Refine
Year of publication
Document Type
- Doctoral Thesis (8)
- diplomthesis (5)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Algorithmus (1)
- Approximability (1)
- Approximationsgüte (1)
- Approximierbarkeit (1)
- Bedienstrategie (1)
- Berechnungskomplexität (1)
- Engineering (1)
- External-memory graph algorithms (1)
- Formale Sprache (1)
- Graph generation (1)
Institute
- Informatik (8)
- Informatik und Mathematik (4)
- Mathematik (2)
Analyse von Heuristiken
(2006)
Heuristiken treten insbesondere im Zusammenhang mit Optimierungsproblemen in Erscheinung, bei solchen Problemen also, bei denen nicht nur eine Lösung zu finden ist, sondern unter mehreren möglichen Lösungen eine in einem objektiven Sinne beste Lösung ausfindig gemacht werden soll. Beim Problem kürzester Superstrings werden Heuristiken herangezogen, da mit exakten Algorithmen in Anbetracht der APX-Vollständigkeit des Problems nicht zu rechnen ist. Gegeben ist eine Menge S von Strings. Gesucht ist ein String s, so dass jeder String aus S Teilstring von s ist. Die Länge von s ist dabei zu minimieren. Die prominenteste Heuristik für das Problem kürzester Superstrings ist die Greedy-Heuristik, deren Approximationsfaktor derzeit jedoch nur unzureichend beschränkt werden kann. Es wird vermutet (die sogenannte Greedy-Conjecture), dass der Approximationsfaktor genau 2 beträgt, bewiesen werden kann aber nur, dass er nicht unter 2 und nicht über 3,5 liegt. Die Greedy-Conjecture ist das zentrale Thema des zweiten Kapitels. Die erzielten Ergebnisse sind im Wesentlichen: * Durch die Betrachtung von Greedyordnungen können bedingte lineare Ungleichungen nutzbar gemacht werden. Dieser Ansatz ermöglicht den Einsatz linearer Programmierung zum Auffinden interessanter Instanzen und eine Vertiefung des Verständnisses solcher schwerer Instanzen. Dieser Ansatz wird eingeführt und eine Interpretation des dualen Problems wird dargestellt. * Für die nichttriviale, große Teilklasse der bilinearen Greedyordnungen wird gezeigt, dass die Länge des von der Greedy-Heuristik gefundenen Superstrings und die des optimalen Superstrings sich höchstens um die Größe einer optimalen Kreisüberdeckung der Strings unterscheiden. Da eine optimale Kreisüberdeckung einer Menge von Strings stets höchstens so groß ist wie ein optimaler Superstring (man schließe einen Superstring zu einem einzelnen Kreis), ist das erzielte Ergebnis für die betrachtete Teilklasse der Greedyordnungen stärker als die klassische Greedy-Conjecture. * Es wird eine neue bedingte lineare Ungleichung auf Strings -- die Tripelungleichung -- gezeigt, die für das eben genannte Hauptergebnis wesentlich ist. * Schließlich wird gezeigt, dass die zum Nachweis der oberen Schranke von 3,5 für den Approximationsfaktor herangezogenen bedingten Ungleichungen (etwa die Monge-Ungleichung) inhärent zu schwach sind, um die Greedy-Conjecture selbst für lineare Greedyordnungen zu beweisen. Also ist die neue Tripelungleichung auch notwendig. Zuletzt wird gezeigt, dass das um die Tripelungleichung erweiterte System bedingter linearer Ungleichungen inhärent zu schwach ist, um die klassische Greedy-Conjecture für beliebige Greedyordnungen zu beweisen. Mit der Analyse von Queueing Strategien im Adversarial Queueing Modell wird auch ein Fall betrachtet, in dem Heuristiken auf Grund von anwendungsspezifischen Forderungen wie Online-Setup und Lokalität eingesetzt werden. Pakete sollen in einem Netzwerk verschickt werden, wobei jeder Rechner nur begrenzte Information über den Zustand des Netzwerks hat. Es werden Klassen von Queueing Strategien untersucht und insbesondere untersucht, wovon Queueing Strategien ihre lokalen Entscheidungen abhängig machen sollten, um ein gewisses Qualitätsmerkmal zu erreichen. Die hier erzielten Ergebnisse sind: * Jede Queueing Strategie, die ohne Zeitstempel arbeitet, kann zu einer exponentiell großen Queue und damit zu exponentiell großer Verzögerung (im Durchmesser und der Knotenzahl des Netzwerks) gezwungen werden. Dies war bisher nur für konkrete prominente Strategien bekannt. * Es wird eine neue Technik zur Feststellung der Stabilität von Queueing Strategien ohne Zeitnahme vorgestellt, die Aufschichtungskreise. Mit ihrer Hilfe können bekannte Stabilitätsbeweise prominenter Strategien vereinheitlicht werden und weitere Stabilitätsergebnisse erzielt werden. * Für die große Teilklasse distanzbasierter Queueing Strategien gelingt eine vollständige Klassifizierung aller 1-stabilen und universell stabilen Strategien.
