Refine
Year of publication
Document Type
- Doctoral Thesis (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- AFLPs (1)
- Agapetes (1)
- Ananasgewächse (1)
- Bromeliaceae (1)
- Climate (1)
- Gentianinae (1)
- Macrotermes (1)
- Migration (1)
- Molekulargenetik (1)
- Niche (1)
Institute
Die Gattung Palaua gehört zur Tribus der Malveae (Malvaceae, Malvoideae). Sie umfasst fünfzehn einjährige oder ausdauernde krautige Arten, die für die Nebeloasen („Lomas“, „Desierto Florido“) der Küstenwüste Perus und Chiles endemisch sind. Abweichend von den meisten anderen Gattungen der Malveae besitzt Palaua (mit Ausnahme von P. sandemanii) unregelmäßig übereinander angeordnete Merikapien. Dieses Merkmal ist ansonsten nur von den beiden altweltlichen Gattungen Kitaibela und Malope bekannt, weshalb diese früher mit Palaua in der Tribus Malopeae vereint wurden. Palynologische, cytogenetische und molekulare Analysen zeigten jedoch, dass die Malopeae eine polyphyletische Gruppe bilden und dass die in Südamerika verbreiteten Gattungen Fuertesimalva und Urocarpidium die nächsten Verwandten von Palaua sind. Ebenso wie im Aufbau des Gynözeums unterscheidet sich Palaua auch durch das Fehlen eines Epicalyx vom Großteil der Malveae, einschließlich ihrer Schwestertaxa. Seit der Erstbeschreibung der Gattung durch Cavanilles im Jahr 1785 sind nur zwei detaillierte Bearbeitungen der Gattung Palaua veröffentlicht worden. Die umfassendste davon stammt von Ulbrich (1909). Auf der Grundlage der umfangreichen Aufsammlungen von August Weberbauer beschrieb er mehrere neue Arten in seinem Werk „Malvaceae austro-americanae imprimis andinae“, das er in nachfolgenden Jahren (1916, 1932) vervollständigte. Die zweite bedeutsame Bearbeitung ist die Revision der Gattung durch Macbride (1956) in der „Flora of Peru“. Seit den 50er Jahren des vorherigen Jahrhunderts kamen jedoch zahlreiche Aufsammlungen hinzu, insbesondere durch den peruanischen Botaniker Ramón A. Ferreyra (1912-2005), sowie durch Ernesto Günther (1870-?) zusammen mit Otto Buchtien (1859-1946), Gerd K. Müller (1929-) und Michael O. Dillon (1947-), so dass eine Neubearbeitung von Palaua erforderlich wurde. Darin bestand das Hauptziel der hier vorgestellten Dissertation. Für die Revision der Gattung wurden 618 Herbarbelege der wichtigsten Herbarien morphologisch untersucht. In den Jahren 2002 und 2003 wurden während mehrmonatiger Geländearbeiten in den Lomas-Standorten Perus und Chiles eigene botanische Aufsammlungen durchgeführt sowie Daten zur Verbreitung der Arten und ihrer Ökologie erfasst. Des Weiteren wurde aus dem mitgebrachten Samenmaterial eine mehrere Arten einschließende Lebendsammlung angelegt, mit deren Hilfe detaillierte Untersuchungen zur Blütenmorphologie und Karyologie realisiert werden konnten. Besonders schwierig gestaltete sich die Bearbeitung nomenklatorischer Fragestellungen, da viele der in Berlin (B) aufbewahrten Typusbelege von Weberbauer im Zweiten Weltkrieg zerstört wurden und somit eine Identifizierung vieler Arten problematisch war. Auch die Ermittlung des Typusbelegs der Gattung, den Cavanilles für seine Beschreibung vorliegen hatte, war mühsam. Neben dem Studium der Originalbelege und Protologe mussten auch die historischen Begebenheiten rekonstruiert und Reiseberichte zu den Aufsammlungen durchgesehen werden, um unter anderem den Holotypus der Gattung identifizieren zu können. Die eigenen taxonomischen Studien führten zur Festlegung von insgesamt 8 Lectotypen, 3 Epitypen and 2 Ikonotypen. Im Rahmen der morphologischen Untersuchungen wurden sämtliche taxonomisch relevanten Merkmale detailliert erfasst, einschließlich der verschiedenen Behaarungstypen. Neben den für die Malvaceen bekannten Sternhaaren, sind hier auch Drüsenhaare für Palaua beschrieben und charakterisiert worden. Die anatomischen Studien konzentrierten sich auf Blatt- und Samenmerkmale. Zusätzlich zu den morphologisch-anatomischen Studien wurden molekularsystematische Analysen durchgeführt. Zwei Methoden kamen dabei zur Anwendung: DNA-Sequenzierung und Amplified Fragment Length Polymorphism (AFLP). Letztere wurde eingesetzt, um insbesondere die Verwandtschaftsverhältnisse junger Taxa, die sich mit DNA-Sequenzdaten kaum auflösen lassen, zu rekonstruieren. In umfangreichen Versuchen stellte sich jedoch heraus, dass diese Methode keine reproduzierbaren Ergebnisse hervorbrachte, vermutlich bedingt durch den sehr hohen Polysaccharidgehalt der DNA-Template, wie es von Malvaceen her bekannt ist. Selbst die Erprobung zahlreicher Reinigungsschritte und –methoden ergab kein zufriedenstellendes Resultat. Für die phylogenetische Rekonstruktion wurden daher ausschließlich DNA-Daten verwendet, und zwar Kern-DNA (Internal Transcribed Spacer, ITS) und Plastiden-DNA (psbAtrnH Intergenic Spacer). Andere getestete Marker, wie z.B. die trnL-F-Region, wiesen zu wenig phylogenetisch informative Merkmale auf. Die morphologischen Analysen ergaben, dass Merkmale wie die Behaarung der Kelch- und Laubblätter, die Blattform und die Größe der Blüten besonders hilfreich für die Abgrenzung der Arten sind. Im Gegensatz zu anderen nah verwandten Gattungen ist die Form der Merikarpien in Palaua relativ uniform und daher als diakritisches Merkmal ungeeignet. Die Größe der Blüte nimmt in der Regel mit der Anzahl der Staubgefäße und Merikarpien zu. Die Palaua-Arten zeigen einige Anpassungen an ihren extrem trockenen Lebensraum. Die meisten Arten sind Annuelle und vollziehen eine rasche Entwicklung während der kurzen Zeit, in der ausreichend Feuchtigkeit verfügbar ist. Bei solchen Pflanzen findet man als Anpassung häufig eine Tendenz zur vermehrten Samenproduktion. In diesem Zusammenhang ließe sich auch die innerhalb des Verwandtschaftskreises ungewöhnliche Stellung der Merikarpien bei Palaua interpretieren, mit der es den Arten gelingt, mehr Samen als bei Arten mit einreihiger Merikarpienanordnung zu produzieren. Als weitere Anpassung findet man bei den ausdauernden Arten größtenteils eine sehr dichte Behaarung, wobei die Sternhaare mehrjähriger Arten wesentlich mehr Strahlen besitzen als die bei den einjährigen Arten. In der hier vorgestellten Revision der Gattung werden 15 Arten anerkannt: P. camanensis, P. dissecta, P. guentheri, P. inconspicua, P. malvifolia, P. modesta, P. mollendoensis, P. moschata, P. rhombifolia, P. sandemanii, P. tomentosa, P. trisepala, P. velutina, P. weberbaueri sowie die neu