Refine
Document Type
- Doctoral Thesis (2)
- Diploma Thesis (1)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
Aerosolpartikel sind in der Atmosphäre insbesondere für die Strahlungsübertragung und die Wolkenbildung von wichtiger Bedeutung. Aufgrund ihrer kurzen Lebensdauer, der Variabilität ihrer Quellen und Senken und ihrer Einbindung in den atmosphärischen Wasserkreislauf sind Partikel in allen ihren Eigenschaften sehr veränderlich. Die Zusammenhänge dieser Variabilität mit den meteorologischen Bedingungen und ihre Auswirkungen in der meteorologischen Anwendung sind bisher nur ungenügend durch Meßdaten belegt, so daß die Ergebnisse von Modellen, in denen die meteorologischen Wirkungen von Partikeln berücksichtigt werden (z.B. Klimamodelle), mit großen Unsicherheiten behaftet sind. Ziel dieser Arbeit war es, auf der Grundlage von Messungen einen Beitrag zur Charakterisierung der bodennahen troposphärischen Aerosolpartikel zu leisten. Im Hinblick auf die meteorologischen Anwendungen wurden die chemische Zusammensetzung und die Masse der Partikel in Abhängigkeit von ihrer Größe gemessen, da sie wesentliche Einflußgrößen für die Strahlungswirkung von Partikeln und die Wasserdampfkondensation in der Atmosphäre sind. Auf der Basis eines Datensatzes der physikalisch-chemischen Partikeleigenschaften und meteorologischer Meßgrößen wurde zunächst die Abhängigkeit der Partikeleigenschaften und ihrer Variabilität von den meteorologischen Umgebungsbedingungen analysiert sowie die Bedeutung der Variabilität der Partikeleigenschaften in der meteorologischen Anwendung untersucht. Dazu wurden Absorptionskoeffizienten der Partikel und Erwärmungsraten durch Absorption solarer Strahlung durch Partikel sowie das Wachstum der Partikel mit der relativen Feuchte in Abhängigkeit von ihrer chemischen Zusammensetzung berechnet. Die Messungen fanden während fünf drei- bis achtwöchiger Meßkampagnen 1991, 1993 und 1994 in Melpitz bei Torgau (Sachsen) und 1993 und 1994 auf dem Hohen Peißenberg (Oberbayern) statt. Mit einem Berner-Impaktor wurden die Partikel gesammelt. Es wurden die Konzentrationen der Gesamtmasse der Partikel sowie der Ionen in Abhängigkeit von ihrer Größe bestimmt. Die Rußkonzentrationen wurden mit einem Aethalometer gemessen. Parallel zu den Partikelmessungen fanden Messungen von Temperatur, relativer Feuchte, Windgeschwindigkeit, Windrichtung, Globalstrahlung und diffuser Himmelsstrahlung statt. Die Messungen liefern folgende Ergebnisse: Bei allen Messungen waren Nitrat, Sulfat und Ammonium die Hauptkomponenten der kleinen Partikel, und die Massenkonzentrationen der kleinen Partikel (0,04 µm < aed < 1,72 µm) waren wesentlich größer als die der großen Partikel (1,72 µm < aed < 21µm). Die Partikel sind also überwiegend anthropogener Herkunft. Die großen Partikel enthielten zusätzlich Natrium und Kalzium, lediglich bei einzelnen Messungen in Melpitz wurde auch Chlorid als Hinweis auf Seesalzpartikel gefunden. Die Massenkonzentrationen aller Partikelbestandteile waren in Melpitz in der Regel etwas größer als auf dem Hohen Peißenberg, da die Partikelkonzentrationen mit zunehmender Höhe abnehmen und da Melpitz näher an Ballungsräumen liegt als der Hohe Peißenberg. Die Unterschiede zwischen den verschiedenen Meßkampagnen an einem Ort sind jedoch größer als die zwischen den beiden Orten. Die Variabilität sowohl der