Wir haben Interaktion in der Kommunikationskomplexität untersucht und dabei die drei Modi probabilistische, (beschränkt) nichtdeterministische und quantenmechanische Kommunikation betrachtet. Bei allen drei Modi haben wir herausgefunden, dass Interaktion für Effzienz oft unerlässlich ist, im nichtdeterministischen Fall gibt es eine Abhängigkeit zwischen dem Einfluss der Interaktion und der erlaubten Anzahl der nichtdeterministischen Ratebits. Abgesehen von dem erreichten besseren Verständnis des Kommunikationsmodells haben wir verschiedene Anwendungen auf andere Berechnungsmodelle beschrieben, bei denen untere Schranken der Kommunikation zu unteren Schranken für andere Ressourcen in diesen Modellen geführt haben. Ein Beispiel eines kommunikations- und interaktionsbeschränkten Modells sind endliche Automaten, welche wir in allen drei Modi untersucht haben. Ein weiteres Beispiel sind Formeln, für die wir eine Verbindung zwischen Einweg Kommunikation und Formellänge herstellen konnten. Diese Verbindung führte zu unteren Schranken für probabilistische, nichtdeterministische und Quanten Formeln. Dabei sind die unteren Schranken für Quanten Formeln und probabilistische Formeln im wesentlichen gleich. Für monotone Schaltkreise haben wir gezeigt, wie nichtdeterministisches Raten die Tiefe drastisch reduzieren kann, und wie eine geringfügige Einschränkung der nichtdeterministischen Ratebits zu einer Tiefenhierarchie führt. Insgesamt lässt sich feststellen, dass die Schwäche interaktionsbeschränkter Kommunikation mathematisch nachvollziehbar ist. Außerdem scheint ein solches Verhalten in der Welt einfacher Berechnungsmodelle häufig aufzutreten. Oder anders gesagt, viele Berechnungsmodelle sind deshalb einfacher zu verstehen, weil sie durch interaktionsbeschränkte Kommunikation analysierbar sind.