zu beschreibende P. spec. nov. Die morphologisch abweichende P. sandemanii wird aufgrund der molekularen Analysen ebenfalls zu Palaua gestellt. Die auch in der jüngeren Literatur meist als getrennte Arten aufgefassten P. concinna und P. moschata lassen sich nach Durchsicht des umfangreichen Materials nicht mehr als eigenständige Arten aufrechterhalten. Die vormals als chilenischer Endemit behandelte P. concinna wird hier in die Synonymie von P. moschata gestellt. Auch die peruanische P. micrantha var. hirsuta wurde in die Synonymie der zuvor rein chilenischen P. modesta verwiesen, was bedeutet, dass sich das Vorkommen von P. modesta nun auch auf Peru ausdehnt. Auf infraspezifischem Niveau wurden einige Varietäten und eine Form neu beschrieben, um die im Sammlungsmaterial vorhandene morphologische Variabilität besser zu gliedern. Das ist der Fall bei P. dissecta (2 Varietäten), P. tomentosa (1 Varietät), P. weberbaueri (1 Varietät) und P. mollendoensis (1 Form). Die neuen Taxa werden an anderer Stelle gültig publiziert. Die von Baker (1890) and Ulbrich (1909) gewählte infragenerische Klassifikation mit der Einteilung in die Sektionen Annuae (einjährige Arten) und Perennes (mehrjährige Arten) erweist sich als nicht haltbar. Weder die morphologischen noch die molekularen Daten bieten hierfür Unterstützung. Auch die von Hochreutiner (1956) vorgeschlagene Ausgliederung von P. trisepala als eigene Untergattung Rauhia, aufgrund des Vorkommens von lediglich drei statt fünf Kelchblättern, erscheint nicht sinnvoll. Abgesehen von ihrer reduzierten Kelchblattzahl (3 statt 5 Kelchblätter) ist diese Art morphologisch P. moschata und P. velutina sehr ähnlich. Die Aufstellung einer eigenen Untergattung würde die tatsächlichen Verwandtschaftsverhältnisse verwischen und vermutlich eine paraphyletische Einheit schaffen. Im Vergleich zur Anzahl der Kelchblätter sind Merkmale wie der Aufbau der Infloreszenzen, die Blütengröße und -farbe, sowie die Blattmorphologie (geteilte vs. ungeteilte Blätter) nützlicher für eine infragenerische Unterteilung. Die Form der Stipeln, die von Ulbrich (1909) für eine weitere Unterteilung seiner Sektionen verwendet wurde, ist weniger für eine infragenerische Gliederung als für die Abgrenzung mancher Arten geeignet. Formell wurde in der hiesigen Arbeit auf eine infragenerische Unterteilung verzichtet, da zunächst abgewartet werden soll, ob weiterführende molekularsystematische Untersuchungen nicht doch zu einer besseren Auflösung und auch Unterstützung der basalen Knoten der Palaua-Phylogenie führen. Andernfalls steht zu befürchten, dass wiederum künstliche Sippen geschaffen werden. Nichtsdestotrotz, sprechen die eigenen morphologischen und zum Teil auch die molekularen Daten für eine Gliederung der Gattung in drei taxonomische Einheiten (siehe unten). Die Ergebnisse der molekularen Analysen (kombinierte Analyse von ITS- und psbA-trnHSequenzen) ergaben drei mehr oder weniger gut gestützte Kladen innerhalb einer sehr gut gestützten monophyletischen Palaua. Interessanterweise bildeten die Arten P. inconspicua und P. modesta eine Klade (88% Jackknife-Unterstützung, JK), die die Schwestergruppe zu den restlichen Arten der Gattung darstellt. Beide Arten haben eine von der restlichen Gattung abweichende Blütenmorphologie (kleine Petalen, weniger Merikarpien) und die razemösen Infloreszenzen enthalten neben Einzelblüten in den Achseln der Trägblätter auch 2-4-blütige Teilinfloreszenzen, an denen die Blüten kein Tragblatt aufweisen. Die zweite Klade (JK 97%) beinhaltet die Arten des P. dissecta-Komplexes, dessen Arten sich durch tief geteilte Blätter und große, auffällig rosarot bis violett gefärbte Blüten mit zahlreichen Merikarpien auszeichnen. In der dritten Klade (JK 73%) bildet P. guentheri die Schwestergruppe zu den restlichen Arten. Die hier vereinten Arten sind durch den Besitz ungeteilter Blätter und meist großer, auffällig rosarot bis violett gefärbter Blüten mit zahlreichen Merikarpien gekennzeichnet. Eine Ausnahme bildet P. guentheri, die geteilte Blätter hat und von daher Übereinstimmungen mit den Arten um P. dissecta aufweist. Sie weicht jedoch von den Arten des P. dissecta-Komplexes aufgrund ihrer geringeren Blütengröße und der geringeren Merikarpienanzahl ab. Außerdem sind die Blätter meist stärker reduziert und weniger regelmäßig geteilt als jene. Allerdings bedarf die Stellung von P. guentheri innerhalb der Gattung noch einer eingehenderen Überprüfung mit zusätzlichen (molekularen) Daten, da die Unterstützung für diese Klade vergleichsweise moderat ausfällt. Interessanterweise schließt diese Klade auch die aberrante P. sandemanii ein. Eine phylogenetische Rekonstruktion der Karpellanordnung ergab, dass die einreihige Anordnung der Karpelle in P. sandemanii vermutlich sekundär in Palaua entstanden ist. Allerdings zeigten Hypothesentests (Templeton-Test, Shimodaira-Hasegawa-Test), dass die Datengrundlage nicht ausreichend robust ist, um auch die Alternativhypothese einer sekundären Entstehung der unregelmäßig übereinander angeordneten Karpelle, wie sie die restlichen Arten der Gattung kennzeichnen, zu verwerfen. Innerhalb der Integrifolia-Klade lassen sich außerdem zwei Gruppen von Arten morphologisch deutlich unterscheiden. Die erste Gruppe besteht aus den einjährigen P. malvifolia und P. rhombifolia, die sich durch ihr fast kahles Indumentum auszeichnen und in Nord- bis Zentral-Peru vorkommen. Die zweite Gruppe, gebildet von den ausdauernden P. moschata, P. trisepala und P. velutina, ist durch ein samtiges Indumentum gekennzeichnet. Während sich P. moschata über das gesamte Verbreitungsgebiet der Gattung erstreckt, kommen die anderen Arten nur in Südperu vor. Die Chromosomenzahl von Palaua ist ein wichtiges Merkmal und diente Bates (1968) für deren Zuordnung zur Sphaeralcea-Allianz. Bis dato sind Chromosomenzählungen nur für zwei Arten bekannt gewesen: P. rhombifolia und P. moschata (beide mit 2n = 10 Chromosomen). In dieser Arbeit wurden weitere Zählungen durchgeführt und es wurde bestätigt, dass es neben diploiden auch tetraploide Arten mit 2n = 20 Chromosomen gibt. Polyploidie scheint dabei auf die ausdauernden Arten beschränkt zu sein. In manchen Arten, insbesondere in denjenigen des P. dissecta-Komplexes und in P. tomentosa, findet man eine ausgeprägte phänotypische Variabilität, die die Abgrenzung derselben stark erschwert. Ohne die Ursachen abschließend klären