Refine
Year of publication
Document Type
- Doctoral Thesis (30)
Has Fulltext
- yes (30)
Is part of the Bibliography
- no (30)
Keywords
- Computational chemistry (5)
- Arzneimitteldesign (3)
- Bioinformatik (3)
- Screening (3)
- Virtual Screening (3)
- Docking (2)
- Drug design (2)
- In silico-Methode (2)
- Molekulare Bioinformatik (2)
- Neuronales Netz (2)
Institute
- Biowissenschaften (15)
- Pharmazie (7)
- Biochemie und Chemie (6)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
The goal of this thesis was the development, evaluation and application of novel virtual screening approaches for the rational compilation of high quality pharmacological screening libraries. The criteria for a high quality were a high probability of the selected molecules to be active compared to randomly selected molecules and diversity in the retrieved chemotypes of the selected molecules to be prepared for the attrition of single lead structures. For the latter criterion the virtual screening approach had to perform “scaffold hopping”. The first molecular descriptor that was explicitly reported for that purpose was the topological pharmacophore CATS descriptor, representing a correlation vector (CV) of all pharmacophore points in a molecule. The representation is alignment-free and thus renders fast screening of large databases feasible. In a first series of experiments the CATS descriptor was conceptually extended to the three-dimensional pharmacophore-pair CATS3D descriptor and the molecular surface based SURFCATS descriptor. The scaling of the CATS3D descriptor, the combination of CATS3D with different similarity metrics and the dependence of the CATS3D descriptor on the threedimensional conformations of the molecules in the virtual screening database were evaluated in retrospective screening experiments. The “scaffold hopping” capabilities of CATS3D and SURFCATS were compared to CATS and the substructure fingerprint MACCS keys. Prospective virtual screening with CATS3D similarity searching was applied for the TAR RNA and the metabotropic glutamate receptor 5 (mGlur5). A combination of supervised and unsupervised neural networks trained on CATS3D descriptors was applied prospectively to compile a focused but still diverse library of mGluR5 modulators. In a second series of experiments the SQUID fuzzy pharmacophore model method was developed, that was aimed to provide a more general query for virtual screening than the CATS family descriptors. A prospective application of the fuzzy pharmacophore models was performed for TAR RNA ligands. In a last experiment a structure-/ligand-based pharmacophore model was developed for taspase1 based on a homology model of the enzyme. This model was applied prospectively for the screening for the first inhibitors of taspase1. The effect of different similarity metrics (Euc: Euclidean distance, Manh: Manhattan distance and Tani: Tanimoto similarity) and different scaling methods (unscaled, scaling1: scaling by the number of atoms, and scaling2: scaling by the added incidences of potential pharmacophore points of atom pairs) on CATS3D similarity searching was evaluated in retrospective virtual screening experiments. 12 target classes of the COBRA database of annotated ligands from recent scientific literature were used for that purpose. Scaling2, a new development for the CATS3D descriptor, was shown to perform best on average in combination with all three similarity metrics (enrichment factor ef (1%): Manh = 11.8 ± 4.3, Euc = 11.9 ± 4.6, Tani = 12.8 ± 5.1). The Tanimoto coefficient was found to perform best with the new scaling method. Using the other scaling methods the Manhattan distance performed best (ef (1%): unscaled: Manh = 9.6 ± 4.0, Euc = 8.1 ± 3.5, Tani = 8.3 ± 3.8; scaling1: Manh = 10.3 ± 4.1, Euc = 8.8 ± 3.6, Tani = 9.1 ± 3.8). Since CATS3D is independent of an alignment, the dependence of a “receptor relevant” conformation might also be weaker compared to other methods like docking. Using such methods might be a possibility to overcome problems like protein flexibility or the computational expensive calculation of many conformers. To test this hypothesis, co-crystal structures of 11 target classes served as queries for virtual screening of the COBRA database. Different numbers of conformations were calculated for the COBRA database. Using only a single conformation already resulted in a significant enrichment of isofunctional molecules on average (ef (1%) = 6.0 ± 6.5). This observation was also made for ligand classes with many rotatable bonds (e.g. HIV-protease: 19.3 ± 6.2 rotatable bonds in COBRA, ef (1%) = 12.2 ± 11.8). On average only an improvement from using the maximum number of conformations (on average 37 conformations / molecule) to using single conformations of 1.1 fold was found. It was found that using more conformations actives and inactives equally became more similar to the reference compounds according to the CATS3D representations. Applying the same parameters as before to calculate conformations for the crystal structure ligands resulted in an average Cartesian RMSD of the single conformations to the crystal structure conformations of 1.7 ± 0.7 Å. For the maximum number of conformations, the RMSD decreased to 1.0 ± 0.5 Å (1.8 fold improvement on average). To assess the virtual screening performance and the scaffold hopping potential of CATS3D and SURFACATS, these descriptors were compared to CATS and the MACCS keys, a fingerprint based on exact chemical substructures. Retrospective screening of ten classes of the COBRA database was performed. According to the average enrichment factors the MACCS keys performed best (ef (1%): MACCS = 17.4 ± 6.4, CATS = 14.6 ± 5.4, CATS3D = 13.9 ± 4.9, SURFCATS = 12.2 ± 5.5). The classes, where MACCS performed best, consisted of a lower average fraction of different scaffolds relative to the number of molecules (0.44 ± 0.13), than the classes, where CATS performed best (0.65 ± 0.13). CATS3D was the best performing method for only a single target class with an intermediate fraction of scaffolds (0.55). SURFCATS was not found to perform best for a single class. These results indicate that CATS and the CATS3D descriptors might be better suited to find novel scaffolds than the MACCS keys. All methods were also shown to complement each other by retrieving scaffolds that were not found by the other methods. A prospective evaluation of CATS3D similarity searching was done for metabotropic glutamate receptor 5 (mGluR5) allosteric modulators. Seven known antagonists of mGluR5 with sub-micromolar IC50 were used as reference ligands for virtual screening of the 20,000 most drug-like compounds – as predicted by an artificial neural network approach – of the Asinex vendor database (194,563 compounds). Eight of 