Massenkonzentrationen der Partikelbestandteile als auch der Gesamtmasse liegt im Bereich von zwei Größenordnungen und ist damit wesentlich größer als die Unterschiede zwischen den Meßkampagnen. Der mittlere Anteil der löslichen Masse an der Gesamtmasse beträgt für die kleinen Partikel 57 %, für die großen 30 %. Dieser Anteil variiert sehr stark (10-100 % bzw. 5-80 %). Ruß hat einen mittleren Anteil von 5 % an der Gesamtmasse (1-18 %). Wesentliche Parameter, die zu Veränderungen der Partikeleigenschaften führen, sind: - Luftmassen unterschiedlicher Herkunft und Geschichte - Veränderungen der Mächtigkeit und Struktur der atmosphärischen Grenzschicht - Emissionen lokaler Quellen - lokale meteorologische Parameter (Temperatur, Windrichtung, -geschwindigkeit) Die unterschiedliche Häufigkeit und Ausprägung dieser Einflußfaktoren führt zu Unterschieden zwischen den Ergebnissen der einzelnen Meßkampagnen. Die einzelnen Faktoren sind nicht voneinander unabhängig, da durch die großräumige Wettersituation und die Luftmassen die Ausprägung der lokalen Parameter bestimmt wird. Um eine Zusammenfassung von Messungen unter vergleichbaren meteorologischen Bedingungen zu erreichen, wurde eine Klassifikation der Daten auf der Basis von Rückwärtstrajektorien vorgenommen. Es wurden fünf Klassen unterschieden: vier Klassen umfassen Richtungssektoren mit jeweils 90 ° um die Haupthimmelsrichtungen (Nord, Ost, Süd, West), einer fünften (X) werden kurze Trajektorien zugeordnet. Dieser Ansatz wurde gewählt, weil ähnliche Luftmassen und damit meteorologische Bedingungen hinsichtlich Temperatur, Feuchte, Stabilität und Luftbeimengungen meistens durch ähnliche Trajektorien gekennzeichnet sind, die eine Aussage über die Herkunft und den Weg der Luft ermöglichen, die wiederum für die Ausprägung der Partikeleigenschaften maßgeblich sind. Eine weitere Unterteilung nach Tageszeiten (morgens, mittags, abends) wurde vorgenommen, da einige Meßgrößen deutliche Tagesgänge zeigten. Die Ergebnisse lassen sich wie folgt zusammenfassen: Die Klassifikation der meteorologischen Meßgrößen liefert sowohl im Hinblick auf die Charakterisitika der Trajektorienklassen (Herkunft der Luft) als auch für die Tagesgänge meteorologisch sinnvolle Ergebnisse. Die Lage der Stationen in einer Ebene und auf einem Berg führt zu einer unterschiedlichen Ausprägung von Tagesgängen der Temperatur und der Windgeschwindigkeit besonders während stabiler Hochdruckwetterlagen. Es zeigt sich, daß bedingt durch die Entwicklung der Grenzschicht auf dem Hohen Peißenberg vor allem bei Hochdruckwetterlagen im Tagesverlauf in zwei verschiedenen Atmosphärenschichten gemessen wird. Die starke Streuung der lokalen Windrichtungen innerhalb einer Trajektorienklasse führt dazu, daß der Einfluß lokaler bzw. regionaler Quellen durch die Klassifikation nur bedingt erfaßt wird, und liefert einen Hinweis auf die lokale Wetterlage. Die Klassifikation der Partikelmeßdaten liefert meteorologisch sinnvolle Ergebnisse, da die Konzentrationsunterschiede zwischen den einzelnen Klassen mit der Wetterlage und dem Einfluß regionaler Quellen zu begründen waren. Die Absolutwerte ließen sich allerdings nicht vergleichen, und es wurden im Detail meßkampagnenspezifische Begründungen gefunden. Es ergab sich jedoch für alle Meßkampagnen die Unterteilung in Klassen mit antizyklonalen Wetterlagen und kontinentaler Luft mit hohen