2001; Peters-Golden & Henderson, 2007). Asthma bronchiale, kardiovaskuläre Erkrankungen wie Atherosklerose, Osteoporose oder verschiedene Krebsarten werden im Zusammenhang mit der 5-LO untersucht (Werz & Steinhilber, 2006). Die Inhibition der LT-Biosynthese oder die Senkung der LT-Spiegel stellt eine Möglichkeit dar, den entzündungsfördernden Eigenschaften entgegenzuwirken. Inhibitoren der LT-Biosynthese lassen sich in indirekte und direkte 5-LO-Inhibitoren gliedern. Zu den indirekten 5-LO-Inhibitoren zählen FLAP-Antagonisten (Young, 1991; Evans et al., 2008) sowie CysLT1-Rezeptorantagonisten (Darzen, 1998). Von den vier Gruppen der direkten 5-LO-Inhibitoren (redoxaktive, Eisenligand-, nichtredox- sowie diverse Inhibitoren (Pergola & Werz, 2010)) ist bisher nur Zileuton (Carter et al., 1991), ein Eisenligand-Inhibitor, als Wirkstoff zur Behandlung von Asthma bronchiale in den USA zugelassen.
Das Ziel der vorliegenden Arbeit war es, die neuartige Klasse der Imidazo[1,2-a]pyridine hinsichtlich ihrer 5-LO-Inhibition, ihrer Löslichkeit sowie ihrer Effekte auf die Zellviabilität zu evaluieren und zu optimieren. Dabei stand das Verständnis der Rezeptor-Ligand-Wechselwirkung im Fokus. Ausgehend von Substanz A14, der potentesten Substanz eines virtuellen Screenings nach dualen COX/5-LO-Inhibitoren (Hofmann et al., 2008), wurden 78 Substanzen in ionophor-stimulierten intakten polymorphkernigen Leukozyten (PMNL) sowie im zellfreien System, dem Überstand nach 100.000 × g Zentrifugation (S100) von homogenisierten PMNL, bezüglich ihrer inhibitorischen Aktivität untersucht. Die Effekte auf die Zellviabilität nach Inkubation mit den Substanzen für 48 h auf die humane leukämische Monozytenvorläufer Zelllinie U937 wurden mit Hilfe eines WST-Assays, der die mitochondriale Aktivität misst, sowie eines LDH-Assays, zur Bestimmung der Freisetzung von LDH als Folge von Nekrose, evaluiert.
Innerhalb der Struktur-Aktivitäts-Beziehung (SAR) der 78 Derivate konnte kein eindeutiges Substitutionsmuster, das sowohl in intakten PMNL als auch in zellfreiem S100 zu den gleichen Schlüssen führt, festgestellt werden. Ausgehend von Substanz A14 konnte die inhibitorische Aktivität verbessert werden, wobei Substanzen mit nanomolaren IC50-Werten in beiden Assaysystemen resultierten. Die Substanzen lassen sich in drei strukturelle Teile gliedern: Einen oberen Teil am sekundären Amin, ein bizyklisches N-fusioniertes Imidazopyridin (Teil A) sowie einen Teil B am aromatischen Kern. Nur für den oberen Teil ließ sich ein allgemein-gültiges Substitutionsmuster feststellen. Am sekundären Amin führen in intakten PMNL größere Substituenten zu einer Verbesserung der inhibitorischen Aktivität, wobei dies bis zu einer Cyclohexylgruppe gilt und eine Adamantyl-Substitution eine Ausnahme bildet. Allgemein lässt sich feststellen, dass bei einer Cyclohexylgruppe am sekundären Amin und einer Methylgruppe an Position 6 in Teil A, die Substituenten in Teil B stark variieren können, ohne an inhibitorischer Aktivität zu verlieren. Werden innerhalb des oberen Teils oder in Teil A die Substituenten polarer, sind in Teil B weniger Variationen möglich. Es werden insbesondere lipophile Reste toleriert. Beim Versuch, die Löslichkeit zu verbessern, zeigte sich, dass ein Gleichgewicht zwischen polaren und unpolaren Substituenten vorliegen muss. Auch die Einflüsse der Substituenten auf die Zellviabilität konnten nicht einem allgemein-gültigen Muster unterworfen werden. Mit Substanz 15 konnte ein Derivat identifiziert werden, das verglichen mit der Ausgangssubstanz A14 eine verbesserte inhibitorische Aktivität aufweist (IC50-Werte von 0,16 µM (PMNL) und 0,1 µM (S100)), löslicher ist (clogP-Wert von 4,6) und keine Nekrose auslöst. Weiter zeigten auch die Substanzen 31 und 50 eine Verbesserung der inhibitorischen Aktivität (IC50-Werte von 0,26 µM bzw. 0,58 µM (PMNL) und 0,8 µM bzw. 0,16 µM (S100)) ohne Nekrose auszulösen, wobei Substanz 50 zusätzlich eine verringerte Lipophilie (clogP-Wert von 4,2) aufweist. Substanz 76 ist mit einem IC50-Wert von 6 nM die im zellfreien System aktivste Substanz unter den 78 getesteten Derivaten.
Ein vielversprechender Vertreter dieser neuartigen Klasse der Imidazo[1,2-a]pyridine, Substanz 15 (EP6), wurde in verschiedenen Assaysystemen charakterisiert. EP6 ist ein hochwirksamer Inhibitor der 5-LO mit einem IC50-Wert von 0,16 µM in intakten PMNL und weist im zellfreien S100 von PMNL einen IC50-Wert von 0,1 µM, am partiell gereinigten Enzym einen IC50-Wert von 0,05 µM auf. Die vergleichbare inhibitorische Aktivität in intakten Zellen sowie im zellfreien System lässt auf eine direkte Inhibition der 5-LO schließen. Die Zugabe der allosterischen Faktoren ATP oder Calcium hat keinen Einfluss auf die Potenz von EP6. Auch ist die Inhibition nicht vom Redoxzustand der Zelle abhängig, wie im Falle bekannter nichtredox-Inhibitoren (Werz et al., 1998). Die Zugabe von steigenden Mengen an exogenem Substrat AA zu S100 von PMNL führt zu keiner Beeinträchtigung der Potenz von EP6, was im Vergleich zu den nichtredox-Inhibitoren einen Vorteil bei entzündlichen Prozessen mit erhöhten Lipidhydroperoxid-Spiegeln darstellt. Bei ionophor-stimulierten PMNL ohne die Zugabe von exogenem Substrat resultiert ein sechsfach höherer IC50-Wert von 1,2 µM, der auf eine allosterische Inhibition durch EP6 hinweist, bei der Substrat in ausreichenden Mengen vorliegen muss, damit EP6 mit dem 5-LO-AA-Komplex interagieren kann. Darüber hinaus inhibiert EP6 die LT-Bildung unabhängig von der Art der 5-LO-Stimulation bei einer Zugabe von 20 µM exogener AA. Der physiologische Stimulus in PMNL über N-Formylmethionyl-Leucyl-Phenylalanin (fMLP) führt zu einem höheren IC50-Wert von 0,76 µM mit Zugabe von 20 µM AA und bestätigt die Ergebnisse von ionophor-stimulierten PMNL ohne Zugabe von exogenem Substrat. Für EP6 konnte weiterhin eine allosterische Bindestelle an der C2-ähnlichen Domäne der 5-LO postuliert werden. Die Zugabe von Phosphatidylcholin führte zu einer verminderten inhibitorischen Aktivität. Durch Experimente mit einer Mutante der 5-LO, bei der die Tryptophane, welche die Membranbindung vermitteln, ausgetauscht sind (3W-Mutante), konnte die Interaktion dieser Aminosäuren mit EP6 gezeigt werden. Über einen Kompetitionsassay mit der C2-ähnlichen Domäne, Mutations- und Docking-Studien, wurden die Aminosäuren Y81, Y100 und Y383 des Interfaces der beiden Domänen der 5-LO als essentiell für die Bindung identifiziert. Somit zählt EP6 als Vertreter der Klasse der Imidazo[1,2-a]pyridine neben Hyperforin und AKBA zu den einzigen mit der C2-ähnlichen Domäne interagierenden 5-LO-Inhibitoren.