29 virtual screening hits were found with a Ki below 50 µM in a binding assay. Most of the ligands were only moderately specific for mGluR5 (maximum of > 4.2 fold selectivity) relative to mGluR1, the most similar receptor to mGluR5. One ligand exhibited even a better Ki for mGluR1 than for mGluR5 (mGluR5: Ki > 100 µM, mGluR1: Ki = 14 µM). All hits had different scaffolds than the reference molecules. It was demonstrated that the compiled library contained molecules that were different from the reference structures – as estimated by MACCS substructure fingerprints – but were still considered isofunctional by both CATS and CATS3D pharmacophore approaches. Artificial neural networks (ANN) provide an alternative to similarity searching in virtual screening, with the advantage that they incorporate knowledge from a learning procedure. A combination of artificial neural networks for the compilation of a focused but still structurally diverse screening library was employed prospectively for mGluR5. Ensembles of neural networks were trained on CATS3D representations of the training data for the prediction of “mGluR5-likeness” and for “mGluR5/mGluR1 selectivity”, the most similar receptor to mGluR5, yielding Matthews cc between 0.88 and 0.92 as well as 0.88 and 0.91 respectively. The best 8,403 hits (the focused library: the intersection of the best hits from both prediction tasks) from virtually ranking the Enamine vendor database (ca. 1,000,000 molecules), were further analyzed by two self-organizing maps (SOMs), trained on CATS3D descriptors and on MACCS substructure fingerprints. A diverse and representative subset of the hits was obtained by selecting the most similar molecules to each SOM neuron. Binding studies of the selected compounds (16 molecules from each map) gave that three of the molecules from the CATS3D SOM and two of the molecules from the MACCS SOM showed mGluR5 binding. The best hit with a Ki of 21 µM was found in the CATS3D SOM. The selectivity of the compounds for mGluR5 over mGluR1 was low. Since the binding pockets in the two receptors are similar the general CATS3D representation might not have been appropriate for the prediction of selectivity. In both SOMs new active molecules were found in neurons that did not contain molecules from the training set, i. e. the approach was able to enter new areas of chemical space with respect to mGluR5. The combination of supervised and unsupervised neural networks and CATS3D seemed to be suited for the retrieval of dissimilar molecules with the same class of biological activity, rather than for the optimization of molecules with respect to activity or selectivity. A new virtual screening approach was developed with the SQUID (Sophisticated Quantification of Interaction Distributions) fuzzy pharmacophore method. In SQUID pairs of Gaussian probability densities are used for the construction of a CV descriptor. The Gaussians represent clusters of atoms comprising the same pharmacophoric feature within an alignment of several active reference molecules. The fuzzy representation of the molecules should enhance the performance in scaffold hopping. Pharmacophore models with different degrees of fuzziness (resolution) can be defined which might be an appropriate means to compensate for ligand and receptor flexibility. For virtual screening the 3D distribution of Gaussian densities is transformed into a two-point correlation vector representation which describes the probability density for the presence of atom-pairs, comprising defined pharmacophoric features. The fuzzy pharmacophore CV was used to rank CATS3D representations of molecules. The approach was validated by retrospective screening for cyclooxygenase 2 (COX-2) and thrombin ligands. A variety of models with different degrees of fuzziness were calculated and tested for both classes of molecules. Best performance was obtained with pharmacophore models reflecting an intermediate degree of fuzziness. Appropriately weighted fuzzy pharmacophore models performed better in retrospective screening than CATS3D similarity searching using single query molecules, for both COX-2 and thrombin (ef (1%): COX-2: SQUID = 39.2., best CATS3D result = 26.6; Thrombin: SQUID = 18.0, best CATS3D result = 16.7). The new pharmacophore method was shown to complement MOE pharmacophore models. SQUID fuzzy pharmacophore and CATS3D virtual screening were applied prospectively to retrieve novel scaffolds of RNA binding molecules, inhibiting the Tat-TAR interaction. A pharmacophore model was built up from one ligand (acetylpromazine, IC50 = 500 µM) and a fragment of another known ligand (CGP40336A), which was assumed to bind with a comparable binding mode as acetylpromazine. The fragment was flexible aligned to the TAR bound NMR conformation of acetylpromazine. Using an optimized SQUID pharmacophore model the 20,000 most druglike molecules from the SPECS database (229,658 compounds) were screened for Tat-TAR ligands. Both reference inhibitors were also applied for CATS3D similarity searching. A set of 19 molecules from the SQUID and CATS3D results was selected for experimental testing. In a fluorescence resonance energy transfer (FRET) assay the best SQUID hit showed an IC50 value of 46 µM, which represents an approximately tenfold improvement over the reference acetylpromazine. The best hit from CATS3D similarity searching showed an IC50 comparable to acetylpromazine (IC50 = 500 µM). Both hits contained different molecular scaffolds than the reference molecules. Structure-based pharmacophores provide an alternative to ligand-based approaches, with the advantage that no ligands have to be known in advance and no topological bias is introduced. The latter is e.g. favorable for hopping from peptide-like substrates to drug-like molecules. A homology model of the threonine aspartase taspase1 was calculated based on the crystal structures of a homologous isoaspartyl peptidase. Docking studies of the substrate with GOLD identified a binding mode where the cleaved bond was situated directly above the reactive N-terminal threonine. The predicted enzyme-substrate complex was used to derive a pharmacophore model for virtual screening for novel taspase1 inhibitors. 85 molecules were identified from virtual screening with the pharmacophore model as potential taspase1- inhibitors, however biochemical data was not available before the end of this thesis. In summary this thesis demonstrated the successful development, improvement and application of pharmacophore-based virtual screening methods for the compilation of molecule-libraries for early phase drug development. The highest potential of such methods seemed to be in scaffold hopping, the non-trivial task of finding different molecules with the same biological activity.