Im Gegensatz zur Minimierung von DFAs ist die exakte Minimierung von NFAs oder regulären Ausdrücken nachweislich schwierig, im allgemeinen Fall PSpace-schwer. Wir zeigen, dass selbst schwache Approximationen zur Minimierung von NFAs und regulären Ausdrücken wahrscheinlich nicht effizient möglich sind. Falls als Eingabe ein NFA oder regulärer Ausdruck der Größe n gegeben ist, löst ein Approximationsalgorithmus für das Minimierungsproblem mit Approximationsfaktor o(n) bereits ein PSpace-vollständiges Problem. Wenn wir uns auf NFAs oder reguläre Ausdrücke über einem unären - also einelementigen - Alphabet beschränken, so ist das Problem der exakten Minimierung NP-vollständig. Wir weisen nach, dass effiziente Approximationen für das unäre Minimierungsproblem mit Approximationsfaktor n^(1-delta) für jedes delta>0 nicht möglich sind, sofern P != NP gilt. Liegt die Eingabe als DFA mit n Zuständen vor, kann sie exponentiell größer sein als ein äquivalenter NFA oder regulärer Ausdruck. Dennoch bleibt das Minimierungsproblem PSpace-schwer, wenn die Anzahl der Übergänge oder Zustände in einem äquivalenten NFA oder die Länge eines äquivalenten regulären Ausdrucks zu bestimmen ist. Wir zeigen, dass auch hierfür keine guten Approximationen zu erwarten sind. Unter der Annahme der Existenz von Pseudozufallsfunktionen, die wiederum auf der Annahme basiert, dass Faktorisierung schwierig ist, zeigen wir, dass kein effizienter Algorithmus einen Approximationsfaktor n/(poly(log n)) für die Zahl der Übergänge im NFA oder die Länge des regulären Ausdrucks garantieren kann. Für die Zahl der Zustände im NFA weisen wir nach, dass effiziente Approximationen mit Approximationsfaktor (n^(1/2))/(poly(log n)) ausgeschlossen sind. Wir betrachten dann Lernprobleme für reguläre Sprachen als Konzeptklasse. Mit den entwickelten Methoden, die auf der Annahme der Existenz von Pseudozufallsfunktionen beruhen, zeigen wir auch, dass es für das Problem des minimalen konsistenten DFAs keine effizienten Approximationen mit Approximationsfaktor n/(poly(log n)) gibt. Für den unären Fall hingegen weisen wir nach, dass es einen effizienten Algorithmus gibt, der einen minimalen konsistenten DFA konstruiert und erhalten somit auch einen effizienten PAC-Algorithmus für unäre reguläre Sprachen, die von DFAs mit n Zuständen akzeptiert werden. Für unäre Beispielmengen weisen wir außerdem nach, dass es keine effizienten Algorithmen gibt, die minimale konsistente NFAs konstruieren, falls NP-vollständige Probleme nicht in Zeit (n^(O(log n)) gelöst werden können. Andererseits geben wir einen effizienten Algorithmus an, der zu unären Beispielmengen einen konsistenten NFA mit höchstens O(opt^2) Zuständen konstruiert, wenn ein minimaler konsistenter NFA opt Zustände hat. Abschließend betrachten wir das Lernen von DFAs durch Äquivalenzfragen. Für den nicht-unären Fall ist bekannt, dass exponentiell viele Fragen für DFAs mit n Zuständen benötigt werden. Für unäre zyklische DFAs mit primer Zykluslänge und höchstens n Zuständen zeigen wir, dass Theta((n^2)/(ln n)) Äquivalenzfragen hinreichend und notwendig sind. Erlauben wir größere zyklische DFAs als Hypothesen, kommen wir mit weniger Fragen aus: Um zyklische DFAs mit höchstens n Zuständen durch Äquivalenzfragen mit zyklischen DFAs mit höchstens n^d Zuständen für d <= n als Hypothesen zu lernen, sind O((n^2)/d) Fragen hinreichend und Omega((n^2 ln d)/(d (ln n)^2)) Fragen nötig.
Wir untersuchen das Verhalten von unären stochastischen endlichen Automaten mit Hilfe von Methoden der Theorie der homogenen Markovketten. Für unäre stochastische Automaten mit E-isoliertem Cutpoint lambda und n Zuständen bestimmen wir eine obere Schranke für die Größe des zyklischen Teils eines optimalen äquivalenten DFAs. Ein Ergebnis von Milani und Pighizzini zeigt bereits, dass für den zyklischen Teil des äquivalenten DFAs O(e exp(sqrt(n ln n))) Zustände ausreichen und in unendlich vielen Fällen auch Omega(eexp(sqrt(n ln n))) Zustände benötigt werden, wobei die Größe von E keine Rolle spielt. Wir zeigen die obere Schranke n exp (1/2E) für die Größe des zyklischen Teils und weisen nach, dass der optimale DFA für jedes c < 1 in unendlich vielen Fällen mehr als n exp (c/2E) viele Zustände im zyklischen Teil benötigt. Wir weisen auch nach, dass es eine unendliche Familie endlicher unärer Sprachen gibt, für die es jeweils einen PFA mit n Zuständen und 1/4-isoliertem Cutpoint gibt, während der optimale, DFA e exp(Omega x sqrt(n ln n)) Zustände im Anfangspfad benötigt.