zu können, erscheint diese Variabilität zumindest teilweise als Ergebnis von Hybridisierung, Introgression und Polyploidisierung zu sein. In Bezug auf die Biogeographie der Gattung, zeigt sich, dass 11 Palaua-Arten endemisch für Peru sind und 4 Arten auch in Chile vorkommen. Das Verbreitungszentrum von Palaua ist das Gebiet der Lomas im Süden Perus (Departments Arequipa, Moquegua, Tacna), in dem 12 der 15 Arten auftreten. Die Blütezeit der Palaua-Arten variiert von Jahr zu Jahr, abhängig davon, wie viel Nebelfeuchtigkeit in der südhemisphärischen Winter-/Frühlingszeit für die Pflanzen zur Verfügung steht. Die Entstehung der Nebel variiert außerdem von Norden nach Süden, so dass sich die Blühphasen entlang dieses Gradienten verschieben. So liegt die Blütezeit in Nordperu zwischen Juli und August, in Zentral-Peru zwischen August und September und in Südperu und Chile zwischen Oktober und November. Abweichungen von diesem Schema entstehen vor allem in El Niño-Jahren, in denen auch während des südhemisphärischen Sommers die Lomaspflanzen blühen. Die Lomasvegetation ist eine bedrohte Pflanzenformation, deren Artenvielfalt bisher aber nur in Form eines recht kleinen Naturreservats geschützt wird. Da sich viele Lomasstandorte in der Nähe von Siedlungen befinden, sind etliche der lokal nur begrenzt vorkommenden Arten in ihrem Bestand bedroht. Dies betrifft insbesondere P. rhombifolia und P. malvifolia, deren Verbreitungszentrum im Gebiet der Hauptstadt Lima liegt. Eigene Beobachtungen am Standort haben zudem bestätigt, dass einige Populationen dieser Arten durch von Käfern verursachter Herbivorie nahezu vollständig zerstört werden. Weitere Schutzmaßnahmen zum Erhalt der Palaua-Arten (wie auch der anderen Lomas-Arten) wären daher dringend geboten.
Termites are important ecosystem engineers of the savanna biome, with the large mounds of fungus-cultivating termites being sources of habitat heterogeneity and structural complexity in African savanna landscapes. Studies from different localities throughout Africa have shown that termite mounds have a strong influence of diversity and composition of plant communities. However, most research has been conducted only at the local scale, and integrating knowledge across Africa is hampered by different methodology of studies and differing environmental context. Little is known about the variation in vegetation composition on termite mounds compared to the surrounding savanna at the regional scale and at the landscape scale, and the main determinants of plant communities on mounds are yet to be ascertained.
This thesis aimes at better understanding the influence of termite mounds on vegetation compared to the surrounding savanna across spatial scales. Three research projects analyse vegetation data and soil data from paired mound and savanna plots in West Africa. The first project examines the influence of termite-induced heterogeneity on plant diversity and vegetation composition at a regional scale, following a bioclimatic gradient from the Sahel of Burkina Faso to the Sudanian vegetation zone in North Benin. The second Project analysed variation of vegetation on and off mounds at the landscape scale in Pendjari National Park, North Benin. The third is a monitoring study over the course of two years, exploring dynamics of juvenile woody plant communities on mounds and in the surrounding savanna at a local scale. The thesis thus provides the first comparative quantitative analysis across scales of mound and savanna vegetation and the drivers of the mound–savanna difference in vegetation.
Synthesizing across scales, its results confirm that termite mounds strongly contribute to savanna plant diversity, even though mounds are not generally more species rich than the surrounding savanna. Variation in mound vegetation is much higher along climatic and soil gradients than previously acknowledged. Mound vegetation differs from the surrounding savanna in the whole study area and in each sampled savanna type, with the strongest differences occurring at the most humid study sites. A large proportion of the differences between mound and savanna vegetation is explained by clay enrichment and related soil factors, such as cation concentrations. Plants on mounds thus benefit from favourable soil conditions, including higher fertility and higher water availability, which is also mirrored by the higher abundance and basal area of juvenile woody plants found on mounds. The variation in mound vegetation between study sites across scales results in part from local differences in soil composition and from climatic differences that influence the regional distribution of species. Different sets of characteristic mound species are identified in each project. Specific plant families and traits like succulency, lianescence, and adaptations to zoochory are found to be overrepresented in mound communities.
In addition to the findings in this thesis, remaining parts of the variation in mound vegetation between study sites could likely be explained by investigating further factors. Specifically, mound vegetation depends on habitat context, which includes available species pools, spatial distribution of mounds, biotic interactions with dispersers and herbivores, fire, and also anthropogenic influence. The high proportion of species with adaptations to zoochory found on mounds, for example, indicates that animal dispersers should be of particular importance for vegetation on termite mounds. Herbivory and fire regime, which are known to contribute to the diversity and community composition of the mound–savanna system, also show strong local variation, not least because of anthropogenic influence.
In conclusion, termite mounds play a crucial role in maintaining heterogeneity and plant diversity in the savanna across scales. Ecosystem services provided by termites, especially considering long-term effects on soil fertility and ecosystem resilience, are most likely undervalued. Mounds should be considered in management plans from local to regional, transnational scales as a matter of course, accompanied by further research on the role of termite mounds in savanna ecology on a longer temporal scale. The research presented here thus provides a basis for future studies on termite mound vegetation that should specifically consider the biotic and abiotic context of the mound–savanna system.