EP6 ist ein selektiver Inhibitor der 5-LO, der die 15-LO1, 15-LO2 und 12-LO nicht inhibiert. Weiterhin werden drei weitere Enzyme der AA-Kaskade, die Cyclooxygenase-1 und -2 sowie die mikrosomale Prostaglandin E2 Synthase-1 nicht durch EP6 beeinflusst. Neben der humanen 5-LO wird auch die murine 5-LO, in intakten RAW 264.7 Zellen und deren S100 getestet, mit niedrig mikromolarem bzw. nanomolarem IC50-Wert inhibiert, was die erste Voraussetzung für potentielle in vivo Studien darstellt.
Die Inhibition der 5-LO-Produktbildung in humanem Vollblut konnte jedoch bis zu einer Konzentration von 30 µM EP6 nicht gehemmt werden. EP6 ist lipophil (clogP-Wert von 4,6) und weist eine hohe Plasmaproteinbindung (Bindung an humanes Serumalbumin von 97,5 ± 0,7% bei 10 µg/ml EP6) auf, was die Unwirksamkeit in humanem Vollblut erklären könnte.
Abschließend wurden die Effekte von EP6 auf die Zellviabilität untersucht. Die Experimente wurden zunächst in U937 bei einer Inkubationszeit von 48 h mit einer maximalen Konzentration von 30 µM EP6 durchgeführt. EP6 führt zu keinen unmittelbaren zytotoxischen Effekten innerhalb der Inkubationszeit der in dieser Arbeit durchgeführten Aktivitätsassays (gezeigt in PMNL). Weiter wurde jedoch gezeigt, dass die mitochondriale Aktivität nach Inkubation für 48 h mit einem EC50-Wert von 14 µM beeinträchtigt wird (WST-Assay). Dieser Effekt ist jedoch nicht auf Nekrose zurückzuführen, da die gemessene Konzentration an freigesetztem LDH gering bleibt. Über ein Langzeitexperiment wurde die Abnahme der Lebendzellzahl nach Inkubation mit 30 µM EP6 nach 24 h festgestellt. Über Detektion von PARP-Spaltung, einem Marker für späte Apoptose, stellte sich heraus, dass EP6 in U937 Apoptose induziert. Zusätzlich zu den Untersuchungen der leukämischen Zelllinie wurden humane nicht-tumor Zellen (RPE) im Langzeitexperiment sowie im BrdU-Assay untersucht. EP6 beeinträchtigt die Lebendzellzahl der nicht-tumor Zelllinie RPE nicht und führt nur zu geringen antiproliferativen Effekten.
Pharmakophore sind ein zentrales Konzept der medizinischen Chemie. Im Liganden-basierten Design abstrahieren sie physikochemische Eigenschaften einer Menge aktiver Liganden und lassen dadurch Rückschlüsse auf die möglichen Interaktionen mit einem Target zu. Umgekehrt werden im Struktur-basierten Design Kristallstrukturen von Proteinen genutzt um zu modellieren, welche Eigenschaften die Bindetasche besitzt und welche Eigenschaften das entsprechende Gegenstück möglicher Liganden habe sollte. Diese Informationen können genutzt werden, um neue Substanzen zu identifizieren, welche die im Pharmakophore-Modell modellierten Interaktionen mit dem Target eingehen können. Durch die Abstraktion können hierbei sowohl Verbindungen mit neuen Grundgerüsten (scaffold) als auch mit veränderten funktionellen Gruppen gefunden werden. Im ersten Fall spricht man dabei von „scaffold hopping“, der letzte Fall ist eng verbunden mit dem Konzept des bioisosteren Ersatzes.
Im Rahmen dieser Arbeit wurden Pharmakophore genutzt, um in drei Studien neue Inhibitoren der Arachidonsäurekaskade zu finden. Die Arachidonsäurekaskade ist ein Stoffwechselweg in der aus Arachidonsäure eine Reihe von Lipidmediatoren synthetisiert wird. Viele dieser Mediatoren spielen eine entscheidende Rolle in Entzündungsprozessen und damit einhergehenden Krankheitsbildern. Es wurde außerdem eine neue Methode zur automatischen Generierung von Pharmakophor-Modellen aus einer Menge bekannter Liganden entwickelt.
In der ersten Studie wurde ein Struktur-basiertes Pharmakophor-Modell der Bindetasche der löslichen Epoxidhydrolase (sEH) erstellt, welches die möglichen, relevanten Interaktionsmöglichkeiten abbilden sollte. Dieses Pharmakophor-Modell wurde zum Screening einer Datenbank kommerziell erhältlicher Verbindungen genutzt und führte zu zwei Verbindungen mit IC50-Werten im niedrigen mikromolaren Bereich sowie einer dritten Verbindung mit einem bisher nicht für Inhibitoren der sEH beschriebenem Chemotyp. Zwar war diese Verbindung in höheren Konzentration unlöslich war, jedoch erreichten Derivate ebenfalls IC50-Werte im niedrigen mikromolaren Bereich und könnten als mögliche Startpunkte für eine neue Substanzklasse von sEH-Inhibitoren dienen.
In einer zweiten Studie wurde ein Liganden-basierter Ansatz gewählt um neue Inhibitoren der Leukotrien-A4 Hydrolase (LTA4H) zu suchen. Im Rahmen dieser Studie wurde außerdem eine neue Methode zur automatischen Generierung von Pharmakophor-Modellen entwickelt, welche auf einem wachsenden neuronalen Gas basiert, einer Methode aus dem Bereich des maschinellen Lernens. Die Methode wurde retrospektiv anhand mehrerer Benchmark-Datensätze validiert. Unter anderem wurde überprüft, inwiefern die Methode in der Lage ist die bioaktive Konformation eines Liganden vorherzusagen. Hierzu wurden, ausgehend von co-kristallisierten Liganden, automatisch Modelle generiert, welche im Anschluss genutzt wurden um Konformations-Datenbanken der Liganden zu durchsuchen. Je näher die beste gefundene Konformation an der co-kristallisierten Konformation lag, desto besser war das erzeugte Modell. Die entwickelte Methode war in nahezu allen Fällen in der Lage ein Modell zu erzeugen, mit welchem die durchschnittliche Abweichung zwischen co-kristallisierter und gefundener Konformation unter 2 Å lag. Im Rahmen der Studie wurde die neu entwickelte Methode auch in einem prospektiven Virtual Screening nach neuen Liganden der LTA4H genutzt. Hierzu wurden basierend auf 24 Kristallstrukturen mehrere Pharmakophor-Modelle für LTA4H-Liganden erstellt. Durch zusätzliche Nutzung des ESshape3D Fingerprints konnte außerdem die Form der Bindetasche der LTA4H erfasst werden. Diese Modelle wurden anschließend eingesetzt um eine Datenbank kommerziell erhältlicher Verbindungen zu durchsuchen und führten zur Identifizierung von zwei Substanzen mit IC50-Werten im unteren mikromolaren Bereich. Des Weiteren war die neue Methode in der Lage, den Bindemodus des genutzten Referenzinhibitors vorherzusagen, welcher durch Röntgenstrukturanalyse bestätigt wurde.
