Refine
Document Type
- Doctoral Thesis (4)
Language
- German (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
- Physik (4)
Das hemmende Umfeld von Ganglienzellen in der Netzhaut des Auges Der Bereich auf der Netzhaut, aus dem Ganglienzellen Lichtsignale erhalten, wird rezeptives Feld genannt. Er umfaßt einen erregenden, zentralen Teil, das rezeptive Feldzentrum, und einen hemmenden, peripheren Teil, das Umfeld. Die antagonistische Organisation (erregendes Zentrum/hemmendes Umfeld) des rezeptiven Feldes verbessert die Signalverarbeitung, indem Kontraste verstärkt werden. Ziel der vorliegenden Arbeit war es, die Mechanismen der Umfeldhemmung an der isolierten, intakten Kaninchennetzhaut zu untersuchen. Das rezeptive Feldzentrum wird durch den erregenden Kontakt zwischen Photorezeptor Þ Bipolarzelle Þ Ganglienzelle erzeugt. Visuelle Stimulation des rezeptiven Feldzentrums erhöht die Entladungsrate (Anzahl der Aktionspotentiale pro Zeiteinheit) der Ganglienzelle. Die Erhöhung der Entladungsrate wird durch die Freisetzung des erregenden Transmitters Glutamat aus präsynaptischen Bipolarzellen bewirkt. Eine Belichtung des Umfeldes hat den entgegengesetzten Effekt: die Entladungsrate der Ganglienzelle wird verringert. Die Umfeldantwort der Ganglienzelle wird durch die laterale Hemmung in der OPL (äußere Synpsenschicht) und der IPL (innere Synapsenschicht) erzeugt. In der OPL wird die Signalübertragung von GABAergen Horizontalzellen moduliert, indem sie Photorezeptoren und/oder Bipolarzellen hemmen. In der IPL modulieren Amakrinzellen, die entweder GABAerg oder glyzinerg sein können, die Signalübertragung, indem sie Bipolarzellen und/oder Ganglienzellen hemmen. Die Entladungsrate von retinalen Ganglienzellen wird bei Belichtung des Umfeldes somit auf zwei Arten verringert: entweder werden präsynaptische Zellen (Photorezeptoren, Bipolarzellen) gehemmt oder die Ganglienzelle wird direkt durch Amakrinzellen gehemmt. Im ersten Fall schütten Bipolarzellen weniger Glutamat aus (indirekte laterale Hemmung), im zweiten Fall wird durch hemmende Neurotransmitter (GABA oder Glyzin) ein Einstrom von Chloridionen in die Dendriten der Ganglienzellen hervorgerufen (direkte laterale Hemmung). Es ist bisher noch unklar, zu welchem Anteil direkte und indirekte laterale Hemmung an der Umfeldantwort beteiligt sind. Weiterhin ist nicht bekannt, welche Neurotransmitterrezeptoren bei der Erzeugung des hemmenden Umfeldes eine Rolle spielen. Um dies zu untersuchen, wurden in der vorliegenden Arbeit lichtinduzierte, synaptische Ströme von retinalen Ganglienzellen an der isolierten, intakten Kaninchenetzhaut gemessen. Dabei wurde die Netzhaut von vorher eingeschläferten Kaninchen freipräpariert und anschließend in einer mit Sauerstoff angereicherten Extrazellulärlösung aufbewahrt. An diesem isolierten, intakten NetzhautPräparat (in vitro Retina) konnten bis zu acht Stunden Lichtantworten gemessen werden. Die lichtinduzierten Ströme wurden in der Ganzzellkonfiguration der PatchClampTechnik in der Spannungsklemme gemessen. Die Meßkammer mit der flach ausgebreiteten Netzhaut befand sich auf einem Mikroskoptisch. Das Mikroskop war mit einer InfrarotDifferentialinterferenzOptik (NomarskiOptik) ausgestattet und die Mikroelektroden konnten unter Sichtkontrolle mit Hilfe eines Mikromanipulators an die Zellkörper herangefahren werden. Kreisförmige und ringförmige Lichtmuster mit verschiedenen Durchmessern, wurden auf einem Computerbildschirm erzeugt und durch den Mikrsokopkondenser auf den Boden der Meßkammer