Configuration, simulation and visualization of simple biochemical reaction-diffusion systems in 3D
(2004)
Background In biological systems, molecules of different species diffuse within the reaction compartments and interact with each other, ultimately giving rise to such complex structures like living cells. In order to investigate the formation of subcellular structures and patterns (e.g. signal transduction) or spatial effects in metabolic processes, it would be helpful to use simulations of such reaction-diffusion systems. Pattern formation has been extensively studied in two dimensions. However, the extension to three-dimensional reaction-diffusion systems poses some challenges to the visualization of the processes being simulated. Scope of the Thesis The aim of this thesis is the specification and development of algorithms and methods for the three-dimensional configuration, simulation and visualization of biochemical reaction-diffusion systems consisting of a small number of molecules and reactions. After an initial review of existing literature about 2D/3D reaction-diffusion systems, a 3D simulation algorithm (PDE solver), based on an existing 2D-simulation algorithm for reaction-diffusion systems written by Prof. Herbert Sauro, has to be developed. In a succeeding step, this algorithm has to be optimized for high performance. A prototypic 3D configuration tool for the initial state of the system has to be developed. This basic tool should enable the user to define and store the location of molecules, membranes and channels within the reaction space of user-defined size. A suitable data structure has to be defined for the representation of the reaction space. The main focus of this thesis is the specification and prototypic implementation of a suitable reaction space visualization component for the display of the simulation results. In particular, the possibility of 3D visualization during course of the simulation has to be investigated. During the development phase, the quality and usability of the visualizations has to be evaluated in user tests. The simulation, configuration and visualization prototypes should be compliant with the Systems Biology Workbench to ensure compatibility with software from other authors. The thesis is carried out in close cooperation with Prof. Herbert Sauro at the Keck Graduate Institute, Claremont, CA, USA. Due to this international cooperation the thesis will be written in English.
Eine 1-1-Korrespondenz zwischen einer Klasse von Leftist-Bäumen und erweiterten t-nären Bäumen
(2006)
Leftist-Bäume sind eine Teilmenge der geordneten Bäume mit der Eigenschaft, daß der [kürzeste] Weg von jedem inneren Knoten zu einem Blatt des Teilbaums mit diesem Knoten als Wurzel immer über den am weitesten links stehenden Sohn dieses Knotens verläuft.
In der vorliegenden Arbeit wird eine 1-1-Korrespondenz zwischen erweiterten t-nären Bäumen und der Klasse der Leftist-Bäumen mit erlaubten Knotengraden 0, t, 2t-1, ... 1+t(t-1) präsentiert. Diese 1-1-Korrespondenz verallgemeinert ein Ergebnis von R. Kemp.
Algorithms for the Maximum Cardinality Matching Problem which greedily add edges to the solution enjoy great popularity. We systematically study strengths and limitations of such algorithms, in particular of those which consider node degree information to select the next edge. Concentrating on nodes of small degree is a promising approach: it was shown, experimentally and analytically, that very good approximate solutions are obtained for restricted classes of random graphs. Results achieved under these idealized conditions, however, remained unsupported by statements which depend on less optimistic assumptions.
The KarpSipser algorithm and 1-2-Greedy, which is a simplified variant of the well-known MinGreedy algorithm, proceed as follows. In each step, if a node of degree one (resp. at most two) exists, then an edge incident with a minimum degree node is picked, otherwise an arbitrary edge is added to the solution.