In zwei weiteren Studien wurde versucht, duale Inhibitoren der sEH und der 5-Lipoxygenase (5-LO) zu finden. Die erste dieser beiden Studien nutzte hierfür „duale“ Pharmakophor-Modelle: für beide Targets wurde basierend auf einer Vielzahl publizierter, aktiver Liganden eine Reihe von Pharmakophor-Modellen erstellt. Diese Modelle wurden paarweise miteinander verglichen; Modelle, welche eine ausreichend hohe Überlappung an Features besaßen, dienten als Ausgangspunkt für die Suche nach potentiell dualen Liganden. Durch die Suche in einer Fragment-Datenbank konnten neun Verbindungen identifiziert werden, welche eine Aktivität gegenüber einem der beiden Targets zeigten. Diese Verbindungen besaßen zum Teil noch nicht in der Literatur für sEH- oder 5 LO Inhibitoren beschriebene Strukturmerkmale. Eine der Verbindungen war außerdem in der Lage beide Targets im niedrigen mikromolaren Bereich zu inhibieren und könnte als Ausgangspunkt zur Entwicklung weiterer dualer 5-LO/sEH-Inhibitoren dienen. In der zweiten Studie wurde eine auf selbst-organisierenden Karten (SOM) basierende Methode genutzt um potentiell duale Liganden zu suchen. Hierzu wird je eine SOM mit repräsentativen (Sub-) Strukturen von Liganden beider Targets trainiert. Die DrugBank, eine Datenbank zugelassener Wirkstoffe, dient hierbei als Hintergrundverteilung und stellt den Raum wirkstoffartiger chemischer Strukturen dar. Durch einen automatischen Vergleich der trainierten SOMs können mögliche gemeinsame Substrukturen identifiziert werden. Die Anwendung dieser Methode auf bekannte Inhibitoren der sEH und der 5-LO identifizierte neun Fragmente, die auf einem der beiden Targets, sowie fünf Fragmente welche auf beiden Targets im niedrigen mikromolaren Bereich inhibierend wirken. Eine Substruktursuche nach einem dieser Fragmente in einer internen Datenbank lieferte eine Verbindung, welche beide Targets im nanomolaren Bereich inhibiert und eine vielversprechender Basis als Leitstruktur für die Entwicklung dualer 5-LO/sEH-Inhibitoren darstellt.
Zusammenfassend wurden in dieser Arbeit mehrere Ansätze vorgestellt wie Pharmakophore in der Wirkstoffsuche eingesetzt werden können. Im Rahmen mehrerer Virtual Screenings konnten eine Reihe neuer Inhibitoren gefunden werden, einige mit nicht zuvor beschriebenen Strukturmerkmalen für das jeweilige Target. Es wurde außerdem eine neue Methode zur automatischen Generierung von Pharmakophor-Modellen entwickelt, welche sowohl retrospektiv als auch prospektiv validiert wurde.
Fettsäuren vermitteln ebenso wie Gallensäuren über ihre G-Protein gekoppelten Rezeptoren (GPR40 bzw. TGR5) und nukleären Rezeptoren Peroxisomen Proliferator-aktivierten Rezeptoren (PPARs) bzw. Farnesoid-X-Rezeptor (FXR) Signale zur Regulation wichtiger Stoffwechselwege, wie dem Fettstoffwechsel, Cholesterolstoffwechsel und der Glukosehomöostase. Gerade die nukleären Rezeptoren stellen durch ihre Regulation einer Vielzahl an Targetgenen vielversprechende Wirkstofftargets dar. Die Aktivierung von PPARα und PPARγ wird seit Jahren therapeutisch genutzt zur Therapie der Dyslipidämie (Fibrate) und des Typ-2 Diabetes (Glitazone). Dennoch zeigte sich durch diese Vollaktivierung ein bedenkliches Profil unerwünschter Nebenwirkungen eng mit der therapeutischen Wirkung verknüpft. Im Falle des FXR befindet sich derzeit ein semisynthetisches Derivat, welches sich von den endogenen Liganden CDCA ableitet, in Phase III der klinischen Entwicklung zur Therapie von Lebererkrankungen, wie der nicht-alkoholischen Fettleber und der primären billiären Zirrhose. In vitro und in vivo-pharmakologische Untersuchungen weisen auf positive Effekte von FXR-Agonisten aber auch mit FXR-Antagonisten auf den Zucker- und Cholesterolstoffwechsel hin. Doch hier bleibt abzuwarten, ob agonistisch oder antagonistisch aktive Substanzen das größte therapeutische Potential besitzen, wobei die Erfahrung mit Liganden anderer nukleärer Rezeptoren, wie den PPARs und Estrogenrezeptoren (ER) zeigt, dass die partielle Aktivierung der Vollaktivierung zu bevorzugen ist. Diese Arbeit unterteilt sich in zwei Projekte, die sich von der an PPAR dual aktiven Pirinixinsäure (1) ableiten. Ausgangspunkt des ersten Projekts bildet die Substanz MD78 (2), die sich aus Struktur-Wirkungs-Beziehungen (SAR) vorangegangener Arbeiten entwickelt hat. Mit ihrem potenten dual PPARα/γ-agonistischen Profil hebt sie sich in ihrer Aktivität von den anderen Derivaten ab. Ziel war es die Ursache dieser Aktivität mit Hilfe einer konkretisierten SAR zu identifizieren. Die nähere Untersuchung der Verbrückung des lipophilen Substituenten zeigte einen deutlichen Einfluss des sekundären Amins auf die Aktivität, vor allem am PPARα-Subtyp. Eine Dockingstudie unterstützte die These, dass ein Wasserstoffbrückendonor an dieser Stelle für die Aktivität von Vorteil sei, da dadurch ein Wasserstoffbrückennetzwerk zu einem konserviert vorliegendem Wasserkluster ausgebildet werden konnte. Dieses Wasserkluster wird durch die Aminosäure Thr279 in der Ligandbindetasche fixiert, sodass eine Mutationsstudie durchgeführt wurde, die diese These belegen konnte. Ebenfalls aus vorangegangenen Arbeiten entwickelte sich ausgehend von der Pirinixinsäure Phenylthiohexansäuren, die in einem Screening als FXR-Liganden identifiziert wurden. Die Substanz HZ55 (3) bildete somit die Leitstruktur des zweiten Projekts dieser Arbeit, bei dem die Zielsetzung die Entwicklung selektiver FXR-Liganden war. Da die Leitstruktur 3 eine auf die Aktivität an PPAR und den Enzymen der Arachidonsäurekaskade mPGES-1 und 5-LO optimierte Substanz darstellte, wurde im ersten Schritt der SAR der substituierte Thioether deletiert, da dieser als potentes PPAR-Pharmakophor bekannt war. Anschließend erfolgte die weitere Optimierung durch Struktur-Wirkungs-Beziehung der sauren Kopfgruppe, des Linkers und des heteroaromatischen Substituenten. Erste agonistisch aktive Derivate wurden durch Austausch des Chinolin-Rings durch einen Pyridin-Ring erreicht, wobei die Position 2 des Stickstoffs bevorzugt war (4). Durch Variation der Substitutionsposition am Pyridin-Ring stellte sich die Position 3 als vorteilhaft heraus, um hier durch Vergrößerung des lipophilen Substituenten die Aktivität zu steigern. Bei dem Einsatz des Eduktes Pyridin-2-ol musste die Synthese optimiert werden, um das Tautomeren-Gleichgewicht zwischen Pyridin/Pyridon steuern zu können. Denn auch die Pyridon-Derivate zeigten vergleichbare partialagonistische Potenz zu ihren Isomeren. Hier führte jedoch die Vergrößerung des lipophilen Substituenten in 3-Position zu der Etablierung einer neuen FXR-antagonistischen Substanzklasse. Der hieraus potenteste Vertreter (5) wurde weitergehend charakterisiert und konnte seine antagonistische Wirkung auch auf die FXR-Targetgene SHP, BSEP, Ostα und IBABP nachweisen. Durch qRT-PCR quantifiziert zeigte sich, dass 5 die Aktivität des endogenen Liganden CDCA antagonisieren konnte. Weiterhin zeigte die Substanz eine gute Selektivität über die PPARs. Optimierungsbedarf besteht jedoch in der metabolischen Stabilität und Löslichkeit und der Selektivität gegenüber mPGES-1. Doch die Substanz 5 stellt einen interessanten Ausgangspunkt für eine neue Substanzklasse dar, da sie eine agonistische Aktivität an dem G-Protein gekoppelten Rezeptor der Gallensäuren, TGR5, zeigt. Somit stellt 5 die erste synthetische Substanz dar, die dieses duale Profil der Gallensäurerezeptoren besitzt. Dies stellt ein vielversprechendes neues Therapieprinzip dar, nachdem sowohl der FXR-Antagonistmus positive Wirkung auf die Insulinsensitivität in Mausmodellen des Diabetes gezeigt hat, als auch der TGR5-Agonismus durch die Sekretion von GLP-1 Auswirkungen auf den Glukosehomöostase hat.