Das Enzym 5-Lipoxygenase (5-LO) spielt eine essentielle Rolle in der Biosynthese der Leukotriene, bioaktiver Metabolite der Arachidonsäure (AA), die an einer Vielzahl entzündlicher und allergischer Erkrankungen beteiligt sind. Die 5-LO wird bevorzugt in Zellen myeloiden Ursprungs wie Granulozyten, Monozyten oder B-Lymphozyten exprimiert. In die Regulation der zellulären 5-LO-Aktivität in der Epstein-Barr Virus-transformierten B-lymphozytären Zelllinie BL41-E95-A sind Caspasen, Aspartat-spezifische Cysteinproteasen, involviert. Das Passagieren von BL41-E95-A führt zu einer Erhöhung der Proliferationsrate der B-Lymphozyten sowie zu einem deutlichen Verlust der 5-LO-Aktivität, der mit dem Auftreten eines 62 kDa-Spaltproduktes der 5-LO und einer signifikanten Aktivitätserhöhung der Caspase-8 und -6 korreliert. Isolierte humane 5-LO wird durch rekombinante Caspase-6 zwischen Asp170 und Ser171 zu einem 58 kDa-Fragment in vitro gespalten, wobei das Tetrapeptid VEID170 innerhalb der 5-LO als Erkennungsmotiv für den Angriff der Caspase-6 dient. In einigen weiteren untersuchten Zelllinien wie Mono Mac 6 (MM6), RBL-1, PMNL oder HeLa, die nicht den B-Lymphozyten angehören, konnte die 5-LO-Spaltung weder durch das Passagieren von Zellen noch durch die Behandlung mit diversen proapoptotischen Agentien ausgelöst werden. Laut Ergebnissen aus in vitro-Untersuchungen scheinen 5-LO-positive HeLa- bzw. MM6-Zellen einen Faktor zu exprimieren, der die 5-LO direkt oder indirekt vor dem Angriff der Caspase-6 und anschließender Prozessierung schützt. Die in den BL41-E95-A-Zellen beobachtete Aktivierung der Caspasen mit anschließender Prozessierung der 5-LO lässt sich durch zwei Pflanzeninhaltsstoffe supprimieren, das Hyperforin (HP) aus Johanniskraut-Extrakten und das Myrtucommulon (MC) aus Myrte-Blättern. Beide Verbindungen scheinen in B-Lymphozyten zu einer Hemmung der Caspasen-Aktivierung zu führen. Nichtsdestotrotz führt die Behandlung der B-Lymphozyten mit HP bzw. MC zu einem apoptotischen Tod der Zellen. Offensichtlich wird dabei ein (unbekannter) einzigartiger Mechanismus der Apoptose-Induktion ausgelöst. In der vorliegenden Arbeit konnte zum ersten Mal eine potente Apoptose-induzierende Wirkung des natürlich vorkommenden Myrtucommulons auf Krebszelllinien gezeigt werden. In allen getesteten Krebszelllinien führte Myrtucommulon zum Zelltod, wobei die HL-60-Zellen mit einem IC50-Wert von 3,26 ± 0,51 µM MC am sensitivsten gegenüber MC-Einfluss waren. Zusätzlich konnte in HL-60- und MM6-Zellen nach MC-Behandlung neben einer erhöhten Caspasen-Aktivität und PARP-Spaltung ein signifikanter DNA-Abbau detektiert werden. Von besonderer Bedeutung ist die Tatsache, dass die zytotoxische MC-Wirkung eine bemerkenswerte Selektivität für entartete Zelllinien zu besitzen scheint und gegenüber nicht-transfizierten Zellen minimal ist.
The goal of this thesis was to gain further insight into the binding behavior of ligands in the heptahelical domain (HD) of group I metabotropic glutamate receptors (mGluRs). This was realized by the establishment of strategies for the detection and optimization of molecules acting as non-competitive antagonists of group I mGluRs (mGluR1/5). These strategies should guarantee high diversity in the retrieved chemotypes of the detected compounds not resembling original reference molecules (“scaffold-hopping”). The detection of new scaffolds, in turn, was divided into two approaches: First the development of pharmacological assays to screen compounds at a certain target for bioactivity (here: affinity towards the allosteric recognition site of mGluR1 and mGluR5), and second the evaluation of computer assisted methods for the identification of virtual hits to be screened afterwards on the pharmacological assays established before. Promising molecules should be optimized with respect to activity/affinity and selectivity, their binding mode investigated and, finally, compared to existing lead compounds. Initially, membrane based binding assays for the HD of mGlu1 and mGlu5 receptors with enhanced throughput (shifting from 24-well plates to 96-well plates) were set up. For the mGluR1 assay the potent antagonist EMQMCM exhibited high affinity towards the binding site (Ki ~3nM), which is in accordance with published data from Mabire et al. (functional IC50 3nM). For mGluR5 the reference antagonist MPEP binds with high affinity to the receptor (binding IC50 13.8nM), which confirmed earlier findings from Anderson et al. (binding IC50 15nM). In another series of experiments the properties of rat cerebellar (mGluR1) and corticalmembranes (mGluR5) as well as of radiotracers were investigated by means of binding saturation studies and kinetic experiments. Furthermore, the influence of the solvent DMSO, necessary for compound screening of lipophilic substances, on positive and negative controls was evaluated. As the precise architecture of the HD of mGluR1 is still not known our efforts in identifying new ligands for this receptor focused on the ligand-based approach. All computer assisted methods that were applied to virtually screen large compound collections and to retrieve potential hits (“activity-enriched subsets”) acting at the heptahelical domain of mGluR1 relied on the existence of a valid dataset of reference molecules. This was realized by an initial compilation of a mGluR reference data collection comprising in total 357 entries predominantly negative but also some positive allosteric modulators for mGluR1 and mGluR5. In the next step a pharmacophore model for