Konzentrationen (Klassen Ost, Süd, West) und zyklonalen Wetterlagen und maritimer Luft mit geringeren Konzentrationen (Klassen Nord, West). Abweichungen von dieser Einteilung waren vor allem mit der geographischen Lage der Meßorte zu begründen. Ausgeprägte Tagesgänge mit Maxima bei den Morgenmessungen ergaben sich nur für Nitrat, bei einigen Messungen auch für Chlorid in den kleinen Partikeln durch temperaturabhängige Gleichgewichtsreaktionen instabiler Partikelkomponenten mit der Gasphase sowie für Ruß durch die Anreicherung von Emissionen lokaler Quellen bei geringer Grenzschichthöhe. Während sich die mittleren absoluten Konzentrationen in den einzelnen Klassen erheblich unterscheiden, ist die mittlere relative chemische Zusammensetzung der Partikel in allen Klassen ähnlich; die Variabilität der Anteile ist aber ebenfalls sehr groß. Mit Ausnahme der Advektion von Seesalzpartikeln sowie der temperaturbedingten Verschiebung der Anteile von Nitrat und Sulfat, lassen sich Unterschiede zwischen den Klassen nicht mit den durch die Klassifikation erfaßten Einflußfaktoren oder geographischen Besonderheiten begründen. Durch die Klassifikation nimmt die Variabilität sowohl der meteorologischen Meßgrößen als auch der Partikeleigenschaften ab. Für die meteorologischen Meßgrößen verringert sich die Variabilität durch die Klassifikation nach Trajektorien weniger als durch die nach Tageszeiten, für die Konzentrationen der Partikelbestandteile und der Masse führt hingegen die Klassifikation nach Trajektorien zu einer größeren Verminderung der Variabilität als die nach Tageszeiten. Die Anwendung beider Klassifikationskriterien führt zu einer Abnahme der Variabilität um im Mittel 55 % für die meteorologischen Meßgrößen und um 50 % bzw. 25 % für die Konzentrationen der Bestandteile und der Masse der kleinen bzw. der großen Partikel. Die Variabilität der Werte in einer Klasse bleibt jedoch auch nach Klassifikation größer als Unterschiede zwischen den Klassen. Sie wird vor allem durch die spezifische meteorologische Situation bedingt. Um die Auswirkungen der Variabilität der Partikeleigenschaften in meteorologischen Anwendungen abschätzen zu können, wurden aus den Meßdaten der Absorptionskoeffizient der Partikel und die daraus resultierenden Erwärmungsraten sowie das Partikelwachstum mit der relativen Feuchte berechnet und wie die Meßdaten klassifiziert. Die Ergebnisse lassen sich folgendermaßen zusammenfassen: Für die Absorptionskoeffizienten der trockenen Partikel wurden Werte zwischen 0,1·10-6/m und 97·10-6/m berechnet. Für die beiden Meßkampagnen im Herbst (Melpitz 1993 und 1994) ergaben sich etwa um den Faktor 2 größere mittlere Absorptionskoeffizienten als für die Meßkampagnen im Sommer, die maximalen Absorptionskoeffizienten waren in Melpitz aufgrund der starken lokalen Quellen um den Faktor 2-3 größer als auf dem Hohen Peißenberg. Für die maximalen Erwärmungsraten wurden Werte zwischen 0,003 und 0,128 K/h, für die Gesamterwärmung über die Tageslichtperiode zwischen 0,02 K und 0,81 K berechnet. Die Partikel liefern in Abhängigkeit von den Umgebungsbedingungen selbst während Meßkampagnen an zwei ländlichen Orten in Mitteleuropa einen vernachlässigbar geringen bis deutlichen Beitrag zum Strahlungsantrieb. In Melpitz waren sowohl die maximalen Erwärmungsraten als auch die Gesamterwärmung im Mittel um den Faktor 1,5 geringer als