Im Rahmen der vorliegenden Arbeit wurden Inhibitoren der bakteriellen Resistenzproteine New Delhi Metallo-β-Lactamase 1 (NDM-1), die beiden Mutanten der Verona-Integron Encoded Metallo-β-Lactamase 1 und 2 (VIM-1, bzw. -2), sowie die Imipenemase 7 (IMP-7) entwickelt.
Auf Grund natürlicher Selektion, aber vor allem auch bedingt durch den unüberlegten und verschwenderischen Einsatz von β-Lactam-Antibiotika, ist eine weltweite Zunahme an multiresistenten Erregern zu beobachten. Einer der Hauptgründe dieser Resistenzen sind die Metallo- β-Lactamsen (MBL), welche vor allem in Gramnegativen Bakterien vertreten sind und für die Hydrolyse und damit der Desaktivierung der β-Lactam-Wirkstoffe verantwortlich sind. Neben der Suche nach anderweitig wirkenden Antibiotika, ist die Entwicklung von Inhibitoren der MBLs von vordringlicher Bedeutung.
Basierend auf der Grundstruktur des ACE-Hemmers Captopril, wurden trotz synthetischer Herausforderungen erfolgreich mehrere Strukturen mit inhibitorischer Aktivität gegenüber den MBLs synthetisiert. Der Prolinring von Captopril wurde in einer neuen Variante der Captopril-Synthese durch verschiedene Ring- und nicht cyclische Teilstrukturen ersetzt. Durch die Entwicklung einer Schutzgruppenstrategie, konnte die Ringstruktur durch einen Piperazin-Rest ersetzt werden. Dies erlaubt es, die Molekülstruktur auf dieser Seite zu erweitern. Des Weiteren wurde eine neue Syntheseroute etabliert, welche es auf elegante Weise ermöglicht, weitere Derivatisierungen an der Methylgruppe des Captoprils durchzuführen.
In einem proteinbasierten Testsystem wurden die synthetisierten Substanzen auf ihr inhibitorisches Potential hin untersucht. Dabei wurden IC50-Werte im niedrig einstelligen mikromolaren, für drei Verbindungen sogar im sub-mikromolaren Bereich ermittelt. Die erhaltenen Ergebnisse wurden für die drei aktivsten Inhibitoren durch eine Erhöhung des Schmelzpunktes in einem TSA-Testsystem erfolgreich verifiziert. Mittels ITC-Untersuchungen konnte die unterschiedlichen Gewichtungen der entropischen und enthalpischen Beiträge zur Bindung der Inhibitoren an die untersuchten MBLs aufgezeigt werden. Hierdurch konnten die scheinbar widersprüchlichen Ergebnisse der ermittelten IC50-Werte und Schmelzpunktverschiebungen für die Verbindung DBDK48 bezüglich der NDM-1 aufgeklärt werden.
Die Strukturen DB320 konnte erfolgreich mit VIM-2 co-kristallisiert werden. Dies ermöglicht eine genauere Untersuchung und qualifizierte Aussagen über die Bindungsverhältnisse zwischen Protein und Ligand.
Für zwei der synthetisierten Inhibitoren sollte untersucht werden, ob deren Aktivität in vitro auch in Bakterien erhalten bleibt. Dazu wurden pathogene klinische Isolate und Laborstämme, welche mit dem Resistenzplasmid transfiziert wurden, und gegen Imipenem resistent sind, herangezogen. Durch die Zugabe der Inhibitoren konnte die Wirksamkeit von Imipenem wiederhergestellt werden.
Es konnte eine HPLC-Methode etabliert werden, welche eine Abschätzung der Polaritäten in Abhängigkeit der Retentionszeiten erlaubt. Dadurch konnte ein direkter Zusammenhang zwischen der Polarität der Verbindungen und dem Grad der Wirksamkeit im MIC-Testsystem aufgezeigt werden.
Durch die Untersuchung der Inhibitoren auf die Proteine ACE und LTA4H, konnten zwei Ziel-Proteine der Captopril-Grundstruktur als unerwünschte Nebenziele ausgeschlossen werden. Des Weiteren führte die Behandlung von U937-Zellen, selbst bei einer hohen Konzentration von 100 µM, weder zu Auffälligkeiten in einem WST-1 Assay, noch zu einer erhöhten Freisetzung von LDH. Daher kann davon ausgegangen werden, dass die Verbindungen über keine zytotoxischen Eigenschaften verfügen.
Lipid mediators have been referred as bioactive lipids, whose change in lipid levels resulted in functional or pathophysiological consequences. They are in the focus of biological research, nevertheless this is a late recognition due to the many difficulties of working with bioactive lipids due to their properties: hydrophobic, unstable and they occur in only in small quantities. Liquid chromatography and mass spectrometry have facilitated the work with them. Especially in this field, cardiovascular diseases and inflammatory mediated diseases and cancer are pathophysiological events where LMs are deregulated. Additionally, if the modulation of one LM pathway is not sufficient to overcome a disease, the combination of targeting two or more pathways could be effective. Needless to say, lipid signaling cascades are complicated pathways and possible shunting into other pathways when inhibiting or genetically deleting enzymes should be taken into consideration.
The first part of this work has focused on enzymes that metabolize eicosanoids, like mPGES-1 and 5-LO. mPGES-1 is an important enzyme metabolizing PGH2 and one of the key players of the AA cascade. Its product, PGE2 plays an important role in different inflammatory processes. Inhibition of the mPGES-1 might be a promising step to circumvent COX dependent side effects of NSAIDs. The class of quinazoline compounds around the lead structure FR20 has been investigated on isolated human and murine enzyme, in HeLa cells and in different human whole blood (HWB) settings to establish the possible effects of these compounds on eicosanoid profiling. Novel compounds with inhibitory activities in the submicromolar range (IC50: 0.13 µM - 0.37 µM on isolated enzyme) were obtained which were also effective in cells and HWB. Furthermore, pharmacological profiling of toxicity and lipid screening with LC/MS-MS revealed that compounds also reduce PGE2 levels in intact cells and whole blood; they do not impair cell viability but lack the ability to inhibit the murine mPGES-1 enzyme. This problem could be overcome by means of chemical synthesis varying the scaffold (quinoline, quinazoline) or introducing biosteric replacement in the phenyl moieties.
