Refine
Document Type
- Doctoral Thesis (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- LINE-1 (1)
- Retrotransposition (1)
Institute
Strukturelle Organisation und Mobilisierung des Primaten-spezifischen Non-LTR-Retrotransposons SVA
(2011)
SVA-Elemente repraesentieren die juengste Familie der Non-LTR-Retrotransposons,
welche das humane Genom fortwaehrend modifizieren. SVA-Elemente zeichnen sich
durch ihre Organisation aus zusammengesetzten repetitiven Elementen aus. Um
Rueckschluesse auf den Assemblierungsprozess, der zur gegenwaertigen Organisation der
SVA-Elemente fuehrte, und ueber transkriptionelle Regulation dieser Elemente zu ziehen,
wurden Unterschiede in der Struktur der 116 SVA-Elemente, die auf humanem
Chromosom 19 lokalisiert sind, detailliert untersucht.
SVA-Elemente konnten in sieben unterschiedliche Strukturvarianten eingeteilt werden,
einschliesslich neuer Varianten wie SVA2, 3`-verkuerzte Elemente und Elemente mit 5`-
flankierenden Transduktionen. Ich habe auch eine extrem erfolgreiche human-spezifische
5`-Transduktionsgruppe identifiziert, SVA_F1, die trotz ihres jungen evolutionaeren Alters
ca. 32% aller Mitglieder der SVA-Subfamilie SVA_F umfasst. Die transkriptionelle
Kontrolle einer retrotransponierten und 5`-verkuerzten SVA_F-Kopie durch den Promotor
des MAST2-Gens diente als urspruengliches Source-Element dieser umfangreichen 5`-
Transduktionsgruppe, die mindestens 84 Elemente einschliesst. Die zusaetzlichen 5`-
sowie 3`-Transduktionsereignisse der vollstaendigen Alu-Sequenzen bei Mitgliedern der
SVA_F1-Transduktionsgruppe 4 weisen auf ihre wichtige Rolle in der erfolgreichen
Expansion im humanen Genom hin. Diese nachtraeglich erworbenen Alu-Sequenzen
machen SVA_F1-Familienmitglieder offensichtlich zum besseren Substrat fuer die Trans-
Mobilisierung durch die L1-Proteinmaschinerie. Die unterschiedlichen konsekutiven 5`-
Tansduktionsereignisse der SVA_F1-Familienmitglieder deuten auf transkriptionelle
Kontrolle ihrer Source-Elemente durch eine Vielzahl externer zellulaerer Promotoren hin,
die im Laufe der Evolution in Keimzellen aktiv waren. Ausserdem zeigt die Existenz von
5`-Transduktionen, dass SVA-Elemente sich die 5`-flankierenden Sequenzen aneignen
koennen. Die Daten zeigen auch, dass SVA-vermittelte 5-Tansduktionsereignisse
alternatives RNA-Spleissen an putativen Spleissstellen involvieren. Aus der EST-
Datenbankanalyse ist ersichtlich, dass Mitglieder der SVA_F1-Subfamilie auch
gegenwaertig transkribiert werden.