auf dem Hohen Peißenberg, da die maximalen Absorptionskoeffizienten zu einer Zeit bestimmt wurden, als das Strahlungsangebot noch gering war, während auf dem Hohen Peißenberg die Maxima von Absorptionskoeffizient und Strahlungsangebot zeitlich näher zusammenliegen. Die Klassifikation nach Rückwärtstrajektorien ergab deutliche Unterschiede (Faktor 3-5) zwischen den einzelnen Klassen, da in Klassen mit den höchsten Rußkonzentrationen auch das Strahlungsangebot am höchsten war und in Klassen mit niedrigen Rußkonzentrationen meistens starke Bewölkung vorherrschte. Zwischen maximaler Erwärmungsrate und Gesamterwärmung über die Tageslichtperiode wird ein linearer Zusammenhang gefunden, der sich aber aufgrund der verschiedenen Tagesgänge des Absorptionskoeffizienten für die Meßkampagnen in Melpitz und auf dem Hohen Peißenberg unterscheidet. Sowohl für den exponentiellen Massenzuwachskoeffizienten bei unendlicher Verdünnung als auch für das Partikelwachstum bei fester relativer Feuchte ergeben sich im Mittel nur geringe Unterschiede zwischen kleinen und großen Partikeln sowie einzelnen Klassen durch die chemische Zusammensetzung des wasserlöslichen Anteils der Partikel. Unterschiede sind vielmehr durch den Anteil der wasserlöslichen Masse an der Gesamtmasse bedingt. Es ergibt sich ein linearer Zusammenhang zwischen dem exponentiellen Massenzuwachskoeffizienten bei unendlicher Verdünnung und dem Anteil der wasserlöslichen Masse an der Gesamtmasse der Partikel. Die Unterschiede zwischen den einzelnen Klassen lassen sich nicht auf einzelne meteorologische oder geographische Einflußfaktoren zurückführen. Sowohl für die Absorption solarer Strahlung als auch für das Wachstum der Partikel mit der relativen Feuchte ist die Variabilität der abgeleiteten Größen geringer als die der Ausgangsgrößen, sie ist aber immer noch mindestens so groß wie die Unterschiede zwischen den einzelnen Klassen. Zusammenfassend läßt sich festhalten, daß in dieser Arbeit ein Datensatz aus Messungen von meteorologischen Parametern und Partikeleigenschaften zusammengestellt wurde, der zusammen mit der Klassifikationsmethode nach Rückwärtstrajektorien und Tageszeiten eine Untersuchung der Zusammenhänge zwischen der Variabilität der Meßgrößen und den meteorologischen Bedingungen ermöglicht und eine Abschätzung der Auswirkungen der Variabilität der Partikeleigenschaften, insbesondere der chemischen Zusammensetzung, in meteorologischen Anwendungen zuläßt. Der Klassifikationsansatz nach Rückwärtstrajektorien ist prinzipiell geeignet, um die Abhängigkeit der Partikeleigenschaften von den meteorologischen Bedingungen zu beschreiben. Es ist jedoch nicht möglich, einen Einflußfaktor als den wichtigsten hervorzuheben oder sogar quantitative Beziehungen zwischen Partikeleigenschaften und meteorologischen Parametern herzustellen. Die Herkunft der Luft liefert einen Hinweis auf die zu erwartenden meteorologischen Bedingungen und Partikeleigenschaften, die lokale meteorologische Situation bestimmt jedoch die genaue Ausprägung der Meßgrößen. Eine Berücksichtigung des Einflusses der lokalen Wetterlage sowie lokaler bzw. regionaler Quellen könnte durch die Einbeziehung der Windrichtung vorgenommen werden. Auf der Basis längerer Meßreihen sollte überprüft werden, ob die Unterteilung in fünf Trajektorienklassen modifiziert werden muß. Der große Einfluß der spezifischen Wetterlage