5-LO is a relevant enzyme that plays an important role in eicosanoid signaling in particular in leukotriene biosynthesis. Leukotrienes are involved in asthma, allergic rhinitis, glomerulonephritis, rheumatoid arthritis, sepsis, cancer and atherosclerosis. Moreover, genetic variants in the genes of the 5-LO pathway have been associated with the risk of development of acute myocardial infarction and stroke. Eicosanoids are increased in infectious exacerbations of chronic obstructive pulmonary disease (COPD). They are also elevated in the airways of stable COPD patients compared to healthy subjects. Therefore, 5-LO has attired the scientific community as a possible therapeutic target to treat the several disease conditions listed before. In this study an extensive evaluation of imidazo[1,2-a]pyridines as a suitable lead structure for novel 5-LO targeting compounds was presented Within the three publications, 5-LO inhibitory activity of synthesized compounds was investigated in intact PMNL, a cell-free assay, in human whole blood and rodent cells to both elucidate structure-activity relationships and compounds were in vitro pharmacological evaluated. Chemical modifications for lead optimization via straight forward synthesis were used to combine small polar groups (hydroxy, and methoxy groups) which led to a suitable candidate with desired in vitro pharmacokinetic profile in terms of solubility and intrinsic clearance without showing any cytotoxicity. More than 70 imidazo[1,2-a]pyridine derivatives have been synthesized, resulting in more than 50 active compounds. Although it was not possible to introduce a solubility group without impairing the 5-LO inhibitory activity, combination of small polar groups lead to a more favorable solubility and in vitro metabolic stability. Overall, the development of 5-LO inhibitors with high efficacy and selectivity in vivo will provide a possible treatment for patients having one of the diseases where leukotriene biosynthesis plays an important role.
Other types of 5-LO inhibitors have been synthesized during this work, NO-NSAIDs can be postulated as novel 5-LO inhibitors that could circumvent the undesired side-effects of inhibiting COX isoforms (ulcer perforation, gastrointestinal bleeding and in some cases death). It is suggested that NO group is released in situ or after compounds are metabolized. NO-NSAIDs maintain the same anti-inflammatory properties by inhibiting 5-LO in clinical relevant concentrations. NO-NSAIDs are currently under clinical trial for the treatment of diseases where inflammation plays an important role. Synthesis of NO-NSAIDs is straightforward and can be applied for most NSAIDs recently published. Among them, the most promising candidate is NO-sulindac that was able to inhibit 5-LO product formation in intact PMNL, purified 5-LO and HWB in micromolar concentration. Additional experiments regarding their mechanism are currently being performed.
The present study could show that dual inhibitors are an interesting approach that is practicable. It has been used in the recent years to overcome side-effects and diseases concerning more pathophysiological conditions. MetS is an example of a conjunction of symptoms: hyperglycemia, hypertriglyceridemia, hypertension and obesity. Due to its complex nature, the current treatment strategies of MetS require multiple pharmacological compounds regulating lipid and glucose homeostasis as well as blood pressure and coagulation. This study describes the first synthesis of dual sEH/PPAR modulators as potential agents for treatment of MetS. Following a combinatorial approach, an acidic head group known as a pharmacophore important for PPARα/γ dual agonistic activity was combined with different hydrophobic urea derivatives in order to introduce an epoxide mimetic (sEH pharmacophore). The resulting compounds yielded high inhibition of sEH and different patterns of PPAR agonistic activity. This study demonstrates that the pharmacophores of PPAR agonists and sEH inhibitors can be easily combined, resulting in a simplified blueprint of a dual sEH/PPAR modulator. Further in vivo pharmacological evaluation studies are needed in order to evaluate, which pattern of PPAR activation shows the most promising profile for treatment of metabolic syndrome.
Another example of dual pharmacology has been presented in this work. Natural products derived compounds were able to target sEH and exhibit promising antiproliferative properties. The principle of addressing multiple targets by natural products can be transferred to synthetic multi-target ligands. In conclusion, several (E)-styryl-1H-benzo[d]imidazoles were synthesized and evaluated on recombinant sEH after an initial hit (IPS) that lead to potent sEH inhibitors exhibiting antiproliferative activities. Following the natural product-inspired design, the desired biological activity from a bacterial secondary metabolite has been enhanced and transferred to a synthetic compound series. The resulting compounds were accessible via an easy synthetic route and offered a possibility to investigate the structure-activity relationships. The natural product inspired drug design extends the valuable role of natural products as drugs and drug precursors to templates for fully synthetic bioactive molecules. Simplification of natural products by means of chemical synthesis could lead to an interesting field in the treatment of cancer.
Affinity chromatography has been used to unravel unknown- and off-target effects which either contribute to the biological effect of the inhibitor or that counteract or lead to undesired side-effects. During this PhD work, two main projects related to this technique have been established. In the first one, related to an imidazo[1,2-a]pyridine inhibitor (EP6), it has been shown that epoxide-sepharose is a reliable material in order to couple compounds bearing an alcohol. Coupling of an analogue of EP6 to the sepharose has been accomplished and affinity towards 5-LO was demonstrated. The challenging step is to discern from unspecific protein binders and analysis via SDS-PAGE separation and mass spectrometry. Further experiments using other cell types or improving SDS-PAGE analysis (e.g. 2D gel analysis) should be useful to unravel EP6 off-target effect. During the second project related to off-target effects of celecoxib and DMC, the main problem was the coupling of the functional group to the sepharose. Affinity towards COX-2 could not be demonstrated pointing out the inefficient coupling method. Higher pH values during coupling reaction should be tested in further experiments. Nevertheless, affinity chromatography is a useful technique to unravel cellular mechanisms.
Sphingolipid metabolism is also a recent area that attired the attention of cancer researchers, due to their important roles in cell proliferation and apoptosis. Ceramide metabolism inhibitors were synthesized and evaluated on different assay systems in order to assess their efficacy on several cancer lines. Remarkably, 2,2-dimethyl-1,3-dioxolan-4-yl)methanamine (32) was a useful scaffold to mimic the sphingoid base. This key intermediate was used to produce ceramide analogues that could enter the cell and target apoptosis machinery. EB143 (38) increased ceramide levels in an in vitro ceramide synthase assay in a dose-response manner meaning that ceramide synthase was not inhibited but the ceramide de novo synthesis was activated. This effect was due to the fact that EB143 is a cytotoxic compound with an interesting antiproliferative profile. Further chemical modifications should be carried out to modulate this effect.
COX and LO inhibitors are cancer-preventive not only by inhibiting specific antiapoptotic AA metabolites but also by facilitating accumulation of AA which promotes neutral SMase activity and increases the proapoptotic ceramide. Several 5-LO inhibitors have been evaluated on several cancer lines and sphingolipid levels were measured in order to obtain a relationship. A549, Capan-2 and MCF-7 cells line were incubated with synthetic 5-LO inhibitors and zileuton. Compounds were cytotoxic to all cancer cell lines except from A549. Needless to say, zileuton did not exhibit a cytotoxic profile. Synthetic 5-LO inhibitors were able to modify ceramide levels but were useless when coincubating with sphingolipid metabolism inhibitors (myoricin, amitryptiline etc.) and inconsistent results were obtained. On the contrary, zileuton selectively increased Cer-C16 levels and in less extend Cer-C24:1. When using a SPT inhibitor (myoricin) alone was able to reduce C24:1 and Cer-C16:0 levels below the control, a similar effect occurred when incubation the cells with zileuton and myriocin. Interestingly, treatment of zileuton together with either amitryptiline or desipramine led to a decrease in Cer-C24:1 and levels Cer-C16:0 but the inhibition was not complete indicating that probably the de novo pathway has an important role. Further investigations on mRNA level should be carried out in order to discern which CerS is activated.