non-competitive mGluR1 antagonists was constructed. It was based upon six selective, potent and structurally diverse ligands. Prospective virtual screening was performed using the CATS atom-pair descriptor. The Asinex Gold-Collection was screened for each seed compound and some of the most similar compounds (according to the CATS descriptor) were ordered and tested forbinding affinity and functional activity at mGluR1. A high hit rate of approximately 26% (IC50 < 15 micro M) was yielded confirming the applicability of this method. One compound exerted functional activity below one micro molar (IC50-value of C-07:362nM ± 0.03). Moreover, non-linear principal component analysis was employed. Again the Asinex vendor database served as test database and was filtered by the pharmacophore model for mGluR1 established before. Test molecules that were adjacently located with mGluR1 antagonist references were selected. 15 compounds were tested on mGluR1 in binding and functional assays and three of them exhibited functional activity (IC50) below 15 micro M. The most potent molecule P-06 revealed an IC50-value of 1.11 micro M (± 0.41). The COBRA database comprising 5,376 structurally diverse bioactive molecules affecting various targets was encoded with the CATS descriptor and used for training two selforganizing maps (SOM). The encoded mGluR reference data collection was projected onto this map according to the SOM algorithm. This projection allowed to clearly distinguish between antagonists of mGluR1 and mGluR5 subtype. 28 compounds were ordered and tested on activity and affinity for mGluR1. They exhibited functional activity down to the sub-micro molar range (IC50-value of S-08: 744nM ± 0.29) yielding a final hit rate of 46% (<15 micro M). Then, the Asinex collection was screened using the SOM approach. For a predicted target panel including the muscarinic mACh (M1) receptor, the histamine H1-receptor and the dopamine D2/D3 receptors, the tested mGluR ligands exhibited the calculated binding pattern. This virtual screening concept might provide a basis for early recognition of potential sideeffects in lead discovery. We superimposed a set of 39 quinoline derivatives as non-competitive mGluR1 antagonists that were recently published by Mabire and co-workers. A CoMFA model (QSAR) was established and the influence of several side chains on functional activity was investigated. The coumarine derivative C-07 was obtained as a result of similarity searching. Starting from this compound a series of chemical derivatives was synthesized. This led to the discovery of potent (B-28, IC50: 58nM ± 0.008; Ki: 293nM ± 0.022) and selective (rmGluR5 IC50: 28.6 micro M) mGluR1 antagonists. From a homology model of mGluR1 we derived a potential binding mode for coumarines within the allosteric transmembrane region. Potential interacting patterns with amino acids were proposed considering the difference of the binding pockets between rat and human receptors. The proposed binding modes for quinolines (here:EMQMCM) and coumarines (here:B-04) were compared and discussed considering in particular the influence on activity of several side chains of quinolines obtained from the QSAR studies. The present studies demonstrated the applicability of ligand-based virtual screening for non-competitive antagonists of a G-protein coupled receptor, resulting in novel, potent and selective agents.
In der vorliegenden Arbeit sollte das basolaterale Targeting des Transmembranproteins shrew-1 in polarisierten Epithelzellen analysiert werden. Es konnte gezeigt werden, dass die cytoplasmatische Domäne von shrew-1 mehrere spezifische basolaterale Sortingmotive enthält. Die Funktionalität dieser Motive wurde anhand Mutationsanalysen von Schlüsselaminosäuren untersucht. Substitution dieser Aminosäuren führt zu einer apikalen Lokalisation von shrew-1 in polarisierten MDCK Zellen. Durch Analyse der Proteinverteilung von shrew-1 Varianten in polarisierten LLC-PK1 Zellen wurde deutlich, dass das Sorting von shrew-1 in die basolaterale Plasmamembran ein AP-1B-abhängiger Prozess ist. Außerdem konnte mittels Coimmunopräzipitation eine Interaktion zwischen shrew-1 und der Untereinheit my1B aus dem Adapterproteinkomplex AP-1B nachgewiesen werden. Untersuchungen des Targetings von shrew-1 Varianten in polarisierten MDCK und LLCPK1 Zellen mit Hilfe der Transzytoseexperimente zeigten, dass die apikal lokalisierte Mutante shrew-1-NTD5 auf dem Weg zur apikalen Membranregion, trotz fehlender Sortinginformation, die basolaterale Plasmamembran durchquert. Durch Inhibition der Membranfusion mittels Tanninsäure konnte zusätzlich gezeigt werden, dass die Passage der basolateralen Plasmamembran für das Targeting von sowohl shrew-1 als auch von shrew-1-NTD5 essentiell ist. Die Beobachtungen des Turnovers von shrew-1 in der Plasmamembran von lebenden Zellen zeigten, dass shrew-1 aktiv endozytiert wird und dass nachfolgend ein Recycling des Proteins zur Plasmamembran stattfindet. Anhand der durchgeführten Untersuchungen lässt sich zusammenfassend ein Targetingmodell für shrew-1 in polarisierten Epithelzellen aufstellen, das ein postendozytotisches Sorting beschreibt: Dabei wird shrew-1 zunächst in Post-Golgi-Carriern auf unbekanntem Weg zur basolateralen Plasmamembran gebracht, wo seine unmittelbare Internalisierung und ein Weitertransport zum Recyclingendosom stattfinden. Der im Recyclingendosom lokalisierte und am Sorting beteiligte Adapterproteinkomplex AP-1B vermittelt dann den Rücktransport von shrew-1 zur basolateralen Plasmamembran.
