Refine
Document Type
- Doctoral Thesis (3)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Mathematik (3)
Wir führen eine neue Unterklasse der Fourier Hyperfunktionen mit polynomialen Wachstumsbedingungen ein mit dem Ziel, asymptotische Entwicklungen von Hyperfunktionen studieren zu wollen, wie sie für gewisse Distributionenklassen bekannt sind. Wir entwickeln zuerst die Theorie analytischer Funktionale auf Räumen integrabler Funktionen bezüglich Maßen mit Wachstum O(|Re z|^gamma), wobei gamma in R ist, im Unendlichen. Ein an das berühmte Phragmén-Lindelöf-Prinzip erinnerndes, einfaches analytisches Resultat bildet die Basis der Dualitätstheorie dieser Räume zu Funktionen mit festgelegtem Wachstumstyp. Wir studieren diese Dualität analytischer Funktionale mit Wachstumsbedingungen und unbeschränkten Trägern gründlich in einer Dimension unter Verwendung des von den Fourier Hyperfunktionen her bekannten exponentiell abfallenden Cauchy-Hilbert-Kerns. Daraus ergeben sich Analoga zu den Theoremen von Runge und Mittag-Leffler, die die Grundlage für die Garbentheorie der Hyperfunktionen mit polynomialen Wachstumsbedingungen sind, die wir sodann entwickeln. Die für uns wichtigsten neuen Klassen von Fourier Hyperfunktionen sind die von unendlichem Typ, das heißt solche, die wie eine beliebige Potenz wachsen beziehungsweise schneller als jede Potenz abfallen. In n Dimensionen benutzen wir die Fouriertransformation und Dualität um das Verhältnis dieser temperierten beziehungsweise asymptotischen Hyperfunktionen zu bekannten Distributionenräumen zu studieren. Wir leiten Theoreme vom Paley-Wiener-Typ her, die es uns erlauben, unsere Hyperfunktionen in ein Schema zu ordnen, das Wachstumsordnung und Singularität gegenüberstellt. Wir zeigen, daß dieses Schema eine sinvolle Erweiterung des von Gelfand und Shilow zur Charakterisierung von Testfunktionenräumen eingeführten Schemas der Räume S(alpha,beta) um verallgemeinerte Funktionen ist. Schließlich zeigen wir die Nuklearität der temperierten und asymptotischen Hyperfunktionen. Wir zeigen, daß die asymptotischen Hyperfunktionen genau die Klasse bilden, die Moment-asymptotische Entwicklungen erlauben, wie sie von Estrada et al. für Distributionen betrachtet wurden. Estradas Theorie ist damit ein Spezialfall der unsrigen. Für Hyperfunktionen lassen sich aber dank des Konzeptes der standard definierenden Funktionen die Moment-asymptotischen Entwicklungen als klassische asymptotische Entwicklungen von analytischen Funktionen verstehen. Wir zeigen die einfache Beziehung zwischen der Moment-asymptotischen Entwicklung und der Taylorentwicklung der Fouriertransformierten und benutzen dann ein Resultat von Estrada, um die Vollständigkeit unseres Moment-asymptotischen Schemas abzuleiten. Wir geben genaue Bedingungen für die Moment-Folgen von Hyperfunktionen mit kompaktem Träger an, die kürzlich von Kim et al. gefunden wurden. Die asymptotischen Entwicklungen übertragen wir auf den höherdimensionalen Fall, indem wir die von Kaneko und Takiguchi eingeführte Radontransformation für Hyperfunktionen verwenden. Die wohlbekannte Beziehung zwischen Radon- und Fouriertransformation zeigt wiederum das enge Verhältnis von asymptotischer Entwicklung zur Taylorentwicklung der Fouriertransformierten. Wir benutzen Kims Resultate, um die Moment-Folgen von Hyperfunktionen zu charakterisieren, die von Kugeln mit endlichem Radius getragen werden. Schließlich verwenden wir das Träger-Theorem der Radontransformation, um ein Resultat über das Singularitätenspektrum aus Bedingungen an die Radontransformierte abzuleiten.
In dieser Arbeit werden Darstellungen der Artinschen Zopfgruppen als Gruppen von Automorphismen der Homologie iterativ konstruierter äquivarianter Kettenkomplexe betrachtet. Es werden azyklische Komplexe freier Moduln bzw. freie Auflösungen der ganzen Zahlen für nichtpermutierte Artinsche Zopfgruppen konstruiert, die als iterierte semidirekte Produkte freier Gruppen darstellbar sind. Als Tensorprodukte der freien Auflösungen mit Moduln zu den fraglichen iterierten semidirekten Produkten freier Gruppen erhält man äquivariante Komplexe, deren von Eigenschaften der Koeffizientenmoduln abhängige Homologiegruppen bestimmt werden. Diese Homologiegruppen erlauben Automorphismendarstellungen der (permutierten) Artinschen Zopfgruppe, die gewissermaßen die Artinschen Darstellungen als Automorphismengruppen freier Gruppen iterieren und linearisieren. Insbesondere werden Darstellungen gewonnen, die die bekannten Burau- und Gassner-Darstellungen der Zopfgruppen verallgemeinern und die als Monodromiegruppen verallgemeinerter hypergeometrischer Integrale interpretiert werden können.
In dieser Arbeit werden die mathematischen Grundlagen zur Konstruktion der primären Felder der minimalen Modelle der konformen Quantenfeldtheorie beschrieben. Wir untersuchen Verma und Fock-Moduln der Virasoro-Algebra und klassifizieren diese Moduln bezüglich der Struktur der (ko-) singulären Vektoren. Wir definieren die Vertex-Operatoren zwischen gewissen Fock-Moduln (die eine kanonische Hilbertraumstruktur besitzen) und beweisen verschiedene Eigenschaften dieser Operatoren: Unter bestimmten Voraussetzungen sind Vertex-Operatoren dicht definierte, nicht abschließbare Operatoren zwischen den Fock-Moduln. Radialgeordnete Produkte von Vertex-Operatoren existieren auf einem dichten Teilraum. Wir beweisen Kommutatorrelationen zwischen Vertex-Operatoren und den Generatoren der Virasoro-Algebra. Dann definieren wir die integrierten Vertex-Operatoren und zeigen, daß diese Operatoren im wesentlichen wieder die Eigenschaften der nichtintegrierten Vertex-Operatoren haben. Gewisse integrierte Vertex-Operatoren können mit konformen Felder identifiziert werden. Ein unter den Vertex-Operatoren invarianter Unterraum der Fock-Moduln kann mit dem physikalischen Zustandsraum identifiziert werden.