projiziert. Erregende Ströme retinaler Ganglienzellen konnten isoliert werden, indem das Membranpotential der Zelle auf das Umkehrpotential für Chloridionen eingestellt wurde. Die erregenden Ströme wurden durch Belichtung des Umfeldes stark verringert. Dies wird durch die verminderte Freisetzung von Glutamat durch Bipolarzellen verursacht und ist ein Hinweise auf eine indirekte, laterale Hemmung der Ganglienzelle. Durch die Zugabe des GABARezeptorblockers Picrotoxinin in die Nährlösung (Badapplikation) konnte die Umfeldhemmung der meisten Ganglienzellen nahezu vollständig aufgehoben werden. Dieses Ergebnis zeigt, daß präsynaptische GABA A und GABA C Rezeptoren eine wichtige Rolle bei der Umfeldhemmung spielen. Direkte hemmende Chloridionenströme konnten isoliert werden, indem das Membranpotential der Zelle auf das Umkehrpotential für erregende Ströme eingestellt wurde. Durch Beleuchtung des Umfeldes wurden Chloridionenströme in Ganglienzellen ausgelöst. Dies ist ein Hinweis auf eine direkte, laterale Hemmung der Ganglienzelle durch Amakrinzellen, die zusätzlich zur indirekten Hemmung erfolgt. Bei Anwendung der Stromklemme der PatchClampTechnik konnte nachgewiesen werden, daß Chloridionenströme die Entladungsrate der Zelle beeinflussen. Durch die Badapplikation von Picrotoxinin und durch die Überströmung mit dem GABA A Rezeptorhemmer Bicucullin wurden die Chloridionenströme deutlich verringert. Durch den Glyzinrezeptorblocker Strychnin konnten die hemmenden Ströme nur bei wenigen Zellen verringert werden. Dies ist ein Hinweis auf eine direkte Hemmung der Ganglienzelle über GABA A Rezeptoren. In den meisten Ganglienzellen konnten direkte und indirekte Hemmung durch die Badapplikation von Tetrodotoxin verringert werden. Tetrodotoxin hemmt das Entstehen von Aktionspotentialen und das Ergebnis zeigt, daß 'widefield Amakrinzellen, die über Aktionspotentiale kommunizieren zur Umfeldhemmung beitragen. Bisherige Modelle gingen davon aus, daß Interaktionen zwischen Horizontalzellen, Photorezeptoren und Bipolarzellen in der OPL die Hauptursache für die Umfeldhemmung sind. Die vorliegende Arbeit hat gezeigt, daß Interaktionen zwischen Amakrinzellen, Bipolarzellen und Ganglienzellen wesentlich zur Umfeldhemmung beitragen. In der Netzhaut gibt es zwischen 12 und 15 Ganglienzelltypen, die auf unterschiedliche Mustermerkmale wie z. B. Farbe, Kontrast oder Bewegung reagieren. Alle bisher untersuchten Ganglienzelltypen verringern bei einer Reizung des Umfeldes ihre Entladungsrate. Ist bei allen Ganglienzelltypen der Beitrag von Horizontal und Amakrinzellen zur Umfeldhemmung sowie der Anteil von direkter und indirekter lateralen Hemmung gleich? Oder gibt es für jeden Ganglienzelltyp aufgrund seiner physiologischen und morphologischen Ausprägung verschiedene Mechanismen der lateralen Hemmung? Diese Fragen könnten durch die Entwicklung von Pharmaka, welche selektiv Horizontalzellen bzw. Amakrinzellen hemmen, untersucht werden. Die Anwendung dieser Substanzen könnte den Beitrag dieser Zellen zur Umfeldhemmung eines bestimmten Ganglienzelltyps nachweisen. Gleichzeitig könnte die indirekte Hemmung von retinalen Ganglienzellen durch intrazelluläre Applikation von Chloridionenkanalblockern viel genauer als bisher gemessen werden, da auf diese Weise erregende synaptische Ströme besser isoliert werden können. Durch die Kombination dieser beiden Methoden könnte für jeden Ganglienzelltyp der Netzhaut die zellulären und synaptischen Mechanismen der Umfeldhemmung detailliert beschrieben werden.