The development of novel drugs targeting GPCRs is of particular interest since modulation of subfamilies of this receptor class highly influences neurotransmission in the central nervous system. This study has focused on the development of ligands for the dopamine D3 receptor. The receptor belongs to the dopamine D2-like family among the biogenic amine binding GPCRs. The dopamine D3 receptor is involved in neurological and neuropsychiatric disorders such as Parkinson’s disease, schizophrenia and drug addiction. Due to its close structural similarity to the dopamine D2 receptor subtype, it is still a challenge to identify and further optimize new leads. Therefore an in vitro screening assay, which also allows elucidating comprehensive structure-affinity relationships, is required. In this investigation the implementation and evaluation of radioligand binding assays for human dopamine D2S and dopamine D3 receptors and for the related aminergic human histamine H1 receptor stably expressed in Chinese hamster ovary (CHO) cells has been performed. Saturation binding experiments with [³H]spiperone at dopamine D2S and D3 receptors and with [³H]mepyramine at histamine H1 receptors were carried out. The determined equilibrium dissociation constant of radioligands (Kd) and the total number of specific binding sites (Bmax) of the receptor membrane preparations were in good agreement with reference data. Inhibition constants (Ki) of reference ligands obtained in radioligand competition binding experiments at dopamine hD2S, hD3 and histamine H1 receptors validated the reliability and reproducibility of the assay. In order to discriminate agonists from antagonists, a GTP shift assay has been investigated for dopamine D2S and D3 receptors. In competition binding studies at dopamine D2S receptors the high- and low affinity state in the absence of the GTP analogue Gpp(NH)p has been recognized for the agonists pramipexole and the seleno analogue 54. In the presence of Gpp(NH)p a decrease in affinity, referred to as “GTP shift”, has been revealed for agonists at dopamine D2S and D3 receptors. An effect of Gpp(NH)p on dopamine D2S receptor binding has not been observed for the antagonists ST 198 and BP 897, while a reverse “GTP shift” has been noticed at the dopamine D3 receptor. For the development of novel ligands with high affinity and selectivity for dopamine D3 receptors, investigation in refined structure-affinity relationships (SAR) of analogues of the lead BP 897 has been performed. Replacement of the naphthalen-2-carboxamide of BP 897 by aryl amide residues (1 - 4) had a clear influence on affinity binding and selectivity for dopamine D3 receptors. Introduction of the benzo[b]thiophen-2-carboxamide (1) has markedly improved binding with subnanomolar affinity and enhanced selectivity for dopamine D3 receptors. Exchanging the aryl substituted basic alkanamine residue of 1 by a 1,2,3,4-tetrahydroisoquinoline moiety (6) emphasized the benefit of the 4-(2-methoxyphenyl) piperazine residue of BP 897 regarding dopamine D2 and D3 receptor affinities. The change of particular elements of BP 897 and the rearrangement of the amide functionality resulted in inverse amide compounds with new chemical properties. Moderate affinity binding data, as obtained for the isoindol-1-carbonyl compound 11, suggest that inverse amides provide a worthwhile new lead structure with a novel structural scaffold. A hybrid approach combining privileged scaffolds of histamine H1 receptor antagonists and fragments of dopamine D3 receptor-preferring ligands, related to BP 897and analogues has been investigated. Various benzhydrylpiperazine derivatives and related structures have shown moderate to high affinities for dopamine D3 receptors with the impressive enhancement of the cinnamide substituted bamipine-related hybrid 39, exhibiting the highest affinity and selectivity for dopamine D3 receptors. Improved affinity profiles of structural modified histamine H1 receptor antagonists for dopamine D2 and D3 receptors and a refined SAR has been achieved. A SAR of derivatives of the dopamine agonist pramipexole and the related etrabamine has been studied. The propargyl substituted etrabamine derivative 61 demonstrated highest affinity and selectivity. The ligand attracts attention since neuroprotective properties have been reported for the propargyl functionality. Further development resulted in the most promising compound 64, a cinnamide derivative with 4-fluoro substitution on the phenyl ring. Subnanomolar affinity and remarkable selectivity for dopamine D3 receptors has aroused particular interest in this ligand due to its development potential as a radioligand for PET studies. Radioligand binding studies in combination with virtual screening and different classification techniques of chemoinformatic methods resulted in further elucidation of SAR. New leads with novel chemical scaffolds have been found in the bicycle[2.2.1]heptane derivative 95 and the benzhydrylidene substituted pyrrolidindione 112 and can be further optimized by chemical modifications. The outcome of the studies provides the development of various novel high affine and dopamine D3 receptor selective ligands. Modifications of lead structures or application of chemoinformatic tools in combination with radioligand competition binding assays have resulted in new leads with different chemical scaffolds. Furthermore, a comprehensive insight into structure-affinity relationships of ligands at dopamine D3 receptors has been revealed. This refined SAR is valuable to develop more affine and selective drug candidates with a designed pharmacological receptor profile.
Identifizierung und Charakterisierung neuartiger 5-Lipoxygenase-Inhibitoren – in silico und in vitro
(2009)