Global climate change and land use change will not only alter entire ecosystems and biodiversity patterns, but also the supply of ecosystem services. A better understanding of the consequences is particularly needed in under-investigated regions, such as West Africa. The projected environmental changes suggest negative impacts on nature, thus representing a threat to the human well-being. However, many effects caused by climate and land use change are poorly understood so far. Thus, the main objective of this thesis was to investigate the impact of climate and land use change on vegetation patterns, plant diversity and important provisioning ecosystem services in West Africa. The three different aspects are separately explored and build the chapters of this thesis. The findings help to improve our understanding of the effects of environmental change on ecosystems and human well-being. In the first study, the main objectives were to model trends and the extent of future biome shifts in West Africa that may occur by 2050. Also, I modelled a trend in West African tree cover change, while accounting for human impact. Additionally, uncertainty in future climate projections was evaluated to identify regions with reliable trends and regions where the impacts remain uncertain. The potential future spatial distributions of desert, grassland, savanna, deciduous and evergreen forest were modelled in West Africa, using six bioclimatic models. Future tree cover change was analysed with generalized additive models (GAMs). I used climate data from 17 general circulation models (GCMs) and included human population density and fire intensity to model tree cover. Consensus projections were derived via weighted averages to: 1) reduce inter-model variability, and 2) describe trends extracted from different GCM projections. The strongest predicted effect of climate change was on desert and grasslands, where the bioclimatic envelope of grassland is projected to expand into the Sahara desert by an area of 2 million km2. While savannas are predicted to contract in the south (by 54 ± 22 × 104 km2), deciduous and evergreen forest biomes are expected to expand (64 ± 13 × 104 km2 and 77 ± 26 × 104 km2). However, uncertainty due to different GCMs was particularly high for the grassland and the evergreen forest biome shift. Increasing tree cover (1–10%) was projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo, but a decrease was projected for coastal areas (1–20%). Furthermore, human impact negatively affected tree cover and partly changed the direction of the projected climate-driven tendency from increase to decrease. Considering climate change alone, the model results of potential vegetation (biomes) showed a ‘greening’ trend by 2050. However, the modelled effects of human impact suggest future forest degradation. Thus, it is essential to consider both climate change and human impact in order to generate realistic future projections on woody cover. The second study focused on the impact and the interplay of future (2050) climate and land use change on the plant diversity of the West African country Burkina Faso. Synergistic forecasts for this country are lacking to date. Burkina Faso covers a broad bioclimatic gradient which causes a similar gradient in plant diversity. Thus, the impact of climate and land use change can be investigated in regions with different levels of species richness. The LandSHIFT model from the Centre of Environmental System research CESR (Kassel, Germany) was adapted for this study to derive novel regional, spatially explicit future (2050) land use simulations for Burkina Faso. Additionally, the simulations include different assumptions on the technological developments in the agricultural sector. Oneclass support vector machines (SVMs), a machine learning method, were performed with these land use simulations together with current and future (2050) climate projections at a 0.1° resolution (cell: ~ 10 × 10 km). The modelling results showed that the flora of Burkina Faso will be primarily negatively impacted by future climate and land use changes. The species richness will be significantly reduced by 2050 (P < 0.001, paired Wilcoxon signed-rank test). However, contrasting latitudinal patterns were found. Although climate change is predicted to cause species loss in the more humid regions in Southern Burkina Faso (~ 200 species per cell), the model projects an increase of species richness in the Sahel. However, land use change is expected to suppress this increase to the current species diversity level, depending on the technological developments. Climate change is a more important threat to the plant diversity than land use change under the assumption of technological stagnation in the agricultural sector. Overall, the study highlights the impact and interplay of future climate and land use change on plant diversity along a broad bioclimatic gradient in West Africa.Furthermore, the results suggest that plant diversity in dry and humid regions of the tropics might generally respond differently to climate and land use change. This pattern has not been detected by global studies so far. Several of the plant species in West Africa significantly contribute to the livelihoods of the population. The plants provide so-called non-timber forest products (NTFPs), which are important provisioning ecosystem services. However, these services are also threatened by environmental change. Thus, the third study aimed at developing a novel approach to assess the impacts of climate and land use change on the economic benefits derived from NTFPs. This project was carried out in cooperation with Katja Heubach (BiK-F) who provided data on household economics. These data include 60 interviews that were conducted in Northern Benin on annual quantities and revenues of collected NTFPs from the three most important savanna tree species: Adansonia digitata, Parkia biglobosa and Vitellaria paradoxa. The current market prices of the NTFPs were derived from respective local markets. To assess current and future (2050) occurrence probabilities of the three species, I calibrated niche-based models with climate data (from Miroc3.2medres) and land use data (LandSHIFT) at a 0.1° resolution (cell: ~ 10 × 10 km). Land use simulations were taken from the previous study on plant diversity. Three different niche-based models were used: 1) generalized additive models (regression method), 2) generalized boosting models (machine learning method), and 3) flexible discriminant analysis (classification method). The three model simulations were averaged (ensemble forecasting) to increase the robustness of the predictions. To assess future economic gains and losses, respectively, the modelled species’ occurrence probabilities were linked with the spatially assigned monetary values. Highest current annual benefits are obtained from V. paradoxa (54,111 ± 28,126 US$/cell), followed by P. biglobosa (32,246 ± 16,526 US$/cell) and A. digitata (9,514 ± 6,243 US$/cell). However, in the prediction large areas will lose up to 50% of their current economic value by 2050. Vitellaria paradoxa and Parkia biglobosa, which currently reveal the highest economic benefits, are heavily affected. Adansonia digitata is negatively affected less strongly by environmental change and might regionally even supply increasing economic benefits, in particular in the west and east of the investigation area. We conclude that adaptive strategies are needed to create alternative income opportunities, in particular for women that are responsible for collecting the NTFPs. The findings provide a benchmark for local policy-makers to economically compare different land use options and adjust existing management strategies for the near future. Overall, this thesis improves our understanding of the impacts of climate and land use changes on West African vegetation patterns, plant diversity and provisioning ecosystem services. Climate change had spatially varying impacts (positive and negative effects) on the vegetation cover and plant diversity, while predominantly negative effects resulted from human pressure. Regional contrasting impacts of environmental change were also found considering the provisioning ecosystem services.
Die vorliegende, publikationsbasierte Dissertation, bestehend aus den drei Einzelpublikationen Bayer (2011, 2012) und Bayer und Schönhofer (2012), verfolgte das Ziel, die Spinnenfamilie Psechridae zu revidieren. Weiterhin sollten die phylogenetische Position dieser Familie im System der höheren Webspinnen (Araneomorphae) sowie die phylogenetischen Beziehungen der einzelnen Arten innerhalb der beiden Gattungen der Psechridae untersucht werden. In Form von morphologisch-taxonomischen Bearbeitungen wurden die beiden die Psechridae bildenden Gattungen Psechrus und Fecenia revidiert, wobei sämtliches Typus-Material sowie reichhaltiges, weiteres Material eingehend beschrieben, illustriert und diagnostiziert wurde. Hierbei wurden auch intraspezifische Variabilität sowie die Prä-Epigynen subadulter Weibchen, die in taxonomischen Arbeiten bislang nur eine unwesentliche Rolle gespielt haben, beschrieben, illustriert und taxonomisch ausgewertet. Zudem wurden im Rahmen dieser Untersuchungen bereits Überlegungen über mögliche Verwandtschaftsbeziehungen innerhalb der beiden Gattungen angestellt. ...
