Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Galactic chemical evolution (1)
- Galaktische chemische Evolution (1)
- Interstellarer Staub (1)
- Kosmischer Staub (1)
- NanoSIMS (1)
- Nukleosynthese (1)
- Sekundärionen-Massenspektrometrie (1)
- Stardust (1)
- Sternatmosphäre (1)
- Sternenstaub (1)
Institute
This thesis deals with the analysis of “presolar” silicates and oxides by high resolution mass spectrometry and electron microscopy techniques. This “stardust” was identified by its extreme oxygen isotopic anomalies, which point to nucleosynthetic reactions in stellar interiors, in the carbonaceous chondrite Acfer 094. Isotopic, chemical and mineralogical studies on these stardust grains therefore allow the testing of astrophysical questions on Earth, which are otherwise only accessible by spectroscopy and theoretical models. The class of presolar silicates has been identified only six years ago in 2002, although it was known already from spectroscopic observations that silicates represent the most abundant type of dust in the galaxy. The development of the “NanoSIMS” was a crucial step in this respect, because this ion probe with its superior spatial resolution of only 50 nm allowed the detection of the typically 300 nm sized presolar silicates. A total of 142 presolar silicates and 20 presolar oxides were identified within Acfer 094, whose matrix therefore contains 163 ± 14 ppm presolar silicates and 26 ± 6 ppm presolar oxides. This is among the highest amounts reported so far for any primitive solar system material. The majority of detected stardust grains derive from asymptotic giant branch stars of 1 – 2.5 Msun and close-to-solar or slightly lower-than-solar metallicity. However, by measuring the Si isotopic compositions of some enigmatic grains, it could be shown that there is a sub-class of presolar silicates characterized by an extreme enrichment of 17O and a moderate enhancement of 30Si relative to solar, whose origins might be explained by formation in binary stellar systems. About 10% of all grains exhibit an enrichment in 18O and some of them also of 28Si relative to solar, which most likely point to an origin in type II supernova explosions. The Si isotopic measurements also allowed to quantify the effect of the s-process on the Si isotopes in low-mass asymptotic giant branch stars. The results agree well with theoretical predictions. The grains were furthermore characterized by SEM and the chemistries of about half of the grains were determined by Auger electron spectroscopy. The majority of grain morphologies are consistent with what is expected from condensation experiments. However, a lot of grains are altered by Fe-rich minerals, which are either of primary condensation or of secondary ISM or solar nebula origin. Furthermore, complex presolar grains consisting of refractory Al-rich grains attached to silicate material could be identified, which have been predicted by condensation theory and observational evidence. Nine presolar silicates were analyzed by combined NanoSIMS/TEM studies. The majority of grains are Mg-rich and amorphous, which is in contrast to astrophysical evidence, which mainly postulate crystalline Mg-rich and amorphous Fe-rich circumstellar condensates. However, the grains might have been rendered amorphous by secondary processes in the ISM or could have condensed under non-equilibrium, low-temperature conditions in the circumstellar outflow. The grains are more likely characterized by a variable, pyroxene-like chemistry, which could be a result of sputtering in the ISM, which preferentially removes Mg. The detected crystalline presolar silicates in this study and in other work are all olivines, whereas grains with a pyroxene stoichiometry are all amorphous except one. This supports astrophysical models which point to different formation pathways for these two types of grains and therefore different crystallinity. However, the relatively high Fe content of three detected presolar olivines in this study and in other work is in contrast to astrophysical evidence and theoretical considerations, which predict essentially Fe-free crystalline grains. It is therefore possible that the infrared spectra might also be compatible with less Mg-rich olivines. The only crystalline presolar silicate with a pyroxene-like stoichiometry is the unusual grain 1_07: although it is chemically enstatite, the electron diffraction pattern could only be indexed to silicate perovskite, which is stable above ~23 GPa. The discovery of a high-pressure phase of presolar origin shows that dust grains encountering interstellar shocks might not necessarily be completely destroyed. In astrophysical models it is in principle also possible that a fraction of larger grains might survive such a shock wave encounter as a high-pressure modification, which is supported by this discovery.