Ziel dieser Arbeit war die Identifizierung und Charakterisierung neuer potenter 5-LO-Inhibitoren unter Verwendung sowohl computergestützter als auch experimenteller Methoden. Ausgangspunkt war ein ligandenbasiertes virtuelles Screening unter Verwendung der ladungsbasierten Deskriptoren Charge3D und TripleCharge3D. Hierbei konnten zwei neue direkte 5-LO-Inhibitoren identifiziert werden. Jede dieser beiden Substanzen diente als Startpunkt weiterer virtueller Screenings mit dem Ziel, die Potenz der Substanzen zu verbessern bzw. eine SAR der Substanzklasse zu erhalten. Dabei zeigte sich für die Klasse der Thiazolinone, dass eine hohe Toleranz gegenüber unterschiedlichen Substituenten am Grundgerüst bezüglich der Auswirkung auf die Aktivität vorliegt: insbesondere werden relativ große Substituenten toleriert. Des Weiteren scheint der 2-Phenylsubstituent für die 5-LO-inhibitorische Aktivität essentiell zu sein, da Derivate, die einen Heterozyklus an dieser Position aufweisen, inaktiv sind. Eines der aktivsten Derivate dieser Klasse, C06 (Substanz 12), konnte weiter molekular-pharmakologisch charakterisiert werden. Die Substanz zeigt keine offensichtlichen zytotoxischen Effekte, ist unabhängig vom Stimulus der 5-LO-Aktivierung und zeigt nanomolare inhibitorische Aktivität sowohl in intakten PMNL (IC50-Wert 0,65 ;M) als auch in PMNL-Homogenaten (IC50-Wert 0,66 ;M) sowie in zellfreiem PMNL-S100 (IC50-Wert 0,26 ;M) und am gereinigten Enzym (IC50-Wert 0,3 ;M). C06 ist selektiv für die 5-LO, da andere arachidonsäurebindende Proteine (PPARs, cPLA2 und 12- und 15-LO) nicht beeinflusst werden. Auch Nager-5-LO (aus der Ratte und der Maus) wird inhibiert mit IC50-Werten im nanomolaren Bereich. Allerdings zeigte sich die Substanz inaktiv in einem menschlichen Vollblutassay in Gegenwart von Serum. C06 scheint nicht an die für die Interaktion der 5-LO mit der Membran verantwortliche C2-ähnliche Domäne der 5-LO zu binden. Ebenso hat der Membranbestandteil Phosphatidylcholin keinen bzw. nur geringen Einfluss auf das inhibitorische Potential von C06. Aktivitätstests mit steigender Substratkonzentration deuten auf einen allosterischen Bindemodus von C06 hin. Diese experimentellen Daten flossen in die Identifizierung des putativen Bindemodus an der 5-LO ein. Hierzu wurde zunächst ein Homologie-Modell der 5-LO unter Verwendung der kürzlich neu veröffentlichten Daten der Röntgenkristallstruktur der Kaninchen-15-LO (PDB-Code: 2p0m [Choi et al., 2008]) erstellt. Durch eine Bindetaschenvorhersage mit dem Programm PocketPicker und einer pseudorezptorbasierten Auswahl der potentiellen Bindetasche mit anschliessendem Liganden-Docking konnten zwei Bindebereiche postuliert werden, beide an einer Oberflächenbindetasche der 5-LO ausserhalb des aktiven Zentrums. Dies ist im Einklang mit der SAR der Substanzklasse, die zeigt, dass relativ große Substituenten toleriert werden. Erste Mutationsstudien deuten darauf hin, dass die Bindung von C06 in einer Bindetasche um die Aminosäure Y558 erfolgt. In der zweiten postulierten Bindetasche konnten zwei Aminosäuren identifiziert werden, die für die Aktivität der 5-LO essentiell sind: Mutationen von F169 und F177 zu Alanin führten zu einer abgeschwächten Produktivität der 5-LO (12% bzw. 32% der Aktivität der wt-5-LO) sowie zu einem veränderten Produktspektrum. Bei der zweiten Klasse der 5-LO-Inhibitoren, die in der ersten virtuellen Screeningrunde mit den Deskriptoren Charge3D und TripleCharge3D identifiziert werden konnten, handelt es sich um Pyridin-Imidazole. In einem dreistufigen virtuellen Screening konnte die Potenz dieser Substanzklasse von 10 ;M (Substanz 10) in PMNL-S100 auf 0,3 ;M (Substanz 80) verbessert werden. Bei einer der aktivsten Substanzen aus der zweiten Screeningrunde, B02 (Substanz 68), die weiter charakterisiert wurde, handelt es sich um einen direkten 5-LO-Inhibitor mit nanomolarer inhibitorischer Aktivität, der an die C2-ähnliche Domäne bindet. Es wurde ein Bindemodus durch Bindetaschenvorhersage, pseudorezeptorbasierte Bindetaschenlokalisierung und Liganden-Docking postuliert. Ein Problem dieser Substanzklasse ist jedoch ihre Zytotoxizität. Im letzten Teil dieser Arbeit wurde durch ein Protein-Protein-Docking eine mögliche Konformation eines Dimers der 5-LO modelliert. Die postulierten Modelle zeigen bevorzugt eine Konformation, bei der beide Untereinheiten des Dimers eine „head-to-tail“-Orientierung einnehmen. Diese Dimer-Modelle können als Startpunkt genutzt werden, um Modulatoren der Protein-Protein-Interaktion als neuartige Inhibitoren der 5-LO zu entwerfen.
Identifizierung und Charakterisierung neuartiger 5-Lipoxygenase-Inhibitoren – in silico und in vitro
(2009)
Ziel dieser Arbeit war die Identifizierung und Charakterisierung neuer potenter 5-LO-Inhibitoren unter Verwendung sowohl computergestützter als auch experimenteller Methoden. Ausgangspunkt war ein ligandenbasiertes virtuelles Screening unter Verwendung der ladungsbasierten Deskriptoren Charge 3D und TripleCharge3D. Hierbei konnten zwei neue direkte 5-LO-Inhibitoren identifiziert werden. Jede dieser beiden Substanzen diente als Startpunkt weiterer virtueller Screenings mit dem Ziel, die Potenz der Substanzen zu verbessern bzw. eine SAR der Substanzklasse zu erhalten. Dabei zeigte sich für die Klasse der Thiazolinone, dass eine hohe Toleranz gegenüber unterschiedlichen Substituenten am Grundgerüst bezüglich der Auswirkung auf die Aktivität vorliegt: insbesondere werden relativ große Substituenten toleriert. Des Weiteren scheint der 2-Phenylsubstituent für die 5-LO-inhibitorische Aktivität essentiell zu sein, da Derivate, die einen Heterozyklus an dieser Position aufweisen, inaktiv sind. Eines der aktivsten Derivate dieser Klasse, C06 (Substanz 12), konnte weiter molekular-pharmakologisch charakterisiert werden. Die Substanz zeigt keine offensichtlichen zytotoxischen Effekte, ist unabhängig vom Stimulus der 5-LO-Aktivierung und zeigt nanomolare inhibitorische Aktivität sowohl in intakten PMNL (IC50-Wert 0,65 =M) als auch in PMNL-Homogenaten (IC50-Wert 0,66 =M) sowie in zellfreiem PMNL-S100 (IC50-Wert 0,26 =M) und am gereinigten Enzym (IC50-Wert 0,3 =M). C06 ist selektiv für die 5-LO, da andere arachidonsäurebindende Proteine (PPARs, cPLA2 und 12- und 15-LO) nicht beeinflusst werden. Auch Nager-5-LO (aus der Ratte und der Maus) wird inhibiert mit IC50-Werten im nanomolaren Bereich. Allerdings zeigte sich die Substanz inaktiv in einem menschlichen Vollblutassay in Gegenwart von Serum. C06 scheint nicht an die für die Interaktion der 5-LO mit der Membran verantwortliche C2-ähnliche Domäne der 5-LO zu binden. Ebenso hat der Membranbestandteil Phosphatidylcholin keinen bzw. nur geringen Einfluss auf das inhibitorische Potential von C06. Aktivitätstests mit steigender Substratkonzentration deuten auf einen allosterischen Bindemodus von C06 hin. Diese experimentellen Daten flossen in die Identifizierung des putativen putativen Bindemodus an der 5-LO ein. Hierzu wurde zunächst ein Homologie- Modell der 5-LO unter Verwendung der kürzlich neu veröffentlichten Daten der Röntgenkristallstruktur der Kaninchen-15-LO (PDB-Code: 2p0m [Choi et al., 2008]) erstellt. Durch eine Bindetaschenvorhersage mit dem Programm PocketPicker und einer pseudorezptorbasierten Auswahl der potentiellen Bindetasche mit anschliessendem Liganden-Docking konnten zwei Bindebereiche postuliert werden, beide an einer Oberflächenbindetasche der 5-LO ausserhalb des aktiven Zentrums. .....