Untersuchungen zu mikrowellenfokussierenden Beschleunigerstrukturen für zukünftige lineare Collider
(1993)
Zur Erforschung immer kleinerer Strukturen der Materie benötigt die Elementarteilchenphysik Teilchenstrahlen höchster Energie. Gegenwärtig sind das Higgs-Boson und das Top-Quarks‘ die Objekte des größten physikalischen Interesses. Das sog. “Top” ist das sechste und bisher noch nicht nachgewiesene Mitglied der Quark-Familie. Seine Masse wird unterhalb von etwa 180GeV vermutet. Das Higgs-Boson spielt im sog. Standardmodell der Elementarteilchen eine wichtige Rolle. Seine Masse wird ebenfalls im Bereich zwischen 100 und 200GeV vermutet. Es gibt eine gute Chance, das Top am Protonen- Antiprotonen-Beschleuniger TEVATRON des Fermilab in Chicago nachzuweisen. Seine physikalischen Eigenschaften lassen sich aber erst an zukünfligen Beschleunigem mit höherer Energie bestimmen. Gegenwärtig werden daher mehrere verschiedene Beschleunigerkonzepte erwogen oder sind bereits in Planung bzw. im Bau. Das Spektrum reicht dabei von Protonen-Antiprotonen- bis zu Elektronen-Positronen-Maschinen. Ein vielversprechender Ansatz zur Erzeugung der benötigten Teilchenenergien ist der lineare Elektronen-Positronen-Collider, im folgenden immer als linearer Collider bezeichnet. Das Verhältnis von Meßsignal zu Hintergrund ist bei e+-e-Kollisionen besser als bei Protonen-Kollisionen. Es entstehen keine Partonen, wodurch die zur Verfugung stehende Energie effektiver genutzt werden kann [ 11. Weiterhin ist der lineare Collider im Vergleich zu einer zirkularen Maschine gleicher Endenergie und Luminosität auf lange Sicht kostengünstiger, da keine zusätzliche Hf-Leistung zur Kompensation von Synchrotronstrahlungsverlusten nötig ist. Die für die Experimente erforderliche hohe Luminosität bedingt Teilchenstrahlen von niedrigster Emittanz und geringster Energieverschmierung sowohl innerhalb eines einzelnen Teilchenpaketes als auch zwischen den Bunchen selbst [2]. Zur Erhaltung der Strahlqualität über die volle Lange des Beschleunigers ist es deshalb notwendig, ein akkurates Strahlführungssystem zu entwickeln, das es gestattet, auftretenden Strahlinstabilitäten wirksam zu begegnen. Grund der Instabilitäten sind elektromagnetische Felder, sogenannte Wake- oder Kielwellenfelder, die die Teilchen bei der Durchquerung des Beschleunigers selbst anfachen. Die Teilchenpakete werden dadurch radial von der Achse abgelenkt, sie werden verformt und erfahren eine Impulsverschmierung. Transversale Einzelbunch-Instabilitäten (SBBU, Single Bunch Beam Breakup) kann man durch die Einführung einer Energieverschmierung innerhalb eines Teilchenpakets bekämpfen; in Verbindung mit einer äußeren Strahlführung erreicht man eine Bedämpfung der Instabilität [3]. Als Alternative oder Ergänzung zu äußeren Fokussierungsmaßnahmen erscheint es deshalb interessant, inwieweit man durch geeignete Modifikationen an den Beschleunigerstrukturen die Hochfrequenzfelder selbst zur Erzeugung der benötigten Fokussierung heranziehen kann. Da es sehr schwierig ist, die für das Experiment geforderte Luminosität mit einem einzelnen Bunch zu erzeugen, muß man mehrere Teilchenpakete in kurzem Abstand durch den Beschleuniger schicken. Jetzt erfährt aber jeder Bunch die aufsummierten Wakefelder der ihm vorausfliegenden Teilchenpakete. Um zu verhindern, daß die transversale Strahlablage inakzeptabel groß wird, müssen Maßnahmen zur Kontrolle dieser Vielteilchen-Instabilitäten (MBBU, Multibunch Beam Breakup) getroffen werden. Das bedeutet, die Güten dieser als Long-Range-Wakes bezeichneten Störmoden müssen, je nach Collider, durch konstruktive Maßnahmen auf Werte in der Größenordnung von zehn abgesenkt werden. Die vorliegende Arbeit befaßt sich mit theoretischen Anwendungsmöglichkeiten von hochfrequenzfokussierenden Beschleunigerstrukturen in linearen Collidem bei Einzel- und Multibunch-Betrieb. In Kap. 2 wird eine kurze Einführung in die Problematik von Höchstenergiebeschleunigem gegeben. Anschließend werden in Kap. 3 Irisstrukturen und ihre Kenngrößen behandelt. Kap. 4 gibt eine Einführung in das Wakefeld-Konzept. Es wird untersucht, welche Resonatormoden für den Strahl gefährlich sind; die Wakepotentiale werden mit Resonatorkenngrößen in Verbindung gebracht. In Kap. 5 schließt sich eine Betrachtung zum SBBU an. Es wird untersucht, inwieweit Irisstrukturen und Rechteckblendenstrukturen (MWQ-Strukturen) zur direkten Hochfrequenzfokussierung eingesetzt werden können. Die Eigenschaften einer MWQ-Struktur werden vermessen und mit theoretischen Vorhersagen verglichen. Beispiele fiir hypothetische Collider in verschiedenen Frequenzbereichen werden diskutiert. Im anschließenden Kap. 6 wird der Mechanismus des MBBU erläutert und Möglichkeiten zur Bedämpfung insbesondere von MWQ-Strukturen im Multibunch-Betrieb untersucht. Meßergebnisse an Modellstrukturen werden vorgestellt und am Beispiel von einem S- und X-Band- Collider diskutiert.