The main objective of the present thesis was the synthesis of lipid signaling modulators and their evaluation in vitro as therapeutic strategy to overcome pathophysiological conditions (cancer, metabolic syndrome, etc). It has been accomplished on many relevant targets like 5-LO, mPGES-1, sEH and PPAR and these lipid signaling modulators could be used in the treatment of diseases conditions where lipid mediators play an important role.
Polypharmakologie hat in den letzten Jahren mehr und mehr an Bedeutung in der pharmazeutischen Forschung gewonnen und könnte in Zukunft zu einem Umdenken in der Entwicklung neuer Wirkstoffe führen. Das wachsende Verständnis für biologische Zusammenhänge, im speziellen für die starke Vernetzung zwischen verschiedenen Signalwegen oder Gewebearten, und die daran beteiligten Proteine, könnten zu gänzlich neuen Strategien führen. Beispiele aus dem Bereich der Onkologie und der Entwicklung von Neuroleptika haben bereits gezeigt, dass eine Intervention an mehreren Stellen eines solchen komplexen Netzwerkes zu wirksameren und gleichzeitig sichereren Wirkstoffen führen kann. Erkenntnisse aus der Systembiologie und die retrospektive Analyse bereits zugelassener Wirkstoffe machen deutlich, dass viele erfolgreiche Wirkstoffe nur aufgrund ihres polypharmakologischen Wirkprofils so effektiv sind – wenngleich dies bei Ihrer Entwicklung oftmals nicht beabsichtigt war.
Das rationale Design sogenannter „multitarget Wirkstoffe“ stellt bis heute eine große Herausforderung dar. Aus Sicht eines medizinischen Chemikers bedeutet es die Verknüpfung zweier, auf unterschiedliche Targets aktiver, Liganden zu einem neuen Wirkstoff, ohne einen signifikanten Aktivitätsverlust auf die einzelnen Targets herbeizuführen. Ein naheliegender Ansatz zur Verbindung zweier Liganden ist die Verknüpfung der Moleküle über einen flexiblen Linker. Dieser Ansatz kann zwar in vitro zu sehr potenten Wirkstoffen führen, birgt jedoch pharmakokinetische Nachteile, bedingt durch das hohe Molekulargewicht, die sich oft erst in vivo zeigen. Die Schwierigkeit besteht also zum einen in der Aufrechterhaltung der individuellen Aktivität auf das jeweilige Target und zum anderen im Erreichen einer guten Balance zwischen Aktivität und Komplexität des Liganden. Damit soll ausreichend Raum für spätere Optimierung von pharmakokinetischen und pharmakodynamischen Eigenschaften gewährleistet werden. Bisher wurden nur wenige Computer-gestützte Ansätze entwickelt um diese und ähnliche Fragestellungen zu bearbeiten. Aus diesem Grund ist die Entwicklung neuer in silico Verfahren zur Identifzierung von multitarget Liganden ein Kernthema dieser Arbeit. Die Implementierung eines Fragment-basierten Ansatzes hält die Komplexität der Liganden möglichst gering und bietet genügend Raum für eine anschließende, multi-dimensionale Optimierung an zwei oder mehreren Targets.
In der ersten Studie wurde eine Pharmakophor-basierte Strategie verfolgt. Die Repräsentation eines Liganden durch ein Pharmakophormodell stellt eine abstrakte dreidimensionale Darstellung der für die biologische Aktivität relevanten Strukturmerkmale dar. Diese Abstraktion vereinfacht den Vergleich zweier Verbindungen und erlaubt gleichzeitig Spielraum für chemische Variabilität. Bei diesem Ansatz wurden Pharmakophormodelle, jeweils für eine Vielzahl aktiver Liganden zweier Targets, erzeugt und paarweise miteinander verglichen. Sobald zwei Pharmakophormodelle eine genügend große Anzahl an Pharmakophorpunkten in räumlich ähnlicher Orientierung teilen, stellt dieses gemeinsame Pharmakophor die Basis eines potentiellen multitarget Liganden dar. In der beschriebenen Studie wurde dieses Verfahren anhand von aktiven Liganden der löslichen Epoxid Hydrolase (sEH) und 5-Lipoxygenase (5-LO) evaluiert. Die auf dieser Grundlage identifizierten multitarget Pharmakophormodelle wurden zum anschließenden Screening einer Fragement-Datenbank verwendet und führten zu 9 aktiven Liganden für sEH und 5-LO. Diese Liganden besitzen chemische Grundgerüste (Scaffolds), die in der Literatur bisher noch nicht als aktive sEH- oder 5-LO-Liganden beschrieben wurden und somit eine ideale Grundlage für die Entwicklung neuer Wirkstoffe darstellen. Für eine der gefundenen Verbindungen, basierend auf einem Benzimidazol-Gerüst, wurden Aktivitäten im niedrig mikromolaren Bereich für beide Targets bestimmt. Diese Verbindung und weitere Derivate werden zu diesem Zeitpunkt weiter charakterisiert um eine erste Struktur-Aktivitäts-Beziehung aufzustellen und die Eignung dieser Substanzklasse als potentielle Leitstruktur für neue, duale sEH/5-LO Liganden zu überprüfen.
Parallel dazu wurde eine Substruktur-basierte Strategie verfolgt um Rückschlüsse auf jene Strukturmerkmale zu ziehen, die für die Aktivität auf dem jeweiligen Target verantwortlich sein könnten. Dazu wurden in einem ersten Schritt alle aktiven Liganden zweier Targets auf ihre möglichst maximalen gemeinsamen Substrukturen reduziert. Für jedes Target wird damit ein Set von Substrukturen generiert, welches die für die Bindung an das jeweilige Target charakteristische Strukturmerkmale enthält. Diese Substrukturen, repräsentieren den chemischen Raum des jeweiligen Targets und stellten die Trainingsdaten für den entwickelten multiSOM Ansatz dar. Dieser Ansatz basiert auf dem automatisierten Vergleich von selbst-organisierenden Karten und hebt Gemeinsamkeiten zwischen diesen Substruktursets in einer leicht zu interpretierenden, visuellen Form hervor. Dies erlaubt die Identifizierung von gemeinsamen Substrukturen aus beiden verwendeten Substruktursets, welche potentielle duale Strukturelemente darstellen.
Die Validierung dieses Ansatzes erfolgte erneut auf Basis bekannter 5-LO- und sEH-Liganden. Unter 24 ausgewählten Verbindungen konnten neun Fragmente identifiziert werden, die auf einem der beiden Targets und 5 Fragmente, die auf beiden Targets im niedrig mikromolaren Bereich inhibierend wirken. Einer dieser dualen Fragmente wurden anschließend als Basis für eine Substruktursuche in einer Inhouse Datenbank verwendet. Die daraus resultierende Verbindung, die einen Teil des ursprünglichen Fragments beinhaltet, wirkt sowohl auf sEH als auch 5-LO in nanomolaren Konzentrationen inhibierend. Auch diese Verbindung wird zu diesem Zeitpunkt weiter charakterisiert und stellt eine vielversprechende Basis als Leitstruktur neuer dualer sEH/5-LO-Liganden dar.
Zusammenfassend lässt sich sagen, dass die vorgestellten Methoden neue Möglichkeiten bieten, das rationale Design von multitarget Liganden zu unterstützen. Die Pharmakophor-basierte Methode kann besonders dann von Vorteil sein, wenn bereits Strukturinformationen für beide Targets bzw. die bioaktiven Konformationen der Liganden vorliegen. Für einen ausschließlichen Liganden-basierten Ansatz stellt die Verwendung der MultiSOM, und damit die Identifizierung gemeinsamer Strukturelemente der Liganden, die bessere Methode dar.