Die Grewioideae sind eine Unterfamilie der Malvaceae sensu Bayer et al. (1999). Sie umfassen mit 25 Gattungen und ca. 700 Arten einen Großteil der früheren Tiliaceae. Diese waren vor allem aufgrund der durchweg dithecischen Antheren und der oft zahlreichen, freien Stamina zu einer Familie zusammengefasst worden, auch wenn die enge Verwandtschaft mit den Sterculiaceae, Bombacaceae und Malvaceae bekannt war und die Abgrenzung dieser Familien untereinander oft als künstlich angesehen wurde. ... Insgesamt 45 Arten aus allen 25 Gattungen der Malvaceae-Grewioideae (sensu Bayer & Kubitzki 2003) wurden hinsichtlich ihrer Morphologie im Blüten-, Frucht- und vegetativen Bereich untersucht. Der Schwerpunkt lag dabei auf einer vergleichenden Bearbeitung der Blütenstruktur, für die neben morphologischen auch ontogenetische und anatomische Untersuchungen durchgeführt wurden. Die Ergebnisse waren Grundlage für eine Datenmatrix mit 55 Merkmalen, die ebenso wie DNA-Sequenzdaten (ndhF) für phylogenetische Analysen verwendet wurden. Die Analysen beider Datensätze ergeben eine Zweiteilung der Grewioideae. Auf der Basis der Ergebnisse wird vorgeschlagen, die Grewioideae in die zwei Triben Apeibeae und Grewieae zu unterteilen. Diese Gliederung widerspricht früheren Klassifikationen, ist aber durch strukturelle Merkmale gut gestützt. Die Apeibeae zeichnen sich durch hornförmige Verlängerungen der Sepalen-Spitze und stachelige Emergenzen auf der Fruchtoberfläche aus, Reduktionsformen sind durch Übergänge nachweisbar (Ausnahme: Glyphaea). Leitbündelstränge innerhalb der Fruchtwand verlaufen einzeln. Bestäubungsbiologisch relevante Nektarien, soweit vorhanden, befinden sich vor den Petalen auf einem Androgynophor. Das Androeceum entwickelt sich zentrifugal in einer unterschiedlichen Zahl einheitlicher Kreise. Den Grewieae fehlen Fortsätze der Sepalen-Spitzen sowie stachelige Emergenzen der Früchte. Sie sind durch Nektarien auf den Petalen charakterisiert (Ausnahme: Mollia). Ihre Fruchtwand weist einen geschlossenen Leitbündelmantel auf. Steinkerne oder dorsal geflügelte Fruchtfächer kommen vor. Das Androeceum entwickelt sich oft ungleichmäßig mit einer Förderung des antesepalen Sektors, bisweilen ausgehend von Komplexprimordien. Innerhalb der Triben lassen sich teils neue, teils früher schon bekannte Gruppen erkennen; andere sind anhand der vorliegenden Daten nicht aufzulösen. Dies gilt insbesondere für die Verwandtschaft von Grewia, bei der die Gattungsgrenzen einer kritischen Revision bedürfen. Die Kartierung der morphologischen Merkmale auf den Konsensusbaum der DNA-Sequenzdaten ergab, dass insbesondere der Androgynophor innerhalb der Grewioideae mehrfach parallel entstanden ist und im Gegensatz zu früheren Klassifikationen nicht als Tribus-Merkmal herangezogen werden kann. Auf der Suche nach einem gemeinsamen Bauplan, der den stark unterschiedlichen Blütenstrukturen der Schwestergruppen Grewioideae und Byttnerioideae zugrunde liegen könnte, wurde insbesondere das Androeceum vergleichend untersucht. Bei beiden Unterfamilien findet man polystemone Androeceen, die bei den Byttnerioideae in staminodiale antesepale und fertile antepetale Sektoren differenziert sind. Dies wird in der Literatur oft als obdiplostemones Arrangement zweier Kreise interpretiert, von denen der fertile antepetale Teil dédoubliert. Bei den Grewioideae findet man keine derartige Differenzierung; sie sind in ihrer androecealen Struktur außerordentlich variabel. Die Befunde der Morphologie, Ontogenie und Anatomie widersprechen sich dabei jeweils dergestalt, dass eine theoretische Gliederung des polystemonen Androeceums in zwei Kreise kaum zu rechtfertigen ist. In diesem Zusammenhang wird die in der Literatur verbreitete Vorstellung einer sekundären Polyandrie kritisch beleuchtet. Für die untersuchte Gruppe wird ein Zusammenhang zwischen Bestäubungsbiologie und Blütenstruktur als nahe liegender angesehen, der zu unterschiedlichen Gruppenbildungen innerhalb polystemoner Androeceen führen kann. Während Petalen und Stamina bei den oft fliegenblütigen Byttnerioideae eine spezielle Funktionseinheit bilden, findet man bei den größtenteils bienenblütigen Grewioideae in Zusammenhang mit den Petalen oft Nektar. Die fertilen Stamina können den gesamten antesepalen und antepetalen Raum einnehmen. So stand an der Basis der Grewioideae möglicherweise der Wechsel der Bestäubergruppe und die Auflösung eines blütenbiologisch fixierten Musters, ein Vorgang, wie er innerhalb der Malvaceae mehrfach auf unterschiedliche Weise erfolgt sein könnte. Auch andere Gruppen weisen Blütenstrukturen mit vorwiegend freien Stamina und verborgenem Nektar in Zusammenhang mit Bienenbestäubung auf. Es mag diese blütenbiologisch bedingte Ähnlichkeit gewesen sein, die zur Vereinigung nicht näher verwandter Gruppen zur früheren Familie Tiliaceae geführt hat.
The existence of all living organisms depends on their multidimensional adjustment to the conditions of the environment in which they live. Organisms must constantly deal with not only abiotic stress factors (such as water availability or extreme temperatures), but also with various biotic interactions (the competition between different organisms, both intraspecific and interspecies). When there is a consensus between an organism and the environment it means that this organism is well adjusted and increases its probability of survival.
Symbiotic organisms possess the ability to establish an intimate interaction with another species (symbiont) that provides benefits for survival. Organisms that are involved in obligate symbiosis may adapt to a new environment by switching to another symbiotic partner that is locally better adapted; or by reshuffling symbiont communities present in the holobiont. This ability potentially gives them the opportunity to flexibly react to changing environmental conditions.
In this thesis I studied the genetic diversity and geographic distribution of symbiont lineages in a lichen symbiosis to better understand environmental adaptation in symbiotic systems. Lichens are symbiotic associations of photobionts (one or several green-algal species or cyanobacteria), filamentous mycobionts (lichen-forming fungi) and co-inhabiting symbiotic microorganisms (lichen-associated bacteria, endolichenic fungi, and basidiomycete yeast). The coccoid green algae of the genus Trebouxia are the most common and the most studied lichen photobionts. However, the lack of formal Trebouxia taxonomy impedes our understanding of this photobiont diversity.
Different species of mycobionts may share the same photobionts and a single species of mycobiont may associate with multiple, genetically different photobionts. Interactions among symbionts are not random and are constrained by evolutionary and environmental processes. The ability to associate with specific symbiotic partner is considered as a lichen strategy to facilitate adaptation to the constantly changing environments.
The objectives of this thesis were to 1. Elucidate the intraspecific diversity of fungal and algal symbionts in the lichen Umbilicaria pustulata, given a range-wide (Europe-wide) sampling; 2. Evaluate species delimitation in trebouxioid photobionts based on molecular data, and 3. Quantify the climatic niches of photobiont lineages within U. pustulata, to establish whether the association with particular photobionts may modify the range and ecological niche of this lichen.
The main findings of this thesis are:
1. The genetic diversity within trebouxoid photobiont of U. pustulata is higher than within the mycobiont. The most variable photobiont loci are nrITS rDNA, psbJ-L, and COX2. RbcL is the least variable photobiont locus. The most variable mycobiont loci are MCM7 and TSR1. This study shows a lack of genetic variability in the mycobiont loci EF1, nrITS rDNA, RPB1, and RPB2.
2. U. pustulata shows a low level of selectivity and is associated with numerous (most likely six) putative algal species. All photobiont haplotypes found in U. pustulata are shared between other lichen-forming fungi species, showing different patterns of species-to-species and species-to-community interactions.