Die Dokumente enthalten jeweils die gleiche Arbeit, allerdings in drei unterschiedlichen Varianten, die sich in der Qualität der Bilder und damit in der Filegröße unterscheiden: * Bilder in voller Druckqualität (8,2 MB): DissWFOM1.pdf (Dokument1) * Photos in reduzierter Auflösung (3,1 MB): DissWFOM2.pdf (Dokument2) * Photos und Zeichnungen in red. Auflösung (1,4 MB): DissWFOM3.pdf (Dokument3)
Die vorliegende Arbeit befallt sich im theoretischen Teil mit den Grundlagen zu Strahl-Resonator-Wechselwirkungen bei Beschleunigerresonatoren und mit den sich daraus ergebenden Konsequenzen bei der Resonatorentwicklung für zukünftige lineare Kollider mit Multibunch-Betrieb. Zur Bekämpfung der vor allem im Multibunchbetrieb störenden Long-Range-Wakefelder müssen die schädlichen Moden möglichst so stark bedämpft werden, daß ihre Felder bis zum Eintreffen des nächsten Bunches auf ein erträgliches Maß abgeklungen sind. Im experimentellen Teil befaßt sich diese Arbeit daher mit der Entwicklung von Meßmethoden zur Bestimmung sehr kleiner Resonatorgüten sowie sehr kleiner transversaler Shuntimpedanzen bzw. sehr kleiner Feldpegel in stark störmodenbedämpften Beschleunigerresonatoren. Diese Meßmethoden sind an mehreren S-Band-Modellresonatoren (Betriebsfrequenz lag bei etwa 2.4 GHz) mit verschiedenen Dämpfungssystemen, die für den Einbau in einen normalleitenden Linearbeschleuniger für einen Kollider geeignet wären, erfolgreich getestet worden. Die Feldmessungen an den Modellresonatoren haben bisher unbekannte Gesetzmäßigkeiten bezüglich des Verhaltens dieser Dämpfungssysteme ergeben. In einer kurzen Beschreibung und Diskussion der sechs wichtigsten Vorschläge für zukünftige lineare Kollider wurde ein Überblick über die Unterschiede bei diesen verschiedenen Konzepten gegeben. Zunächst konnten über eine qualitative Diskussion der beim Linearbeschleuniger vom Iristyp vorkommenden Beam Blowup Phänomene, wie der regenerative BBU und der cumulative BBU, die Erscheinungsformen und die physikalischen Ursachen dieser BBU Phänomene verstanden werden. Hier zeigt sich, daß bei Irisstrukturen die HEM11-Moden die Hauptursache sowohl für den regenerativen- als auch für den cumulativen BBU sind. Der dritte Abschnitt führte in eine allgemeine Methode zur quantitativen Beschreibung der sogenannten Strahl-Resonator-Wechselwirkung ein. Diese Methode heißt Condon- Methode und erlaubt die Berechnung von BBU verursachenden Wakefeldern über eine Eigenwellenentwicklung aus den Eigenmoden des leeren Rersonators. Im vierten Abschnitt wurde durch die Herleitung des Theorems von Panofsky-Wenzel die Theorie der Strahl-Resonator-Wechselwirkung vervollständigt, wonach der einer Testladung während der Durchquerung eines felderfüllten Resonators mitgeteilte Transversalimpuls vollständig durch die räumliche Verteilung der elektrischen Longitudinalkomponente allein bestimmt ist. Damit erhält man also eine Aussage über die Wirkung der in Beschleunigerresonatoren feldanfachenden vorauslaufenden Ladungen auf die nachfolgenden. Dabei konnte auch die Frage geklärt werden, welche Moden zylindrischer Symmetrie wegen ihrer transversal ablenkenden Wirkung für den Teilchenstrahl gefährlich sind. Hier zeigt sich, daß alle BBU verursachenden Moden TM2np- bzw. TM2np-Moden sind, d.h., die Moden mit dipol- bzw. quadrupolartiger Symmetrie. Die Anwendung der in den Abschnitten drei und vier entwickelten Theorie zur Strahl-Resonator-Wechselwirkung konnte im Abschnitt fünf anhand dreier, für die Beschleunigerphysik sehr interessanter Beispiele gezeigt