SVA-Elemente sind hoch aktiv im humanen Genom, aber der Mechanismus ihrer
Retrotransposition wurde bislang nicht aufgeklaert. Vorangehende Analysen genomischer
SVA-Kopien liessen auf eine L1-vermittelte Mobilisierung schliessen; allerdings wurde
der experimentelle Beweis dieser Hypothese bislang nicht geliefert. Mit Hilfe der
Zellkultur-basierten Trans-Mobilisierungsassays wurde in dieser Arbeit zum ersten Mal
experimentell bewiesen, dass SVA-Elemente tatsaechlich durch die L1-kodierten Proteine
in trans mobilisiert werden. Zu diesem Zweck wurden HeLa-Zellen mit einem
vollstaendigen oder mit einem 5`-verkuerzten SVA-Retrotranspositionsreporterkonstrukt
sowie mit einem L1-Expressionsplasmid bzw. Leervektor kotransfiziert und dann die
jeweiligen Raten der SVA-Retrotransposition anhand Neo-resistenter Kolonien, die
mindestens ein de novo-Retrotranspositionsereignis widerspiegeln, bestimmt. Die
Experimente zeigen, dass die Entstehung der Neo-resistenten Kolonien von der
Koexpression L1-kodierter Proteine abhaengig ist. Ich konnte auch zeigen, dass das
vollstaendige SVA-Testkonstrukt - im Gegensatz zum 5`-verkuerzten SVA-Konstrukt -
mit einer signifikant hoeheren Retrotranspositionsrate als die Kontrollkonstrukte, die zur
Generierung der prozessierten Pseudogenformation eingesetzt wurden, trans-mobilisiert
wird. Die Ergebnisse der Trans-Mobilisierungsassays belegen, dass SVA-Elemente ein
bevorzugtes Substrat fuer die L1-Proteinmaschinerie darstellen, und ihre 5`-Region
einschliesslich der Alu-homologen Sequenz fuer die hohe Retrotranspositionsrate essentiell
ist. Die elf analysierten SVA de novo-Integrationsereignisse weisen Merkmale der L1-
vermittelten Retrotransposition auf, wie Poly(A)-Enden, L1-EN-spezifische Konsensus-
Zielsequenz (NNAUNA), Zielsequenz-Verdoppelungen (TSDs), Mikrohomologien und
zusaetzliche Guanosin-Nukleotide am 5`-UEbergang.
Zusammenfassend demonstrieren die Ergebnisse dieser Studien, dass ein signifikanter Teil
der Mitglieder der human-spezifischen SVA-Subfamilie aus transkriptioneller Kontrolle
ihrer Source-Elemente durch externe Promotoren hervorgeht. Durch die in dieser Arbeit
durchgefuehrten in silico-Analysen wurde auch gezeigt, dass SVA-vermittelte 5`-
Transduktionsereignisse zur strukturellen Vielfalt der SVA-Elemente fuehren, und eine
neue Art von genomischen Umstrukturierungen darstellen, die zur Plastizitaet des
humanen Genoms beitragen. Ausserdem bestaetigen die Ergebnisse der Trans-
Mobilisierungsassays die Hypothese, dass SVA-Elemente tatsaechlich durch die L1-
kodierte Proteinmaschinerie trans-mobilisiert werden. Dabei sind Module am 5`-Ende der
SVA-Elemente fuer diesen Prozess hoechst relevant.
Die Ergebnisse der Dualen-Luciferase-Reportergen-Assays unterstuetzen die Hypothese,
dass innerhalb der SINE-R-Sequenz von SVA H19_27 cis-aktive Elemente vorhanden
sind, die auf aehnliche Weise wie die cis-aktiven Elemente innerhalb der 5`LTR von
HERV-K reguliert werden.
Ausserdem wurde in dieser Arbeit die Existenz interner reguatorischer Sequenzen
innerhalb der SVA-Sequenz bestaetigt. Mit Hilfe der Dualen-Luciferase-Reportergen-
Assays konnte zum ersten Mal gezeigt werden, dass SVA-Elemente cis-aktive Elemente
enthalten, die hauptsaechlich in der SINE-R-Region lokalisiert sind. Diese cis-aktiven
Elemente werden auf aehnliche Weise wie die cis-aktiven Elemente innerhalb der 5`LTR
von HERV-K reguliert. Die starke transkriptionelle Aktivitaet des vollstaendigen SVA-
Testelements und des L1RP-Promotors in den Teratokarzinom-Zelllinien bekraeftigen die
Annahme, dass haeufige SVA-Mobilisierung in Keimzellen durch die gleichzeitig
hochregulierte SVA- und L1-Transkription bedingt sein koennte.
Es konnte gezeigt werden, dass SVA-Elemente cis-aktive Elemente enthalten, die
hauptsaechlich in der SINE-R-Region lokalisiert sind, und auf aehnliche Weise wie die cis-
aktiven Elemente innerhalb der 5`LTR von HERV-K reguliert werden. Die starke
transkriptionelle Aktivitaet des vollstaendigen SVA-Testelements und des L1RP-Promotors
in Teratokarzinom-Zelllinien bestaetigen die Annahme, dass haeufige SVA-
Retrotransposition in Keimzellen durch die gleichzeitig hochregulierte SVA- und L1-
Transkription bedingt sein koennte.