3. The geographic distribution of U. pustulata symbionts associations is strongly connected to changes in the climatic niches. The mycobiont-photobiont interactions change along latitudinal temperature gradients (cold-adapted hotspot) and in Mediterranean climate zones (warm-adapted hotspot). U. pustulata broadens its distribution range by switching between photobionts that posses specific environmental preferences.
Overall, this thesis contributes to the understanding of the symbiont diversity, fungal-algal association patterns and local adaptation linked to symbiont-mediated niche expansion in lichens. While identifying intraspecific diversity of both lichen symbionts is a key predisposition to understand symbiont interactions, population dynamics or co-evolution, my comparative study of the sequence-based molecular markers is relevant to reveal cryptic diversity in other lichen-forming fungi and their photobionts.
The determination of species boundaries in lichen symbionts is essential for the study of selectivity and specificity, co-distribution, and co-evolution. Whereas the phylogenetic relationships of Trebouxiophyceae are poorly understood, the application of a novel multifaceted approach based on phylogenetic relationships, coalescence methods and morphological traits presented in this thesis is a promising tool to address species boundaries within this heterogeneous genus.
This thesis provides evidence for symbiont-mediated niche expansion in lichens and highlights the preferential photobiont association from a niche-modeling perspective. My results shed light on symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation in the lichen symbiosis. The spatial genetic pattern found in U. pustulata symbionts supports the concept of ecological fitting and is consistent with patterns found in other lichen studies. Results presented here relate also to findings in different symbiotic systems, like reef-building corals, where different latitudinal patterns and symbiont switching has been reported as an adaptive response to severe bleaching events. Furthermore, this study is timely in light of global warming, because the identification of interaction hotspots among symbionts helps to understand how lichens or other symbiotic organisms adjust to the ongoing climate change. This knowledge will, in turn, facilitate the proper conservation of the most vulnerable lichen populations. My doctoral thesis provides a conceptual framework for analyzing symbiont diversity, interaction patterns, and symbiont-mediated niche expansion that could be applied to other types of lichen species as well as other organisms involved in facultative or obligate symbiosis.
Understanding major causes of biodiversity and range dynamics requires research on evolutionary processes under consideration of environmental changes. In my thesis, I investigated the spatio-temporal evolution of the Neotropical tree genus Cedrela from the Meliaceae family by studying its genetic diversity, taxonomy, colonization history, climatic niche changes and dynamics of species distributions. My results show that climatic and geological changes are major drivers of biological diversification in Cedrela.
Savannas are the most important timber and non-timber forest products (NTFPs) providing ecosystems in West Africa. They have been shaped by traditional human land-use (i.e. agriculture, grazing, and harvesting) for thousands of years. In the last decades, land-use has drastically changed due to the rapid population growth and the growing production of cash-crop in West Africa and this process is still continuing. The percentage of land intensively used for agriculture has increased, while the length of fallow periods has decreased. Such changes have enormous ecological, economic, and social consequences. In the context of land-use changes, there is an urgent need to better understand and evaluate the impact of land-use on savannas. Such an understanding provides insights on appropriate management activities that ensure the maintenance of savannas and guarantee the availability of savanna products for subsistence and commercial use of rural West African people.
The major objective of the present thesis was to study the impact of land-use on savanna vegetation and diversity as well as on populations of two important NTFP-providing tree species in a semi-arid area in West Africa. The study area was located in the south-eastern part of Burkina Faso and comprised the protected W National Park and its adjacent communal area.
In the first study (chapter 2), I investigated in cooperation with a colleague from Burkina Faso (Blandine Nacoulma) the impact of land-use on the savanna vegetation. We analyzed which environmental factors determine the occurrence of the vegetation types and investigated the effect of land-use on vegetation structure and the occurrence of life forms and highly valued tree species. Furthermore, we tested whether land-use has an impact on plant diversity pattern and if this impact differed between the vegetation types and layers (woody and herb layer). Vegetation relevés were performed and the vegetation and plant diversity of the protected W National Park were compared with those of its surrounding communal area. Our results reveal five vegetation types occurring in both areas. Elevation and physical soil characteristics and thus soil water availability for plants played the most important role for the occurrence of the vegetation types. The influence of land-use on plant diversity differed between the five vegetation types and the two layers. The impact was highest on the vegetation types with the most favorable soil conditions for cultivation and lowest on rocky habitats with poor soils. While the diversity of the woody layer was increased under human land-use, the diversity of the herb layer was diminished. Overall, as land-use effects were not only negative, our findings suggest that land-use does not automatically lead to a loss of plant species and to a degradation of savanna habitats. We conclude that both protected and communal areas are of great importance for the conservation of savanna vegetation and diversity. Our study highlights furthermore the importance of different management strategies for each vegetation type.
In the following two studies (chapter 3 and 4), the impact of land-use - and in particular of harvesting - on populations of Adansonia digitata L., the baobab tree, and Anogeissus leiocarpa (DC.) Guill. & Perr. was examined. These two tree species were chosen as they provide several NTFPs for the local population and as they show different levels of human protection and opposed life histories. Thus, they may react differently to land-use. Stands of the protected W National Park were compared with those of its surrounding communal area (in fallows, croplands, and villages). I applied dendrometric methods to study the population structures and combined it with rates and patterns of NTFP-harvesting (debarking and chopping/pruning). Furthermore, the impact of land-use and harvesting on the fruit production of A. digitata and on the sprouting ability of A. leiocarpa were studied. The inverse J-shaped size class distribution curve indicates that the stands of A. digitata were in a healthy state in the park, while the low number of smaller size classes in fallows, croplands, and villages may give evidence of an ageing population. However, a high number of seedlings were recorded in villages. The stands of A. leiocarpa were also in healthy states in the park and likewise in fallows. In contrast, the absence of saplings gives evidence of a declining population in croplands. Both species were strongly harvested by local people and harvesting was tree size-specific. Pruning in interaction with tree-size had a significant impact on fruit production of A. digitata. While smaller trees were more vulnerable to pruning, bigger trees benefited from slight-pruning. A. leiocarpa had a great ability to respond to chopping by sprouting. The sprouting ability increased even with higher chopping intensity. Results suggest that despite the intense harvesting and the land-use impact, populations of both species are still well preserved. While A. digitata can withstand the harvesting and land-use pressure by its longevity, extremely low adult mortality rates, and particularly due to positive human influences, A. leiocarpa is able to withstand the use pressure by its fast growing, high recruitment, and high sprouting ability. I conclude that a none protected tree species (A. leiocarpa) might not necessarily be at higher risk to the harvesting and land-use impact than a protected tree species (A. digitata) as the adverse impact of harvesting and land-use can be compensated by its specific life history.