werden. Im ersten Beispiel gelang die Beschreibung der Wechselwirkung eines in Längsrichtung homogenen Strahls, welcher transversal Betatranschwingungen vollführt, mit der TM110-Mode eines Zylinderresonators. Dieses Beispiel ist von praktischer Bedeutung bei Linearbeschleunigern. die bei hohem Duty Cycle betrieben werden, also z.B. beim RACE TRACK Mikrotron oder bei supraleitenden Linacs. Beim zweiten Beispiel hat die Anwendung der Theorie auf eine Irisstruktur zu Formeln geführt, die sich Fair eine numerische Berechnung des Startstroms zum regenerativen BBU eignen, was jedoch relativ aufwendig ist. Es konnte aber auch eine einfache Abschätzungsformel für den Startstrom durch die Anwendung des Poyntingschen Satzes auf eine differentielle Länge des der Irisstruktur entsprechenden Wellenleiters abgeleitet werden. Aus der Bedingung, daß die durch den Strahl erzeugte Leistung pro Längeneinheit gleich den Leistungsverlusten pro Längeneinheit ist, findet man den Startstrom für den regenerativen BBU. Das letzte Beispiel, die Wechs 1 e Wirkung einer hochrelativistischen Punktladung mit einem beliebigen Resonator, ist auch das wichtigste. Hier wurden die Wakefelder aus einer simplen Energiebilanzbetrachtung abgeleitet, da eine Berechnung nach der Condon-Methode relativ aufwendig und langwierig wäre. Diese Vorgehensweise hat hier zu einem tieferen physikalischen Verständnis der Vorgänge im Resonator geführt. Die mit Hilfe einer Punktladung abgeleiteten Wakefelder sind Greensfunktionen. die zur quantitativen Beschreibung des cumulativen BBU’s bei linearen Kollidern benutzt werden können. Die Diskussion der anhand der Beispiele gewonnenen Ergebnisse am Ende des fiinften Abschnitts führte zu verschiedenen Maßnahmen zur Verringerung der schädlichen Strahl-Resonator-Wechselwirkung. Hier hat sich gezeigt, daß sowohl der regenerative BBU als auch der cumulative BBU u. a. durch eine Verringerung der Resonatorgüte der strahlstörenden Dipolmode verhindert werden können. Im sechsten Abschnitt erfolgte die noch ausstehende quantitative Beschreibung des cumulativen BBU mit Hilfe der im vorangehenden Abschnitt am dritten Beispiel gewonnenen Formeln für die Wakefelder. Die Berechnung der Strahlablage und Strahlrichtung geschieht hier über einen Matrizenformalismus, der aus der Idee heraus entstand, die Beschleunigersektionen des linearen Kolliders durch Resonatoren verschwindender Länge zu ersetzen. Uber den Matrizenformalismus konnte die durch den Einfluß von Beschleunigung, Fokussierung und Wakefeldern doch recht komplizierte Teilchenbewegung sehr elegant formuliert werden, jedoch eignet sich dieser Formalismus nur für numerische Zwecke. Abschätzungen sind in diesem allgemeinen Fall unmöglich. Durch die Einführung eines sehr restriktiven Modells, des sogenannten DAISY-CHAIN Modells, welches nur bei sehr stark bedämpften Beschleunigersektionen gültig ist. hat sich der Matrizenformalismus auf sehr einfache, der analytischen Berechnung zugängliche Gleichungen reduzieren lassen. Die Bedämpfung der Beschleunigersektionen muß dabei so stark sein, daß eine Ladung innerhalb einer ganzen Kette äquidistanter Ladungen nur ein signifikantes Wakefeld der unmittelbar vorrauslaufenden Ladung erfährt. Wie stark im Einzelfall bedämpft werden muß, um einen stabilen Transport einer Kette von Teilchenpaketen zu ermöglichen, konnte anhand zweier, in der Betriebsfrequenz unterschiedlicher Konzepte für normalleitende Linearbeschleuniger zukünftiger Kollider gezeigt werden. Dabei wurde deutlich, daß man bei ausschließlicher