NASAs Stardust Mission ist die erste Mission, die - nach den Apollo Missionen zum Mond - Material von einem extraterrestrischen Körper erfolgreich für die Untersuchung auf der Erde, zurückgebracht hat. Desweiteren konnten erfolgreich Proben von einem Interstellaren Partikelstrom aufgesammelt werden, der das Sonnensystem derzeit passiert. Die Mission erlaubt einen Einblick in die Beschaffenheit der Kometenpartikel, die Rolle von Kometen im Sonnensystem sowie den Eintrag von Staub in die Zodiakalwolke. Desweiteren erlaubt die Analyse der Kometenpartikel den direkten Vergleich zu bereits untersuchten Meteoriten und Interplanetaren Staub Partikeln (IDPs) die auf der Erde bzw. deren Stratosphäre gesammelt wurden. Stardust ist die vierte ”Discovery” Mission und wurde am 7. Februar 1999 gestartet. Während des Fluges zum Kometen 81P/Wild 2 wurde ein interstellarer Partikelstrom beprobt und der Asteroid Annefrank passiert. Nach fünf Jahren kam es zum Zusammentreffen mit dem Kometen 81P/Wild 2 und über fünf Minuten, wurden Proben mit einer Auffangvorrichtung eingesammelt. Es dauerte weitere zwei Jahre bis die Stardust Sonde die Proben erfolgreich zur Erde zurückgebracht hat und zur Untersuchung freigegeben wurden. Interstellare und kometare Partikel wurden mit einer tennisschlägerartigen Auffangvorrichtung eingefangen, die aus einer Vielzahl von Aerogel Zellen aufgebaut ist. Das für die Stardust Mission verwendete Aerogel besteht aus SiO2 dessen dendritische Struktur zu 99,8 % aus Luft (Poren) besteht. Dadurch erscheint es nahezu transparent, was die optische Suche mit Mikroskopen nach den Einschlagsspuren der Körner vereinfacht. Die jeweiligen Partikel wurden auf unterschiedlichen Seiten der Vorrichtung eingefangen, da unterschiedliche Eigenschaften des Aerogels notwendig waren und um sie später voneinander unterscheiden zu können. Die Seite, in der die Kometenpartikel eingefangen wurde, musste Körner mit unterschiedlichen Grössen, Morphologien und niedrigeren Geschwindigkeiten abbremsen, während auf der interstellaren Seite die Körner von wesentlich höheren Geschwindigkeiten abgebremst werden mussten. Die Aerogelzellen haben ein variierendes Dichteprofil: an der Oberfläche ist die Dichte geringer (5 mg/ml) und erhöht sich mit der Tiefe auf 30-50 mg/ml. Dieses Dichteprofil ist notwendig, da beim Einschlag der Körner auf das Auffangmedium ein hoher Druck entsteht, der umso geringer ist, je niedriger die Dichte im Moment des Auftreffens ist. Die Aerogelzellen für die Kometenpartikel haben drei Lagen mit unterschiedlichen Dichten, die Zellen für die interstellaren Körner haben zwei unterschiedliche Dichten (Tsou et al., 2003)....
The formation of terrestrial planets was a complex process which begun in the very early stage of the Solar System in the protoplanetary disk (PPD). Chondrites are fragments of planet precursors, which have never experienced differentiation and can help to reconstruct the first processes leading to planet formation. The main components of chondrites are chondrules, calcium-aluminum-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), metals and fine-grained material. Each of these components formed by a complex mechanism involving aggregation and/or melting. Previous research has already provided an overall view of the formation of these objects, however, there are still open questions regarding the aggregation behavior of particles, the heating mechanism(s) and the thermal history of CAIs, AOAs and chondrules. For instance, the involvement of flash-heating events and electrostatics in the aggregation and melting of these objects has been a keen topic of discussion.
The aim of this doctoral thesis was to develop and carry out an experiment to study various early Solar System processes under long-term microgravity. In the project with the acronym EXCISS (Experimental Chondrule Formation aboard the ISS), free-floating, 126(23)µm-sized Mg2SiO4 dust particles were exposed to electric fields and electric discharges.
The experimental set-up was installed inside a 10x10x15 cm3-sized container and consisted of an arc generation unit connected to the sample chamber, a camera with an optical system, a power supply unit with lithium-ion batteries and the EXCISS mainboard with a Raspberry Pi Zero and mass storage devices. The sample chamber was manufactured from quartz glass and the experiments were filmed. The complete experiment container was subsequently returned to the Goethe University and the samples were analyzed with scanning electron microscopy, electron backscatter diffraction and synchrotron micro-CT.
Video analysis has shown that particles, which were agitated by electric discharges, align in chains within the electric field with their longest axis parallel to the electric field lines. Consequently, electric fields could have influenced the inner structure and porosity of particle aggregates in the PPD.
The discharge experiments produced fused aggregates and individual melt spherules.
The fused aggregates share many morphological characteristics with natural fluffy-type CAIs and some igneous CAIs found in chondrites. Consequently, CAIs could have formed by the aggregation of particles with various degrees of melting. Further, a small amount of melting could have supplied the required stability for such fractal structures to have survived transportation and aggregation to, and subsequent compaction within, developing planetesimals.
Some initial particles were completely melted by the arc discharges and formed melt spherules. The newly formed olivines crystallized with a preferred orientation of the [010] axis perpendicular to the surface of the spherule. Similar preferred orientations have been found in natural chondrules. However, the microstructure differs from the results of previous experiments on Earth, which show, for example, crystal settling on one side of the sample because of the influence of gravity. Furthermore, the melt spherules show evidence for an interaction of the melt with the surrounding hot gas. Therefore, microgravity experiments with more advanced experimental parameters bear great potential for future chondrule formation experiments.