The human Long Interspersed Nuclear Element-1 (LINE-1, L1) is a member of the group of autonomous non-LTR retrotransposons found in almost every eukaryotic genome. L1 elements generate copies of themselves by reverse transcription of an RNA intermediate and integrate into the host genome by a process called Target Primed Reverse Transcription (TPRT). They are responsible for the generation of approximately 35% of the human genome, cover about 17% of the genome and represent the only group of active autonomous transposable elements in humans. L1 activity bears several risks for the integrity of the human genome, since the L1-encoded protein machinery generates DNA double-strand breaks (DSBs) and is capable of conducting numerous genome-destabilizing effects, e.g. causing deletions at insertion sites, disrupting or rearranging coding sequences and deregulating transcription of functional host genes. On the other side, L1 elements have had and still exert a great impact on human genome structure and evolution by increasing the genome size and rearranging and modulating gene expression. Furthermore, due to its endogenous and generally non-pathogenic nature, L1 is a promising candidate as vector for gene delivery in somatic gene therapy. The structure of the flanking regions between de novo L1 integrants and the genomic sequence suggests an involvement of cellular DSB repair pathways in L1 mobilization. To elucidate the role of DSB repair proteins in L1 retrotransposition, I disabled DSB repair factors ATM, ATR, DNA-PK, p53 and Ku70 by knock down (KD) using short hairpin RNA (shRNA) expression constructs. To inhibit the function of DSB repair factors PARP and Rad51, I used dominant negative (DN) PARP and Rad51 mutants. Applying a well established L1-retrotransposition reporter assay in HeLa cells, de novo retrotransposition events were launched in order to test L1 for its retrotransposition activity in the context of altered DSB repair conditions. I could show that L1 retrotransposition frequency after ATM KD had increased by 3-fold, while ATR and p53 KD reduced L1 retrotransposition by approximately one third. Unfortunately, the cytotoxic effects of the DNA-PK and Ku70 shRNA expression constructs were too strong to determine potential effects of DNA-PK and Ku70 KD on L1 retrotransposition. Inhibition of PARP function by expression of the DN mutant and overexpression of wild type PARP were found to increase L1 retrotransposition by 1.8 and 1.5, respectively, while Rad51 DN had no detectable effect. Interestingly, overexpression of wild type Rad51 seemed to roughly double L1 retrotransposition frequencies. Since in my experiments KD or expression of DN mutants was time-delayed to the onset of L1 retrotransposition after transfection into the cells, I developed a temporally controllable, tetracyclin transactivator (tTA)-dependent L1 retrotransposition reporter assay which will be of great value for future L1 retrotransposition studies that rely on temporally controllable retrotransposition. Due to a previously published hypothesis of L1 playing a role in brain development by contributing to somatic mosaicism in neuronal precursor cells, I generated a transgenic mouse (LORFUS) using the tTA-dependent L1 construct to further test this hypothesis. LORFUS harbors a bidirectional cassette driving simultaneous expression of a GFP-tagged L1 retrotransposition reporter and beta-galactosidase. It was bred to another transgenic mouse line expressing tTA in the forebrain. The double transgenic offspring was used to characterize L1 expression and retrotransposition patterns in the brain at postnatal day 15 (P15). General transgene expression indicated by beta-galactosidase activity was found in hippocampus, cortex and striatum, while retrotransposition events revealed by GFP expression were found in hippocampus, cortex, striatum, olfactory bulb and brainstem. These results suggested L1 retrotransposition in the granule layer of the dentate gyrus earlier than P15 and migration of cells carrying these events along the rostral migratory stream into the olfactory bulb. To facilitate the use of L1 as gene delivery tool in gene therapy or genetic engineering, I furthermore intended to manipulate the L1 target site recognition to allow the site-specific integration into defined genomic locations. To this end, I performed crystal structure-guided mutational analysis exchanging single amino acid residues within the endonuclease (EN) domain of L1 to identify residues influencing target site recognition. However, individual point mutations did not change the nicking pattern of L1-EN, but resulted in a reduction of endonucleolytic activity reflected by a reduced retrotransposition frequency. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons in the host genomes.