auf die Meßergebnisse führt dazu, daß die Ergebnisse von Meßkampagnen weder für einen längeren Zeitraum noch für ein größeres Gebiet repräsentativ sein können. Ebenso ist die Verwendung von Mittelwerten über längere Zeiträume ist nicht sinnvoll, da die Variabilität der Meßgrößen während eines Tages sowie von Tag zu Tag sehr groß ist. Aufgrund der komplexen Zusammenhänge zwischen Partikeleigenschaften und meteorologischen Bedingungen erscheint es unbedingt nötig, längere Meßreihen aller wichtigen Aerosoleigenschaften durchzuführen, damit statistisch belastbare Daten über eine hinreichend große Zahl von Messungen unter verschiedensten meteorologischen Bedingungen zu allen Jahreszeiten vorliegen, die Aussagen über Zusammenhänge mit Witterungsbedingungen, Tagesgänge, Jahresgänge aber auch die Vertikalverteilung der Partikeleigenschaften zulassen. Dabei ist es wichtig, alle interessierenden Größen gleichzeitig zu messen, da nur dann eine Untersuchung des Einflusses der Variabilität verschiedener Parameter auf die für die Anwendung wichtigen Größen möglich ist.
Das Ziel dieser Arbeit wurde eingangs über den Begriff der erweiterten Schließung der optischen und mikrophysikalischen Eigenschaften der Partikel definiert. Hierunter versteht man das Zusammenfügen von verschiedenen Messungen zu einem konsistenten Bild der betrachteten Partikeleigenschaften. Darüber hinaus sollen die Messungen auch in anderen Teilgebieten der Aerosolphysik verwendbar sein, um so das konsistente Bild zu erweitern. Dieses so umschriebene Ziel konnte für die mikrophysikalischen und optischen Messergebnisse, die während des LACE 98 Experimentes, einem vom Bundesministerium für Forschung und Bildung (Bmb f) geförderten Schließungsexperiment, in Lindenberg (Brandenburg) rund 50 km südöstlich von Berlin im Juli und August 1998 erfasst wurden, erreicht werden. Die Messungen wurden erfolgreich zu einem konsistenten Datensatz und einem "Bild" der Partikeleigenschaften zusammengefügt. Unter dem Begriff "Bild" subsummiert sich hierbei nicht nur eine Charakterisierung der Variabilität und Abhängigkeit der Partikeleigenschaften, z.B. von der rel. Luftfeuchte, sondern darüber hinaus auch eine Charakterisierung der Beeinflussung verschiedener von den Eigenschaften der Partikel abhängiger Größen. Hierzu zählen Strahlungshaushaltsgrößen (Erwärmungsrate der Luft durch Absorption solarer Strahlung und die Volumenabsorption solarer Strahlung durch Partikel), wolkenphysikalische Größen (maximale Übersättigung der Wolkenluft während der Wolkenentstehung und Anzahlkonzentration der wachsenden Wolkentropfen), die massengewichtete mittlere Sedimentationsgeschwindigkeit von Partikeln und nicht zuletzt gesundheitsrelevante Größen, wie z.B. die vom Menschen beim Atmen aufgenommene und eingelagerte Partikelmasse. Nachfolgende Zusammenstellung soll nochmals die erzielten Ergebnisse zusammenfassen. Für eine detaillierte Darstellung der in den einzelnen Kapiteln erzielten Ergebnisse soll hier nur auf die jeweiligen Zusammenfassungen der einzelnen Kapitel verwiesen werden. . Im Rahmen der direkten Schließung, wurden unterschiedliche Verfahren zur Bestimmung der optischen Eigenschaften der Partikel erfolgreich miteinander verglichen. Beteiligt waren bei diesem Vergleich folgende Methoden: Partikel im trockenen Zustand: -- Aerosolphotometer (alle optischen Eigenschaften, ) -- Nephelometer (Streukoeffizient) -- PSAP (Absorptionskoeffizient) -- IPMethode (Absorptionskoeffizient) -- Telephotometer (Extinktionskoeffizient) Partikel bei Umgebungsfeuchte: -- Telephotometer (Extinktionskoeffizient) -- horizontales Lidar (Extinktionskoeffizient) Es zeigte sich, dass sich das Aerosolphotometer mit seinem schon aus der Theorie des Messverfahrens her begründeten konsistenten Satz aller optischen Eigenschaften als Referenzmethode während LACE 98 bewährte. Mit seiner Hilfe konnte nun auch die Gültigkeit einer empirischen Korrektur des PSAP nach Bond et al. [1999] für natürliche Aerosolpartikel bestätigt werden. Dem Anwender dieses Gerätes, das mit einer hervorragenden zeitlichen Auflösung von wenigen Minuten den Absorptionskoeffizienten bestimmt, stehen somit zwei unabhängig voneinander gewonnene Kalibrierungsfunktionen zur Verfügung, die innerhalb der Fehlergrenzen auch mit einander im Einklang stehen. . Im Rahmen der indirekten Schließung wurde ein Modell entwickelt, mit dem auf Basis eines Kugelschalenmodells der Partikel aus Messungen der mikrophysikalischen Eigenschaften der Partikel den Extinktions, den Streu- und den Absorptionskoeffizienten sowie die Single Scattering Albedo berechnet wurden. Mit Hilfe dieses Modells wurde der Feuchteeffekt der oben genannten optischen Eigenschaften berechnet. Mit diesen Ergebnissen konnten dann die Messwerte des Telephotometers feuchtekorrigiert, und mit den Messungen des Aerosolphotometers verglichen werden, wo bei eine gute Übereinstimmung der Messreihen festgestellt werden konnte. Die beobachteten Unterschiede konnten auf Ernteaktivitäten, die nur die Messungen des Telephotometers beeinflussten, zurückgeführt werden. Ein Vergleich der mit Hilfe des Modells auch direkt berechenbaren optischen Eigenschaften mit den direkten Messwerten der beteiligten Verfahren fiel ebenfalls positiv aus. Anhand aller Modellrechnungen wurde eine physikalisch motivierte Näherungsfunktion für den Feuchteeffekt des Extinktions- und des Streukoeffizienten als Funktion des Aktivierungsparameters bereit gestellt. In Klimamodellen kann mit Hilfe der vorgestellten Näherungsfunktionen der Feuchteeffekt auf einfache Weise parametrisiert werden. Wenn man allerdings konkrete Messergebnisse miteinander vergleichen möchte, ist man auf eine vollständige Erfassung der mikrophysikalischen Eigenschaften der Partikel angewiesen. . Im Teil IV der Arbeit wurden auf der Basis des zuvor vorgestellten Datensatzes und der hierfür entwickelten Verfahren (Algorithmen) weitere Auswertungen zu unterschiedlichen, für die Meteorologie interessanten Themengebieten, vorgestellt und ihre Ergebnisse charakterisiert. . In Kapitel 6.1 wurde mit Hilfe von Auswertegleichungen aus den in dieser Arbeit erstellten Messungen des Sieben-Sensor-Bilanzphotometers und den Messungen des Aerosolphotometers die Volumenabsorptionsrate solarer Strahlung der bodennahen Partikel und die daraus resultierende Erwärmungsrate der Luft berechnet. Die Ergebnisse wurden mit Literaturwerten anderer Messkampagnen verglichen. Insbesondere konnte ein interessantes Ergebnis von Hänel