Im zweiten Teil dieser Arbeit werden Studien zur Identifizierung neuer Farnesoid-X-Rezeptor (FXR) Partialagonisten beschrieben. Auch in diesem Fall wurden zwei unterschiedliche Strategien verfolgt. Da FXR eine starke strukturelle Anpassung abhängig vom gebundenen Liganden aufweist („induced fit“), sind rein strukturbasierte virtuelle Screening-Methoden nur eingeschränkt einsetzbar. Aus diesem Grund sollte zunächst ein Liganden-basierter Drug Repurposing Ansatz verfolgt werden, bei dem bereits zugelassene Wirkstoffe mit potentiell FXR-modulierenden Eigenschaften identifiziert werden sollten. Der Vorteil des Drug Repurposing besteht darin, dass die betrachteten Wirkstoffe bereits intensiv hinsichtlich Sicherheit und Bioverfügbarkeit untersucht wurden. Somit kann man sich bei der Entwicklung verstärkt auf die biologische Aktivität auf das neue Target konzentrieren.
Erneut wurden selbstorganiserende Karten (SOMs) verwendet, um zugelassene Wirkstoffe mit FXR-Aktivität zu identifizieren. Trainiert wurde die SOM auf einem Datensatz bestehend aus bekannten FXR-Agonisten zum einen und der DrugBank Datenbank mit zugelassen Wirkstoffen zum anderen. Die Eigenschaft der SOM Verbindungen mit ähnlicher biologischer Aktivität in räumlicher Nähe auf der Karte zu clustern führte zu einer Anhäufung an bekannten FXR-Agonisten auf einigen wenigen Neuronen. Auf solchen sogenannten Aktivitätsinseln wurden zusätzlich auch zugelassene Wirkstoffe platziert, wenn ihre Ähnlichkeit zu den FXR-Agonisten ausreichend hoch war. Die auf den Aktivitätsinseln angesiedelten Wirkstoffe wurden anschließend bestellt und hinsichtlich ihrer FXR-Aktivität in einem Transaktivierungs-Assay untersucht. Unter den bestellten Verbindungen konnten sechs Liganden mit einer signifikanten relativen FXR-Aktivierung identifiziert werden. Weitere Hinweise auf eine mögliche FXR-Aktivierung der Verbindungen gaben in der Literatur beschriebene Nebeneffekte, die mit einer FXR-Aktivierung in Zusammenhang stehen könnten. Die potentenste Verbindung, der zugelassenen Tyrosinkinase-Inhibitor Imatinib, wurde zusätzlich in Bezug auf FXR-basierte SHP mRNS Induktion untersucht. In qPCR-Experimenten konnte dabei eine mit GW4064 vergleichbare Induktion in HepG2 Zellen gezeigt werden. Diese Ergebnisse untermauern die aus der Literatur gewonnen Vermutung, dass Imatinib FXR-modulierende Eigenschaften besitzt und somit eine interessante Grundlage für die Entwicklung neuer FXR-Partialagonisten darstellt. Zu diesem Zeitpunkt werden weitere Imatinib-Derivate synthetisiert und diese Struktur als mögliche Leitstruktur charakterisiert.
In einer zweiten Studie wurde eine Kombination aus Liganden- und Struktur-basierten Ansatz verfolgt. Dabei wurden sämtliche Struktur-Informationen aus publizierten FXR-Kristallstrukturen und den darin kokristallisierten Liganden gebündelt, um die Auswirkungen des zu Beginn erwähnten induced-fit Effekts zu minimieren. Auf Basis der ko-kristallisierten Liganden wurden zunächst zwei Konsensus-Pharmakophormodelle erstellt. Diese Modelle wurden in einem anschließenden Schritt jeweils mit einem Konsensus-Pharmakophormodell, das mit Hilfe von Protein-Ligand-Interaktions-Fingerprints (PLIF) aus den korrespondieren Kristallstrukturen abgeleitet wurde, überlagert und kombiniert. Diese kombinierten Modelle vereinten sowohl Informationen der strukturellen Gemeinsamkeiten der Liganden als auch gemeinsame, relevante Interaktionspunkte zwischen Ligand und Rezeptor aus den Kristallstrukturen. Das Pharmakophor-Screening mit anschließender Docking Analyse führte zu 42 getesteten Verbindungen, von denen 12 Strukturen eine signifikante relative FXR-Aktivierung zeigten. Darunter konnte ein Partial-Agonist mit einem EC50 von 480 nM bei einer maximalen Aktivierung von ca. 14% im Vergleich zur Referenz GW4064 identifiziert werden. Auch diese Verbindung wird zum aktuellen Zeitpunkt weiter charakterisiert und könnte in Zukunft als Leitstruktur für neue FXR-Partialagonisten dienen.
In beiden Studien konnten neue FXR-Agonisten mit bisher noch nicht beschriebenen Scaffolds identifiziert werden. Es konnte gezeigt werden, dass die Verwendung bereits zugelassener Wirkstoffe für neue Indikationen eine attraktive Quelle für neue Leitstrukturen darstellen kann und im Zuge dessen bisher ungeklärte Nebeneffekte bekannter Wirkstoffe aufgeklärt werden können.
Abschließend lässt sich festhalten, dass selbstorganisierende Karten eine universelle Methode zur Erkennung und Analyse von polypharmakologischen Zusammenhängen darstellen. Des Weiteren lassen sich mit ihrer Hilfe chemische Räume repräsentieren und durch den in dieser Arbeit entwickelten MultiSOM-Ansatz direkt vergleichen. Dies ermöglicht auf intuitive und effiziente Weise die Identifizierung von überlappenden chemischen Räumen und somit möglicher polypharmakologischer Zusammenhänge.
In einer vorangegangenen Studie konnten bereits duale sEH / PPAR-Modulatoren identifiziert werden, welche allerdings nicht in vivo applizierbar waren 73. Der Vorteil des Multi-Target-Liganden Ansatzes konnte demnach nicht evaluiert werden. Das Ziel der folgende Arbeit beschreibt demnach Design, Synthese und Charakterisierung in vivo applizierbarer sEH / PPAR-Modulatoren. Dieser Prozess sollte in drei Phasen gliederte werden:
o Identifizieren einer geeigneten Strukturklasse
o Etablieren einer Struktur-Aktivitäts-Beziehung zu beiden Targets
o Leitstrukturoptimierung
Die gesuchte Zielverbindung sollte nach oraler in vivo Applikation eine ausreichend hohe Plasmakonzentration in vivo erreichen, um konzentrationsabhängig die Targets sEH und PPAR zu modulieren. Mit dieser Modellverbindung wäre es möglich eine vergleichbare Studie zur sEH / PPAR-Kombinationstherapie von Imig et al. 72, durchzuführen. Letztendlich könnte mit dem Vergleich dieser zwei Studien gezeigt werden, ob die simultane Modulation dieser zwei Targets das Potenzial besitzt mehrere Risikofaktoren zu therapieren.
Im Rahmen dieser Dissertation wurden drei bakterielle Enzyme, die Metallo-β-Lactamasen NDM-1 (New Delhi Metallo-β-Lactamase 1), VIM-1 (Verona-Integron Encoded Metallo-β-Lactamase 1) und IMP-7 (Imipenemase 7), sowie ein humanes Enzym, die sEH-Phosphatase, behandelt.
Das Auftreten multiresistenter Bakterien ist eine alarmierende Entwicklung. Dabei ist das vermehrte Erscheinen von Metallo-β-Lactamasen (MBLs) in Gramnegativen Bakterien zu beobachten, die von Inhibitoren anderer β-Lactamasen unbeeinflusst bleiben. MBLs sind Enzyme, die β-Lactam-Antibiotika hydrolysieren und somit unwirksam machen. β-Lactam-Antibiotika hemmen die Zellwandsynthese von Bakterien und haben keinen Einfluss auf menschliche Zellen. Daher sind sie für den Menschen sehr gut verträglich und werden oft eingesetzt. Gerade diese häufige Verwendung und der Fehleinsatz führen vermehrt zur Resistenzbildung. Suche nach neuen Wirkstoffen zur Behandlung von Pathogenen mit Resistenz ist von äußerster Dringlichkeit, da die Resistenzen sich in kürzester Zeit über den kompletten Planeten verbreiten.