Virtual screening of potential bioactive substances using the support vector machine approach
(2005)
Die vorliegende Dissertation stellt eine kumulative Arbeit dar, die in insgesamt acht wissenschaftlichen Publikationen (fünf publiziert, zwei eingerichtet und eine in Vorbereitung) dargelegt ist. In diesem Forschungsprojekt wurden Anwendungen von maschinellem Lernen für das virtuelle Screening von Moleküldatenbanken durchgeführt. Das Ziel war primär die Einführung und Überprüfung des Support-Vector-Machine (SVM) Ansatzes für das virtuelle Screening nach potentiellen Wirkstoffkandidaten. In der Einleitung der Arbeit ist die Rolle des virtuellen Screenings im Wirkstoffdesign beschrieben. Methoden des virtuellen Screenings können fast in jedem Bereich der gesamten pharmazeutischen Forschung angewendet werden. Maschinelles Lernen kann einen Einsatz finden von der Auswahl der ersten Moleküle, der Optimierung der Leitstrukturen bis hin zur Vorhersage von ADMET (Absorption, Distribution, Metabolism, Toxicity) Eigenschaften. In Abschnitt 4.2 werden möglichen Verfahren dargestellt, die zur Beschreibung von chemischen Strukturen eingesetzt werden können, um diese Strukturen in ein Format zu bringen (Deskriptoren), das man als Eingabe für maschinelle Lernverfahren wie Neuronale Netze oder SVM nutzen kann. Der Fokus ist dabei auf diejenigen Verfahren gerichtet, die in der vorliegenden Arbeit verwendet wurden. Die meisten Methoden berechnen Deskriptoren, die nur auf der zweidimensionalen (2D) Struktur basieren. Standard-Beispiele hierfür sind physikochemische Eigenschaften, Atom- und Bindungsanzahl etc. (Abschnitt 4.2.1). CATS Deskriptoren, ein topologisches Pharmakophorkonzept, sind ebenfalls 2D-basiert (Abschnitt 4.2.2). Ein anderer Typ von Deskriptoren beschreibt Eigenschaften, die aus einem dreidimensionalen (3D) Molekülmodell abgeleitet werden. Der Erfolg dieser Beschreibung hangt sehr stark davon ab, wie repräsentativ die 3D-Konformation ist, die für die Berechnung des Deskriptors angewendet wurde. Eine weitere Beschreibung, die wir in unserer Arbeit eingesetzt haben, waren Fingerprints. In unserem Fall waren die verwendeten Fingerprints ungeeignet zum Trainieren von Neuronale Netzen, da der Fingerprintvektor zu viele Dimensionen (~ 10 hoch 5) hatte. Im Gegensatz dazu hat das Training von SVM mit Fingerprints funktioniert. SVM hat den Vorteil im Vergleich zu anderen Methoden, dass sie in sehr hochdimensionalen Räumen gut klassifizieren kann. Dieser Zusammenhang zwischen SVM und Fingerprints war eine Neuheit, und wurde von uns erstmalig in die Chemieinformatik eingeführt. In Abschnitt 4.3 fokussiere ich mich auf die SVM-Methode. Für fast alle Klassifikationsaufgaben in dieser Arbeit wurde der SVM-Ansatz verwendet. Ein Schwerpunkt der Dissertation lag auf der SVM-Methode. Wegen Platzbeschränkungen wurde in den beigefügten Veröffentlichungen auf eine detaillierte Beschreibung der SVM verzichtet. Aus diesem Grund wird in Abschnitt 4.3 eine vollständige Einführung in SVM gegeben. Darin enthalten ist eine vollständige Diskussion der SVM Theorie: optimale Hyperfläche, Soft-Margin-Hyperfläche, quadratische Programmierung als Technik, um diese optimale Hyperfläche zu finden. Abschnitt 4.3 enthält auch eine Diskussion von Kernel-Funktionen, welche die genaue Form der optimalen Hyperfläche bestimmen. In Abschnitt 4.4 ist eine Einleitung in verschiede Methoden gegeben, die wir für die Auswahl von Deskriptoren genutzt haben. In diesem Abschnitt wird der Unterschied zwischen einer „Filter“- und der „Wrapper“-basierten Auswahl von Deskriptoren herausgearbeitet. In Veröffentlichung 3 (Abschnitt 7.3) haben wir die Vorteile und Nachteile von Filter- und Wrapper-basierten Methoden im virtuellen Screening vergleichend dargestellt. Abschnitt 7 besteht aus den Publikationen, die unsere Forschungsergebnisse enthalten. Unsere erste Publikation (Veröffentlichung 1) war ein Übersichtsartikel (Abschnitt 7.1). In diesem Artikel haben wir einen Gesamtüberblick der Anwendungen von SVM in der Bio- und Chemieinformatik gegeben. Wir diskutieren Anwendungen von SVM für die Gen-Chip-Analyse, die DNASequenzanalyse und die Vorhersage von Proteinstrukturen und Proteininteraktionen. Wir haben auch Beispiele beschrieben, wo SVM für die Vorhersage der Lokalisation von Proteinen in der Zelle genutzt wurden. Es wird dabei deutlich, dass SVM im Bereich des virtuellen Screenings noch nicht verbreitet war. Um den Einsatz von SVM als Hauptmethode unserer Forschung zu begründen, haben wir in unserer nächsten Publikation (Veröffentlichung 2) (Abschnitt 7.2) einen detaillierten Vergleich zwischen SVM und verschiedenen neuronalen Netzen, die sich als eine Standardmethode im virtuellen Screening etabliert haben, durchgeführt. Verglichen wurde die Trennung von wirstoffartigen und nicht-wirkstoffartigen Molekülen („Druglikeness“-Vorhersage). Die SVM konnte 82% aller Moleküle richtig klassifizieren. Die Klassifizierung war zudem robuster als mit dreilagigen feedforward-ANN bei der Verwendung verschiedener Anzahlen an Hidden-Neuronen. In diesem Projekt haben wir verschiedene Deskriptoren zur Beschreibung der Moleküle