Important additional information to such ecological findings can be provided by local people. Learning from traditional knowledge and management systems of local people will help to produce culturally and ecologically reasonable conservation and management strategies. Thus, I investigated local uses and management strategies of A. digitata and A. leiocarpa in the last two studies (chapter 5 and 6). Quantitative ethnobotanical surveys among the Gulimanceba people were conducted in the communal area in order to document uses of the different plant parts, harvesting modes, perceptions about the population status, and conservation status of both species. Hereby, differences in knowledge between gender, generations, and people from different villages were tested. Interviews reveal that both species are harvested for multipurpose and emphasize the high importance of both species for local people. Especially the leaves and fruits of A. digitata add valuable minerals and vitamins to the otherwise micronutrient-“poor” staple crops of the Gulimanceba people. In comparison with other studies in West Africa, it has turned out that people in this area could benefit even more from A. leiocarpa, e.g. for dyeing of clothes, for treatment of malaria and skin problems. Local knowledge did not differ between genders and generations, while it slightly differed between people from different villages. The lack of age differences suggests that the traditional knowledge about these two species is passed on from one generation to another. Differences between people from different villages might be explained by influences from the neighboring countries Niger and Benin. Current local harvesting modes and management strategies of both species resulted in sustainable use. However, ongoing land-use intensifications require adapted harvesting and management techniques to guarantee the persistence of these economically important species. These results provide, in combination with the ecological findings (chapter 3 and 4), appropriate management recommendations for A. digitata and A. leiocarpa that are reliable under currently practiced management strategies.
Die Bromeliaceae umfassen mehr als 3.100 fast ausschließlich neotropische Arten. Bekannt für ihre außergewöhnliche ökologische Vielseitigkeit haben sich Bromelien erfolgreich in terrestrischen und epiphytischen Lebensräumen ausgebreitet.
Eine umfassende Untersuchung des Gefährdungsgrades aller Bromelienarten Panamas und Costa Ricas stand bisher noch aus und ist insbesondere aufgrund des großen Reichtums an Lebensräumen, der beide Länder auszeichnet, und den vielfältigen Veränderungen geboten.
Im Rahmen der vorliegenden Arbeit wurden während der insgesamt etwa achtmonatigen Feldarbeit 54 Exkursionen in Westpanama durchgeführt und Belege von 61% (126 Arten) der für Panama bekannten Arten gesammelt.
Auf der Basis der Feldarbeit und der in verschiedenen Herbarien durchgeführten Studien (Überprüfung und Digitalisierung von > 8.000 Aufsammlungen) wurden Diversität, Endemismus, Areale und räumliche Muster der Artenvielfalt der Bromeliaceae in Panama und Costa Rica erfasst, dokumentiert und analysiert.
Nur drei der derzeit bekannten acht Unterfamilien der Bromeliaceae finden sich in Panama und vier in Costa Rica. Zwanzig Arten werden hier erstmals für Panama gemeldet. Sechs bisher für Panama gemeldete Bromelienarten wurden als irrtümlich gemeldet identifiziert. Die Flora der Bromeliaceae umfasst nun 16 Gattungen und 206 Arten in Panama sowie 18 Gattungen und 199 Arten in Costa Rica.
33 Arten sind endemisch in Panama, 32 Arten in Costa Rica und 36 Arten sind auf das Gebiet beider Länder beschränkt. Die Gattung Werauhia hat ihr Diversitätszentrum in Panama (47 von insgesamt 87 Arten) und Costa Rica (59/87 Arten) und ist gleichzeitig die artenreichste Gattung in beiden Ländern.
In Panama treten 113 Arten (54,9 %) zwischen 1.000 und 2.000 Höhenmetern auf. Die Art mit der niedrigsten Höhengrenze ist Pitcairnia halophila, die am höchsten angetroffene Art ist Werauhia ororiensis.
Für jede der für Panama und Costa Rica (259 Arten) gemeldeten Bromelienarten wurde eine Verbreitungskarte erstellt; für die in beiden Ländern auftretenden 191 Arten wurde darüber hinaus die potenzielle Verbreitung modelliert.
In Panama ist der prämontane Regenwald mit 138 Arten (einschließlich 25 der insgesamt 33 endemischen Arten) die Holdridge-Vegetationszone mit der höchsten Anzahl an Bromelien. In Costa Rica hat der untere Bergregenwald einen besonders hohen Anteil endemischer Bromelien (13 von insgesamt 32 Arten).
In Panama und Costa Rica beherbergen mittlere Höhenlagen den größten Artenreichtum der Bromeliaceae mit Maximalwerten von etwa 125 Arten im Osten Costa Ricas und in Westpanama. Einige Regionen Panamas verfügen nicht über ausgewiesene Schutzgebiete, weisen jedoch einen hohen Artenreichtum an Bromelien auf (z.B. Teile Westpanamas, El Valle de Anton und benachbarte Gebiete sowie die Serranía de Cañazas).
In der hier vorgestellten Klassifizierung des Gefährdungsgrades gemäß den Richtlinien der IUCN werden für Panama 32 Arten als vom Aussterben bedroht (CR), 36 Arten als Stark Gefährdet (EN) und 36 Arten als Gefährdet (VU) eingestuft. In Costa Rica wird Aechmea aquilega als Ausgestorben (EX) eingeschätzt. Vier Arten werden als vom Aussterben bedroht (CR), 30 Arten als Stark Gefährdet (EN) und 39 Arten als Gefährdet (VU) klassifiziert.
In Panama wurden 184 Arten (89% der insgesamt 206 Arten) in Schutzgebieten nachgewiesen. 122 Arten (59%) wurden sowohl innerhalb als auch außerhalb und 19 Arten (9%) nur außerhalb von Schutzgebieten nachgewiesen. In Costa Rica kommen 182 Bromelienarten (91% der insgesamt 199 Arten) in Schutzgebieten vor, 168 Arten (84%) wurden sowohl innerhalb als auch außerhalb und 14 Arten (7%) nur außerhalb von Schutzgebieten nachgewiesen.
Die Schätzungen zeigen, dass die zu erwartende Gesamtzahl der Bromelienarten in Panama zwischen 224 und 250 Arten liegt, und die zu erwartende Gesamtzahl der Bromelienarten in Costa Rica liegt zwischen 207 und 221 Arten. Den Ergebnissen der Modellierung zufolge wird für eine Anzahl bisher nur für Costa Rica gemeldeter Arten das Auftreten in Panama mit erheblicher Wahrscheinlichkeit prognostiziert (z.B. Guzmania blassi, Werauhia ampla), wie auch umgekehrt das Vorkommen bisher nur für Panama bekannter Arten in Costa Rica (z.B. Aechmea strobilina, Pitcairnia kressii).
Der Erhalt der bestehenden Schutzgebiete sollte ein vorangiges Ziel sein. Darüber hinaus ist es wünschenswert, einige dieser Gebiete auszudehnen und neue Schutzgebiete auszuweisen, um biologisch hochdiverse Gebiete mit einem hohen Anteil endemischer Arten zu schützen.
Die klimatische Nische beschreibt die klimatischen Bedingungen, unter denen eine Art eine stabile Population aufrechterhalten kann. Die Quantifizierung von Klimanischen ist ein wichtiges Werkzeug, um tiefergehende Einsichten in individuelle Art-Umwelt Beziehungen zu erlangen, um den Effekt des Klimawandels effektiv zu bewerten, und um Arten- und Naturschutz zu unterstützen. Ein makroökologischer Ansatz ist von Vorteil um Ökosysteme über ein breites taxonomisches, geographisches und zeitliches Spektrum zu untersuchen, und damit die klimatischen Nischen vieler Arten auf eine konsistente Art und Weise zu quantifizieren und vergleichen.