Anwendung von in Bezug auf die HEM11-pi-Mode stark bedämpften Beschleunigerstrukturen zur Kontrolle des cumulativen BBU bei einer hohen Betriebsfrequenz, z.B. im X-Band (11.45 GHz), sehr unbequem niedrige Gütewerte von ca. Q=5 erreichen muß. Das ist, wie sich im praktischen Teil der vorliegenden Arbeit gezeigt hat, vom technischen Aufwand her gesehen sehr schwierig. Für einen X-Band-Kollider wird man also eine Kombination von Maßnahmen zur Kontrolle des cumulativen BBU’s bevorzugen, z.B. neben dem Bedämpfen auch das sogenannte “Detunen” der Beschleunigersektionen. Bei einem Linearbeschleuniger im S-Band (Betriebsfrequenz bei 3 GHz) befindet man sich von vornherein bei ausschließlicher Verwendung gedämpfter Strukturen in bequemeren Gütebereichen Q ungefähr gleich 20-50, was ohne weiteres praktikabel ist. Aber auch hier kann man durch Zusatzmaßnahmen die Anforderungen an die Resonatordämpfung weiter reduzieren. Als erste Methode zur Bestimmung der Güte eines störmodenbedämpften Beschleunigerresonators wurde die Chipman-Methode angewendet. Meßobjekt war hier das dreizellige Modell einer Irisstruktur mit Halbzellenabschluß. Zur Auskopplung der dominanten Störmode, der sogenannten HEM11-Mode, war die mittlere Irisblende einseitig geschlitzt. Bei diesem Modell lag die Frequenz der als Beschleunigermode vorgesehenen TM010-2pi/3-Mode etwa bei 2.35 GHz und die Frequenz der dominanten Störmode, der HEM11-pi-Mode, lag bei etwa 2.81 GHz. Die mittlere geschlitzte Irisblende war austauschbar, so daß eine Messung der durch das Dämpfungssystem belasteten Güte QL bzw. des Koppelfaktors K in Abhängigkeit von der Schlitzhöhe möglich war. Die Messungen ließen sich bei diesem Koppelsystem ohne Schwierigkeiten durchrühren, bei der größten möglichen Schlitzhöhe von 10 mm wurde auch der größte Koppelfaktor mit 46 gemessen. Bei einer vom Dämpfungssystem unbelasteten Güte von Q0=4500 korrespondiert ein Koppelfaktor von K=46 mit einer durch das Dämpfungssystem belasteten Güte von QL = 100. Ein Mangel wurde bei der Anwendung der Chipman-Methode sofort sichtbar: Durch die Anregung der HEM11-pi-Mode von der Meßleitung aus sind im Koppelsystem offenbar Störmoden angeregt worden. Liegen diese Störmoden nahe bei der zu messenden Resonanz, dann ist eine präzise Bestimmung des Koppelfaktors unmöglich. Glücklicherweise war das hier nicht der Fall. Die Messungen mit der einseitig geschlitzten Irisblende haben gezeigt, daß dieses Dämpfungssystem Anwendung finden könnte bei Beschleunigerstrukturen im S-Band. wie sie z.B beim DESY/THD-Kollider vorgeschlagen wurden. Natürlich kann bei den hier erreichten Koppelfaktoren nicht die Dämpfung der schädlichen HEM11-pi- Mode die alleinige Maßnahme sein, die einseitig geschlitzte Irisblende könnte nur zusammen mit dem Detunen angewendet werden. Da die einseitig geschlitzte Irisblende auch eine Feldasymmetrie bei der Beschleunigermode erzeugt, müssen die Dämpfer entlang einer Beschleunigersektion alternierend angebracht werden, d.h. jeder Dämpfer ist im Bezug zum nächsten Nachbardämpfer um 90° gedreht. Die 90° ergeben sich aus der Notwendigkeit, auch die Dämpfung der zweit en Polarisationsebene der HEM11-pi-Mode zu gewährleisten. Als zweite, der Chipman-Methode sehr ähnliche Methode, wurde die Kurzschlußschiebermethode angewendet. Erstes Untersuchungsobjekt war die bei der Chipman- Methode bereits erwähnte dreizeilige Irisstruktur. Ein Vorteil im Vergleich zur Chipman-Methode ist vor allem die schnelle Durchführbarkeit der Messung bei wenig experimentellem Aufwand, wenn auch die