berechnet: Ghose-Crippen Fragmentdeskriptoren [86], physikochemische Eigenschaften [9] und topologische Pharmacophore (CATS) [10]. Die Entwicklung von weiteren Verfahren, die auf dem SVM-Konzept aufbauen, haben wir in den Publikationen in den Abschnitten 7.3 und 7.8 beschrieben. Veröffentlichung 3 stellt die Entwicklung einer neuen SVM-basierten Methode zur Auswahl von relevanten Deskriptoren für eine bestimmte Aktivität dar. Eingesetzt wurden die gleichen Deskriptoren wie in dem oben beschriebenen Projekt. Als charakteristische Molekülgruppen haben wir verschiedene Untermengen der COBRA Datenbank ausgewählt: 195 Thrombin Inhibitoren, 226 Kinase Inhibitoren und 227 Faktor Xa Inhibitoren. Es ist uns gelungen, die Anzahl der Deskriptoren von ursprünglich 407 auf ungefähr 50 zu verringern ohne signifikant an Klassifizierungsgenauigkeit zu verlieren. Unsere Methode haben wir mit einer Standardmethode für diese Anwendung verglichen, der Kolmogorov-Smirnov Statistik. Die SVM-basierte Methode erwies sich hierbei in jedem betrachteten Fall als besser als die Vergleichsmethoden hinsichtlich der Vorhersagegenauigkeit bei der gleichen Anzahl an Deskriptoren. Eine ausführliche Beschreibung ist in Abschnitt 4.4 gegeben. Dort sind auch verschiedene „Wrapper“ für die Deskriptoren-Auswahl beschrieben. Veröffentlichung 8 beschreibt die Anwendung von aktivem Lernen mit SVM. Die Idee des aktiven Lernens liegt in der Auswahl von Molekülen für das Lernverfahren aus dem Bereich an der Grenze der verschiedenen zu unterscheidenden Molekülklassen. Auf diese Weise kann die lokale Klassifikation verbessert werden. Die folgenden Gruppen von Moleküle wurden genutzt: ACE (Angiotensin converting enzyme), COX2 (Cyclooxygenase 2), CRF (Corticotropin releasing factor) Antagonisten, DPP (Dipeptidylpeptidase) IV, HIV (Human immunodeficiency virus) protease, Nuclear Receptors, NK (Neurokinin receptors), PPAR (peroxisome proliferator-activated receptor), Thrombin, GPCR und Matrix Metalloproteinasen. Aktives Lernen konnte die Leistungsfähigkeit des virtuellen Screenings verbessern, wie sich in dieser retrospektiven Studie zeigte. Es bleibt abzuwarten, ob sich das Verfahren durchsetzen wird, denn trotzt des Gewinns an Vorhersagegenauigkeit ist es aufgrund des mehrfachen SVMTrainings aufwändig. Die Publikationen aus den Abschnitten 7.5, 7.6 und 7.7 (Veröffentlichungen 5-7) zeigen praktische Anwendungen unserer SVM-Methoden im Wirkstoffdesign in Kombination mit anderen Verfahren, wie der Ähnlichkeitssuche und neuronalen Netzen zur Eigenschaftsvorhersage. In zwei Fällen haben wir mit dem Verfahren neuartige Liganden für COX-2 (cyclooxygenase 2) und dopamine D3/D2 Rezeptoren gefunden. Wir konnten somit klar zeigen, dass SVM-Methoden für das virtuelle Screening von Substanzdatensammlungen sinnvoll eingesetzt werden können. Es wurde im Rahmen der Arbeit auch ein schnelles Verfahren zur Erzeugung großer kombinatorischer Molekülbibliotheken entwickelt, welches auf der SMILES Notation aufbaut. Im frühen Stadium des Wirstoffdesigns ist es wichtig, eine möglichst „diverse“ Gruppe von Molekülen zu testen. Es gibt verschiedene etablierte Methoden, die eine solche Untermenge auswählen können. Wir haben eine neue Methode entwickelt, die genauer als die bekannte MaxMin-Methode sein sollte. Als erster Schritt wurde die „Probability Density Estimation“ (PDE) für die verfügbaren Moleküle berechnet. [78] Dafür haben wir jedes Molekül mit Deskriptoren beschrieben und die PDE im N-dimensionalen Deskriptorraum berechnet. Die Moleküle wurde mit dem Metropolis Algorithmus ausgewählt. [87] Die Idee liegt darin, wenige Moleküle aus den Bereichen mit hoher Dichte auszuwählen und mehr Moleküle aus den Bereichen mit niedriger Dichte. Die erhaltenen Ergebnisse wiesen jedoch auf zwei Nachteile hin. Erstens wurden Moleküle mit unrealistischen Deskriptorwerten ausgewählt und zweitens war unser Algorithmus zu langsam. Dieser Aspekt der Arbeit wurde daher nicht weiter verfolgt. In Veröffentlichung 6 (Abschnitt 7.6) haben wir in Zusammenarbeit mit der Molecular-Modeling Gruppe von Aventis-Pharma Deutschland (Frankfurt) einen SVM-basierten ADME Filter zur Früherkennung von CYP 2C9 Liganden entwickelt. Dieser nichtlineare SVM-Filter erreichte eine signifikant höhere Vorhersagegenauigkeit (q2 = 0.48) als ein auf den gleichen Daten entwickelten PLS-Modell (q2 = 0.34). Es wurden hierbei Dreipunkt-Pharmakophordeskriptoren eingesetzt, die auf einem dreidimensionalen Molekülmodell aufbauen. Eines der wichtigen Probleme im computerbasierten Wirkstoffdesign ist die Auswahl einer geeigneten Konformation für ein Molekül. Wir haben versucht, SVM auf dieses Problem anzuwenden. Der Trainingdatensatz wurde dazu mit jeweils mehreren Konformationen pro Molekül angereichert und ein SVM Modell gerechnet. Es wurden anschließend die Konformationen mit den am schlechtesten vorhergesagten IC50 Wert aussortiert. Die verbliebenen gemäß dem SVM-Modell bevorzugten Konformationen waren jedoch unrealistisch. Dieses Ergebnis zeigt Grenzen des SVM-Ansatzes auf. Wir glauben jedoch, dass weitere Forschung auf diesem Gebiet zu besseren Ergebnissen führen kann.