Das 1913 auf dem Gipfel des Kleinen Feldbergs gegründete Taunus-Observatorium (T.O.) ist eine Einrichtung der Johann Wolfgang Goethe-Universität Frankfurt am Main. Es dient dem Institut für Meteorologie und Geophysik als Forschungsstätte für kontinuierliche Messungen und als Standort für Meßkampagnen in Zusammenarbeit mit anderen Instituten, wie z. B. beim The Kleiner Feldberg Cloud Experiment 1990 [Fuzzi, 1995]. Darüber hinaus wird das Observatorium mit seinen Einrichtungen immer wieder für Messungen im Rahmen von Diplom- und Doktorarbeiten genutzt. Primäres Ziel dieser Diplomarbeit war eine Charakterisierung der zeitlichen Variabilität der luftchemischen Bedingungen am Taunus-Observatorium in Abhängigkeit von Wetter und Witterung. In der Zeit vom 13. Dezember 1996 bis zum 26. März 1997 wurden am Taunus- Observatorium auf dem Kleinen Feldberg mit Hilfe eines gaschromatographischen Analyseverfahrens die Spurengase Kohlenmonoxid und molekularer Wasserstoff gemessen, um die zeitliche Variabilität der luftchemischen Bedingungen am Taunus-Observatorium in Abhängigkeit von Wetter und Witterung zu untersuchen. Bei der Meßreihe am Taunus-Observatorium zeigte sich, daß die zeitlichen Variationen der langlebigen Spurengase CO und H2 über Tage und Wochen maßgeblich durch den Ferntransport von Luftmassen und die jeweilige Großwetterlage bestimmt werden. Mit Hilfe von Trajektorienanalysen konnte gezeigt werden, daß die Messungen stark von Herkunft und Zugweg der jeweiligen Luftmassen abhängen. Deutliche Änderungen der mittleren CO- und H2-Mischungsverhältnisse wurden bei Luftmassenänderungen beobachtet, wie z. B. eine markante Abnahme von Kohlenmonoxid und molekularem Wasserstoff nach dem Durchgang von Kalt- oder Warmfronten. Extreme Unterschiede der gemessenen Spurengaskonzentrationen konnten auch bei verschiedenen winterlichen Inversionswetterlagen registriert werden. Befand sich das Taunus-Observatorium unterhalb einer Temperaturinversion in der bodennahen Grenzschicht, wurden ungewöhnlich hohe CO- und H2-Mischungsverhältnisse gemessen; war der Kleine Feldberg dagegen über der Inversion innerhalb der freien Atmosphäre, wurden wiederholtdie atmosphärischen Hintergrundkonzentrationen von Kohlenmonoxid und molekularem Wasserstoff beobachtet. Auch durch lokale und regionale Effekte konnten in Abhängigkeit von der lokalen Windrichtung starke zeitliche Variationen der luftchemischen Bedingungen beobachtet werden. Durch die Orographie bedingt Verursachen kleine Änderungen der lokalen Windrichtung drastische Veränderungen in den gemessenen Spurengaskonzentrationen. So trennt z. B. der Taunuskamm die durch regionale Quellen im Großraum Frankfurt belastete Luft im Vordertaunus von der weniger verschmutzter Luft im ländlichen Hintertaunus. Darüber hinaus kann durch die Kanalisierung des Windes in verschiedenen Tälern oder an den Flanken des Taunuskammskontaminierte Luft aus den Niederungen herangeführt werden. Die hohe Variabilität der gemessenen Mischungsverhältnisse in Abhängigkeit von Meteorologie und Orographie dominiert den Tagesverlauf der CO- und H2-Messungen. Daher war eine Untersuchung von anthropogenen Tages- und Wochengängen oder sogar jahreszeitlicher Variationen der langlebigen Spurengase CO und H2 am Taunus-Observatorium nicht möglich. Zusätzlich zu den Messungen am Taunus-Observatorium wurde mit der in dieser Arbeit vorbereiteten Analytik das Mischungsverhältnis von molekularem Wasserstoff in stratosphärischen Luftproben von drei verschiedenen Ballonflügen gemessen, entsprechende H2-Vertikalprofile erstellt und die Ergebnisse der Messungen mit Modellrechnungen verglichen.