Kurzschlußschiebermethode weniger präzise ist, und man auf einige Informationen, wie z.B. der Verlauf des Reflexionsfaktors und dessen Phase, verzichten muß. Im Vergleich mit der Chipman-Methode waren die mit der Kurzschlußschiebermethode gemessenen Koppelfaktoren immer um etwa 10-15% höher. Das liegt vor allem daran, daß die Theorie zur Kurzschlußschiebermethode von einem verlustfreien Resonator-Hohlleitersystem ausgeht, so daß die nach dieser Theorie ermitteten Koppelfaktoren prinzipiell zu groß sind. Auch bei dieser Methode hat sich gezeigt, daß eine Auswertung der Meßergebnisse scheitern muß, falls ein Modenüberlapp auftritt. Bei Experimenten mit komplizierteren Dämpfungssystemen, bestehend aus mehr als vier Hohlleitern an Resonatoren mit mehr als zwei Zellen ist deutlich geworden, daß eine Bestimmung des Koppelfaktors über die Kurzschlußschiebermethode durch die entstehende Modenvielfalt praktisch unmöglich ist. Es stellte sich heraus, daß bei der Auswertung der Meßergebnisse dadurch ein Fehler entsteht, wenigstens bei sehr starker Dämpfung, daß man die Feldverteilung als konstant animmt, denn bei dem Vergleich der unbelasteten Güte Q0 mit der vom Dämpfungssystem belasteten Güte QL geht man davon aus, daß die Feldverteilungen im ungedämpften- und gedämpften Fall identisch sind. Das kann bei Koppelfaktoren im Bereich von einigen zehn bis zu einigen hundert nicht mehr zutreffen, da das Feld der Mode immer stärker in das Dämpfungssystem eindringt, je stärker die Kopplung ist. Das ändert die Modengeometrie natürlich in dramatischer Weise und die belastete Güte QL kann dann nicht mehr einfach über die Gleichung QL=Q0/(1+ K) aus den gemessenen Größen Q, und K ausgerechnet werden, da der Koppelfaktor K nun nicht mehr konstant sein kann, sondern im Gegenteil sich sehr stark ändert, je nachdem an welcher Stelle die Felder gemessen werden. Ein weiterer Mangel bei beiden Methoden ist, daß über diese Methoden weder die longitudinale noch die transversale Shuntimpedanz bestimmt werden kann. Ein Ausweg aus diesem Dilemma war die Anwendung zweier neuer Meßmethoden, die Antennenmethode und die nichtresonante Störkörpermethode. Diese beiden Methoden beruhen im Gegensatz zu den ersten beiden Methoden auf einer direkten Bestimmung der Feldpegel bzw. der transversalen Shuntimpedanz im bedämpften Resonator was den Vorteil hat, daß im Resonator genau das Feld bzw. die Shuntimpedanz vermessen wird, welches die Teilchen bei der Durchquerung des Resonators auch tatsächlich sehen. Die Antennenmethode war eine komplette Neuentwicklung, während es sich bei der nichtresonante Störkörpermethode um die Anwendung einer seit 1966 bekannten, jedoch in Vergessenheit geratenen Theorie handelte. Beide Meßmethoden konnten am Beispiel eines im Bezug auf die TM110-Mode (Frequenz bei ca. 3.2 GHz) sehr stark bedämpften Zylinderresonators (Die Frequenz der TM010-Mode lag bei ca. 2.049 GHz) erfolgreich getestet werden. Die durch das Dämpfungssystem belastete Güte QL war hier ca. 10. Bei der Bestimmung der longitudinalen elektrischen Feldstärken bzw. der longitudinalen Shuntimpedanz der TM110-Mode in Abhängigkeit vom axialen Abstand vor und nach der Bedämpfung konnten zunächst folgende Feststellungen gemacht werden: 1) Die Modengeometrie im ungedämpften- und gedämpften Fall unterscheiden sich sehr stark voneinander. Dadurch mißt man verschiedene Koppelfaktoren, je nachdem an welcher Stelle man die Felder mißt. 2) der maximal gemessene Koppelfaktor liefert über die Gleichung QL=Q0/(1+K) die richtige beklastete Güte QL. 