NDM-1, VIM-1 und IMP-5 wurden in E.coli überexprimiert und aufgereinigt, um die rekombinanten Enzyme zu erhalten. Damit wurde zunächst ein Fluoreszenz-Intensitäts-Assay entwickelt, um die Wirksamkeit möglicher Inhibitoren zu quantifizieren. Als Testsubstanzen wurden elf zugelassene Wirkstoffe gewählt, die eine Thiol-Gruppe enthalten, da bekannt ist, das Thiole Zink-abhängige Proteine inhibieren. Weiterhin wurden Thermal Shift Assays durchgeführt, um zwischen Liganden, die durch Bindung an die MBL inhibieren, und Liganden, die nur dadurch inhibieren, dass sie der Bindetasche das nötige Zink entziehen, unterscheiden zu können. Substanzen, die Inhibition im Assay zeigten und keine Zink-Chelatoren waren, wurden weiterhin auf Aktivität in bakteriellen Zellen untersucht. Dafür wurden pathogenene Stämme aus Patienten sowie mit den Resistenzplasmiden transfizierte Laborstämme einem Test auf Antibiotikaempfindlichkeit unterzogen. Die Wirksamkeit von Imipenem sollte in Kombination mit den Testsubstanzen wieder hergestellt werden. Insgesamt wurden vier Substanzen mit nicht-antiinfektiösen Indikationen gefunden, die MBLs im niedrig-mikromolaren Bereich inhibieren und die Wirksamkeit von Imipenem in Bakterien partiell wieder herstellen.
In einem zweiten Ansatz wurden Fragmente mittels Docking ausgewählt und ebenfalls im Fluoreszenz-basierten Assay getestet. Die Bestätigung der Bindung erfolgte in diesem Fall mit STD-NMR und die Bestimmung der Dissoziationskonstante des besten Fragments mittels Messung der Chemical Shift Perturbation im NMR. In diesem Projekt wurde leider kein pan-Inhibitor für alle MBLs gefunden, allerdings ein Fragment mit hoher Bindeeffizienz zur NDM-1.
Die lösliche Epoxid-Hydrolase (englisch: soluble Epoxid Hydolase, sEH) katalysiert die Umsetzung von Epoxyeicosatriensäuren (EETs), Lipidmediatoren mit entzündungshemmenden und kardiovaskulär-protektiven Eigenschaften, zu Dihydroxyeicosatriensäuren (DHETs). Diese Reaktion ist ein Bestandteil der Arachidonsäurekaskade. Das Enzym besteht aus zwei Domänen mit unterschiedlichen katalytischen Funktionen, einerseits der viel erforschten Cterminalen Epoxid-Hydrolase-Domäne, aber auch der N-terminalen Domäne, die eine Phosphatase-Eigenschaft zeigt. Die N-terminale Domäne katalysiert die Hydrolyse von Phosphat-Monoestern, Isoprenoid- sowie Lipid-Phosphaten. Die biologische Funktion dieser Domäne ist nicht aufgeklärt, und die Phosphatase Aktivität wird von typischen Phosphatase-Inhibitoren nicht beeinflusst. Daher ist es von Interesse, einen Inhibitor zu entwickeln.
Zunächst wurde ein Aktivitätsassay mit einem fluorogenen Substrat entwickelt und dieser in verschiedene Formate überführt, um in unterschiedlichen Größen testen zu können. Im 96well Format wurden mögliche Inhibitoren getestet, die mittels Docking ausgesucht wurden. Allerdings wurden nur Inhibitoren mit IC50s über 100 μM gefunden oder Inhibitoren, die Sulfonsäure-Strukturen aufweisen. Im 384well Format wurde, in Kollaboration mit dem European ScreeningPort Hamburg, ein High-Throughput Screening von ca. 17000 Substanzen durchgeführt. So wurde Oxaprozin gefunden, ein Inhibitor, der strukturelle Ähnlichkeit zu bereits bekannten Inhibitoren zeigt.
The aim of this work was to establish a new way of predicting novel dual active compounds by combining classical fingerprint representation with state-of-the-art machine learning algorithms. Advantages and disadvantages of the applied 2D- and 3D-fingerprints were investigated. Further, the impact of various machine learning algorithms was analyzed. The new method developed in this work was used to predict compounds, which inhibit two different targets (LTA4H and sEH) involved in the same disease pattern (inflammation). The development of multitarget drugs has become more important in recent years. Many widespread diseases like metabolic syndrome, or cancer are of a multifactorial nature, which makes them hard to be treated effectively with a single drug. The new in silico method presented in this work can help to accelerate the design and development of multitarget drugs, saving time and efforts.
The nowadays readily available access to a large number of 3D-structures of biological targets and published activity data of millions of synthesized compounds enabled this study and was used as a starting point for this work. Four different data sets were compiled (crystalized ligands from the PDB, active and inactive compounds from ChEMBL23, newly designed compounds using a combinatorial library). Those data sets were collected and processed using an automated KNIME workflow. This automation has the advantage of allowing easy change and update of compound sources and adapted processing ways.
In a next step, the compounds from the compiled data sets were represented using a variety of well-established 2D- and 3D-fingerprints (PLIF, AtomPair, Morgan, FeatMorgan, MACCS). All those fingerprints share the same underlying bit string scheme but vary in the way they describe the molecular structure. Especially the difference between 2D- and 3D-fingerprints was investigated. 2D-fingerprints are solely based on ligand information. 3D-fingerprints, on the other hand, are based on X-ray structure information of protein-ligand complexes. One major difference between 2D- and 3D-fingerprints usage is the need for a 3D-conformation (pose) of the compound in the targets of interest when using 3D-fingerprints. This additional step is time-consuming and brings further uncertainties to the method.
Based on the calculated fingerprints state-of-the-art machine learning algorithms (SVC, RF, XGB and ADA) were used to predict novel dual active compounds. The models were evaluated by 10-fold cross validation and accuracy as the primary measure of model performance was maximized. Second, individual parameters of the four machine learning algorithms were optimized in a grid search to achieve maximal accuracy using the optimized partitioning scheme. Overall accuracies, regardless of fingerprint and machine learning algorithm, are slightly better for LTA4H than for sEH.
The goal to predict dual active compounds was realized by comparing the set of predicted to be active compounds for LTA4H and sEH. For the 3D-fingerprint PLIF the machine learning algorithm Random Forest was chosen, from which compounds for synthesis and testing were selected. Of 115 predicted to be active compounds, six compounds were cherry picked. Two compounds showed very good/moderate dual inhibitory activity. Of the 2D-fingerprints, the AtomPair fingerprint in combination with the machine learning algorithm Random Forest was chosen from which compounds were selected for synthesis and testing. 116 compounds were predicted to be dual active against LTA4H and sEH. One of those compounds showed good dual inhibitory activity.
In this work it was possible to show advantages and disadvantages of using 2D- and 3D-fingerprints in combination with machine learning algorithms. Both strategies (2D: ligand-based, 3D: structure-based) lead to the prediction of novel dual active compounds with moderate to very good inhibitory activity. The method developed in this work is able to predict dual active compounds with very good inhibitory activity and novel (previously unknown) scaffolds inhibiting the targets LTA4H and sEH. This contribution to in silico drug design is promising and can be used for the prediction of novel dual active compounds. Those compounds can further be optimized regarding binding affinity, solubility and further pharmacological and physicochemical properties.