We analyze the approximation ratio of both algorithms on graphs of degree at most D. Families of graphs are known for which the expected approximation ratio converges to 1/2 as D grows to infinity, even if randomization against the worst case is used. If randomization is not allowed, then we show the following convergence to 1/2: the 1-2-Greedy algorithm achieves approximation ratio (D-1)/(2D-3); if the graph is bipartite, then the more restricted KarpSipser algorithm achieves the even stronger factor D/(2D-2). These guarantees set both algorithms apart from other famous matching heuristics like e.g. Greedy or MRG: these algorithms depend on randomization to break the 1/2-barrier even for paths with D=2. Moreover, for any D our guarantees are strictly larger than the best known bounds on the expected performance of the randomized variants of Greedy and MRG.
To investigate whether KarpSipser or 1-2-Greedy can be refined to achieve better performance, or be simplified without loss of approximation quality, we systematically study entire classes of deterministic greedy-like algorithms for matching. Therefore we employ the adaptive priority algorithm framework by Borodin, Nielsen, and Rackoff: in each round, an adaptive priority algorithm requests one or more edges by formulating their properties---like e.g. "is incident with a node of minimum degree"---and adds the received edges to the solution. No constraints on time and space usage are imposed, hence an adaptive priority algorithm is restricted only by its nature of picking edges in a greedy-like fashion. If an adaptive priority algorithm requests edges by processing degree information, then we show that it does not surpass the performance of KarpSipser: our D/(2D-2)-guarantee for bipartite graphs is tight and KarpSipser is optimal among all such "degree-sensitive" algorithms even though it uses degree information merely to detect degree-1 nodes. Moreover, we show that if degrees of both nodes of an edge may be processed, like e.g. the Double-MinGreedy algorithm does, then the performance of KarpSipser can only be increased marginally, if at all. Of special interest is the capability of requesting edges not only by specifying the degree of a node but additionally its set of neighbors. This enables an adaptive priority algorithm to "traverse" the input graph. We show that on general degree-bounded graphs no such algorithm can beat factor (D-1)/(2D-3). Hence our bound for 1-2-Greedy is tight and this algorithm performs optimally even though it ignores neighbor information. Furthermore, we show that an adaptive priority algorithm deteriorates to approximation ratio exactly 1/2 if it does not request small degree nodes. This tremendous decline of approximation quality happens for graphs on which 1-2-Greedy and KarpSipser perform optimally, namely paths with D=2. Consequently, requesting small degree nodes is vital to beat factor 1/2.
Summarizing, our results show that 1-2-Greedy and KarpSipser stand out from known and hypothetical algorithms as an intriguing combination of both approximation quality and conceptual simplicity.
Manipulierte Bilder werden zu einem immer gröÿeren Problem in der aktuellen Berichterstattung und sie verursachen in vielen Fällen Empörung unter den Lesern.
In dieser Diplomarbeit werden verschiedene Ansätze aus der aktuellen Forschung aufgezeigt, die zur Erkennung von manipulierten digitalen Bildern benutzt werden können. Hierbei liegt der Schwerpunkt besonders auf verschiedenen statistischen Ansätzen von Farid, Johnson und Popescu. Ein Abriss über die wichtigsten inhaltsbasierten Algorithmen wird ebenfalls gegeben.
Weiterhin wird für die Algorithmen, die im Hinblick auf technische Realisierbarkeit, Laufzeit und ein breites Spektrum von möglichen Szenarien vielversprechend wirken, eine Automatisierung entwickelt, die die Analyse ohne weitere Benutzereingaben durchführt. Das Augenmerk liegt hier besonders darauf, dass die zu analysierenden Bilder möglichst wenige Vorraussetzungen erfüllen müssen, damit es eine Möglichkeit der korrekten Erkennung gibt.
Diese Automatisierungen werden implementiert, wenn möglich verbessert und auf einer Menge von Bildern getestet. Enthalten sind sowohl zufallsgenerierte Bilder, als auch aus geometrischen Formen synthetisierte und natürliche Bilder. Die Erkennung der auf die Bilder angewandten Fälschungstechniken beschäftigt sich vor allem mit Duplikationen, Einfügen und Interpolation von Bereichen.