Im Kontext des aktuellen Klimawandels ist es wichtig zu verstehen, ob Arten in der Lage sind ihre Klima-nische anzupassen. Viele bisherige Vorhersagen über klimawandelbedingte Veränderungen von Artverbreitungen beruhen auf der Annahme, dass die klimatische Nische einer Art konstant ist. Allerdings ist bekannt, dass Arten ihre klimatischen Präferenzen auf unterschiedlichen Zeitskalen verändern - sowohl über kurze (ökologische) als auch evolutionäre Zeiträume. Dies ist ein wichtiger, aber oft missachteter Faktor für die Nischenquantifizierung. Ein gutes Beispiel für solche ökologische Dynamiken sind Zugvögel, die etwa 20% aller Vogelarten ausmachen. Sie stellen eine interessante, aber auch herausfordernde Artengruppe für die Untersuchung klimatischer Nischen dar. Des Weiteren ist es wichtig klimatische Nischen über evolutionäre Zeiträume zu untersuchen, um die Prozesse zu verstehen, die Evolution, Diversifikation und Extinktion unterliegen, da sich Klimanischen mit der Anpassung einzelner Arten an neue klimatische Gegebenheiten ebenfalls wandeln. Bislang hat ein Mangel an geographisch expliziten Daten über terrestrische Umwelt-bedingungen durch evolutionäre Zeiträume eine explizite Überprüfung dieser Zusammenhänge verhindert.
Das übergeordnete Ziel dieser Dissertation war es, die ökologische (d.h. saisonale) und evolutionäre Dynamik klimatischer Nischen von Vögeln zu untersuchen. Dazu wurde ein Ansatz gewählt der makroökologische, und evolutionsbiologische Methoden vereint, um ein breites taxonomisches und zeitliches Spektrum abzudecken. Das erste Kapitel bearbeitet die Frage wie klimatische Nischen am besten zu quantifizieren sind, wenn man die Dynamik des Vogelzuges in Betracht zieht. Dazu wurde eine Datenbank erstellt, die das Zugverhalten aller 10.443 lebenden Vogelarten katalogisiert. Des Weiteren wurde eine Übersicht über die Methoden zur Quantifizierung klimatischer Nischen in der makroökologischen Literatur erstellt. Das Ergebnis derselben ist, dass die überwiegende Mehrzahl der Veröffentlichungen saisonalen Zugbewegungen nicht ausreichend berücksichtigt. Zuletzt habe ich anhand der Avifauna Australiens die Vor- und Nachteile der Verwendung von Verbreitungskarten gegenüber Punktverbreitungsdaten zur Erfassung saisonaler geographischer Muster der Artenvielfalt bewertet. Damit bietet dieses Kapitel Rahmenempfehlungen für die Datenanforderungen und Methoden, die je nach Zugverhalten einer Art, und dem geographischen, bzw. zeitlichen Fokus einer Studie für eine optimale Nischenquantifizierung notwendig sind.
Im zweiten Kapitel untersuchte ich die saisonale Dynamik klimatischer Nischen von Zugvögeln. Dabei überprüfte ich die Hypothese, dass Zugvögel in ihrem Jahreszyklus durch die Zugbewegung eine gewisse Klimanische verfolgen. Zu diesem Zweck habe ich mit Brut- und Überwinterungsarealkarten saisonale Klima-nischen für 437 Zug- und Standvogelarten aus acht Kladen der Sperlingsvögel (Passeriformes) charakterisiert. Mit Ordinationsmethoden wurde dann der innerartliche saisonale Nischenüberlapp quantifiziert. Der Beweis für die Verfolgung einer klimatischen Nische in einer Art war von mehreren Faktoren, z.B. der geographischen Verortung des Brutareals und der Zugrichtung, abhängig. Dies lässt darauf schließen, dass sich die Ursachen für den Vogelzug sowohl geographisch als auch saisonal (d.h. abhängig von der Zugrichtung) unterscheiden.
Im dritten Kapitel untersuchte ich die evolutionäre Dynamik klimatischer Nischen in Steinschmätzern (Gattung Oenanthe), um explizit zu untersuchen ob es einen Zusammenhang zwischen den Raten klimatischer Nischen-evolution und den Veränderungen paläoklimatischer Bedingungen gibt. Methoden der Klimanischen-quantifizierung wurden mit datierten molekularen Phylogenien verknüpft, um die Raten klimatischer Nischen-evolution mit einem variablen Ratenmodell abzuschätzen. Paläoklimatische Umweltbedingungen wurden mit paläobiologischen Methoden aus dem Fossilbericht altweltlicher Säugetiere der vergangenen 20 Millionen Jahre erschlossen. Die Fallstudie konnte keinen Zusammenhang zwischen Nischenevolution und Umwelt-bedingungen feststellen. Dies legt nahe, dass Vögel als überaus mobile Organismen, auf Klimaveränderungen eher durch Arealverschiebungen reagieren, als durch eine Anpassung ihrer klimatischen Nische. Die Klimanischen der Steinschmätzer waren allerdings an sich nicht statisch, so dass andere Faktoren wie z.B. biologische Wechselbeziehungen für die Nischenevolution dieser Gattung verantwortlich sein müssen.
Meine Dissertation beleuchtet die zentrale Bedeutung zeitlicher Dynamiken für den Nischenraum, den Arten über ökologische (d.h. saisonale) und evolutionäre Zeiträume einnehmen. Aus ihr ergeben sich methodische Konsequenzen für zukünftige Studien klimatischer Nischen. Der Befund, dass die klimatischen Nischen von Zugvögeln nicht saisonal konstant sind, zeigt dass es für mobile Kladen wie Vögel notwendig ist die klimatischen Bedingungen über den gesamten Jahreszyklus und das gesamte Verbreitungsgebiet in Betracht zu nehmen, um die jeweiligen klimatischen Nischen voll charakterisieren zu können.
Über diese methodischen Innovationen hinaus, hat meine Arbeit auch wichtige theoretische und praktische Schlussfolgerungen produziert. Zum einen zeigt die Betrachtung saisonaler Klimanischen, dass Zugvögel entgegen gängiger Annahmen nicht denselben Umweltbedingungen in ihren Brut- und Überwinterungsarealen ausgesetzt sind. Zum anderen zeigt meine Betrachtung von Klimanischen über evolutionäre Zeiträume, dass die Nischenevolution nicht von klimatischen Bedingungen angetrieben wird. Zusammengenommen zeigen diese Ergebnisse auf unterschiedlichen Zeitskalen, dass das Klima nicht der alleinige Faktor ist, der die Artverbreitung von Vögeln bestimmt. Während dieser Befund Raum für Optimismus schafft, was die Auswirkungen des aktuellen Klimawandels auf Vögel angeht, zeigt er auch auf, dass Faktoren wie wechselseitige Artbeziehungen und das Mobilitätspotential von Arten einen wichtigen Einfluss auf Artverbreitungen ausüben. Diese Faktoren könnten jedoch an sich vom Klimawandel beeinflusst sein, und Untersuchungen dieses Zusammenspiels zwischen Klima und anderen Faktoren und die daraus resultierenden Einflüsse auf Artareale bieten ein vielversprechendes Arbeitsfeld für zukünftige Studien.