Der Test dieser Implementierung konzentriert sich auf die absolute Effektivität und Effiienz gegen die gegebene Testmenge, betrachtet jedoch auch die spezifischen Vor- und Nachteile der ursprünglichen Algorithmen und der entwickelten Verbesserung. Ihre Ergebnisse, die sie auf den Testbildern erbringen, legen die Grundlage für eine Beurteilung der Algorithmen bezüglich Laufzeit und Effiienz.
Aufbauend auf diesen Analysen wird eine Bewertung der Algotihmen vorgenommen, die auch einen Ausblick auf mögliche Szenarien in der digitalen Bildbearbeitung und der Erkennung von Fälschungen für die nächsten Jahre geben soll.
Im Rahmen dieser Arbeit wird der aktuelle Stand auf dem Gebiet des Lokalen Lovász Lemmas (LLL) beschrieben und ein Überblick über die Arbeiten zu konstruktiven Beweisen und Anwendungen gegeben. Ausgehend von Jószef Becks Arbeit zu einer algorithmischen Herangehensweise, haben sich in den letzten Jahren im Umfeld von Moser und Tardos und ihren Arbeiten zu einem konstruktiven Beweis des LLL eine erneute starke Beschäftigung mit dem Thema und eine Fülle von Verbesserungen entwickelt.
In Kapitel 1 wird als Motivation eine kurze Einführung in die probabilistische Methode gegeben. Mit der First- und Second Moment Method werden zwei einfache Vorgehensweisen vorgestellt, die die Grundidee dieses Beweisprinzips klar werden lassen. Von Paul Erdős eröffnet, beschreibt es Wege, Existenzbeweise in nicht-stochastischen Teilgebieten der Mathematik mithilfe stochastischer Überlegungen zu führen. Das Lokale Lemma als eine solche Überlegung entstammt dieser Idee.
In Kapitel 2 werden verschiedene Formen des LLL vorgestellt und bewiesen, außerdem wird anhand einiger Anwendungsbeispiele die Vorgehensweise bei der Verwendung des LLL veranschaulicht.
In Kapitel 3 werden algorithmische Herangehensweisen beschrieben, die geeignet sind, von der (mithilfe des LLL gezeigten) Existenz gewisser Objekte zur tatsächlichen Konstruktion derselben zu gelangen.
In Kapitel 4 wird anhand von Beispielen aus dem reichen Schatz neuerer Veröffentlichungen gezeigt, welche Bewegung nach der Arbeit von Moser und Tardos entstanden ist. Dabei beleuchtet die Arbeit nicht nur einen anwendungsorientierten Beitrag von Haeupler, Saha und Srinivasan, sondern auch einen Beitrag Terence Taos, der die Beweistechnik Mosers aus einem anderen Blickwinkel beleuchtet.
A lot of software systems today need to make real-time decisions to optimize an objective of interest. This could be maximizing the click-through rate of an ad displayed on a web page or profit for an online trading software. The performance of these systems is crucial for the parties involved. Although great progress has been made over the years in understanding such online systems and devising efficient algorithms, a fine-grained analysis and problem specific solutions are often missing. This dissertation focuses on two such specific problems: bandit learning and pricing in gross-substitutes markets.
Bandit learning problems are a prominent class of sequential learning problems with several real-world applications. The classical algorithms proposed for these problems, although optimal in a theoretical sense often tend to overlook model-specific proper- ties. With this as our motivation, we explore several sequential learning models and give efficient algorithms for them. Our approaches, inspired by several classical works, incorporate the model-specific properties to derive better performance bounds.
The second part of the thesis investigates an important class of price update strategies in static markets. Specifically, we investigate the effectiveness of these strategies in terms of the total revenue generated by the sellers and the convergence of the resulting dynamics to market equilibrium. We further extend this study to a class of dynamic markets. Interestingly, in contrast to most prior works on this topic, we demonstrate that these price update dynamics may be interpreted as resulting from revenue optimizing actions of the sellers. No such interpretation was known previously. As a part of this investigation, we also study some specialized forms of no-regret dynamics and prediction techniques for supply estimation. These approaches based on learning algorithms are shown to be particularly effective in dynamic markets.