3) Der höchste Koppelfaktor wurde bei der Feldmessung in einem Achsortabstand vom halben Radius des Zylinderresonators gemessen. Da die beiden Meßmethoden das Verhältnis der elektrischen Feldstärkequadrate in Abhängigkeit vom Meßort vor und nach der Bedämpfung liefern, konnte die zweite Feststellung nur durch eine Kontrollmessung mit Hilfe der Kurzschlußschiebermethode, die hier dank des einfachen Aufbaus leicht durchfiihrbar war, gemacht werden. Die Kurzschlußschiebermessung lieferte eine Güte QL ungefähr gleich 9, während der höchste bzw. der niedrigste mit den beiden neuen Megmethoden ermittelte Koppelfaktor mit einer Güte von QL ungefähr gleich 11 bzw. mit einer Güte von QL ungefähr gleich 14 korrespondierte, d.h. also. daß der höchste gemessene Koppelfaktor für dieses Dämpfungssystem die richtige Resonatorgüte liefert. Anhand eines zweizeiligen Resonators (Die Frequenz der TM010-2pi/3-Beschleunigermode lag bei ca. 2.35 GHz) mit beidseitig geschlitzter Irisblende als Dämpfungssystem für die HEM11-pi-Mode (ca. 3.5 GHz) konnte gezeigt werden, daß die zweite Feststellung eine Gesetzmäßigkeit bei spiegelsymmetrischen Dämpfungssystemen ist. Im Unterschied zum Zylinderresonator wurde der höchste mit der richtigen bedämpften Güte QL ungefähr gleich 37 korrespondierend Koppelfaktor K ungefähr gleich 153 jedoch direkt auf der Resonatorachse gemessen. Die bedämpfte Güte wurde auch hier wieder mit Hilfe der Kurzschlußschiebermethode kontrolliert. Ein sehr interessantes Verhalten zeigte der gleiche zweizeilige Resonator mit einseitig geschlitzter Irisblende als Dämpfungssystem. Hier korrespondierte der in der Nähe der Resonatorwand gemessene niedrigste Koppelfaktor mit der bedämpften Güte QL ungefähr gleich 230 des Resonators. In Achsennähe hingegen war der Koppelfaktor etwa dreimal höher, K ungefähr gleich 82, als aus der der Güteerniedrigung K ungefähr gleich 35 nach der Dämpfung hervorgegangen wäre, die transversale Shuntimpedanz ist also auch etwa um den Faktor 3 erniedrigt. Durch dieses Verhalten ist der einseitig bedämpfte Resonator für die Verwendung bei einem linearen Kollider im S-Band (hier muß nicht so stark bedämpft werden) interessant geworden, denn wenn nur wenige Zellen einer Beschleunigersektion mit einem Dämpfungssystem ausgerüstet werden müssen, ist es wichtig in diesen Zellen ein effektives Dämpfungssystem bei Gewährleistung eines einwandfreien Transports der Feldenergie der HEM11-pi-Mode in diese gedämpften zu haben. Das funktioniert einerseits nur, wenn sich die Resonanzfrequenz der gedämpften Zellen in Bezug auf die HEM11-pi-Mode auf die Resonanzfrequenz der benachbarten ungedämpften Zellen einstellen läßt und andererseits die mit einer Dämpfung einhergehende schlechtere Anregungsfähigkeit dieser Störmode in den gedämpften Zellen nicht zu schlecht ist. Bei einer zu starken Dämpfung wäre beides nicht möglich. Zusammenfassend kann man sagen, daß durch die Antennen- und die nichtresonante Störkörpermethode ein für die Entwicklung von störmodenbedämpften Beschleunigerresonatoren für zukünftige lineare Kollider und natürlich auch anderer Elektronenbeschleuniger sehr wirksames Instrument zur Verfügung steht. Ein detailliertes Design eines für einen bestimmten Beschleuniger passenden Dämpfungssystems ist mit Hilfe dieser Meßmethoden möglich geworden, da kleine Unterschiede zwischen verschiedenen Ausführungen von Dämpfungssystemen meßbar sind. Durch die bei der Anwendung der Meßmethoden auf unterschiedliche bedämpfte Resonatoren gefundenen Gesetzmäßigkeiten ist unter anderem auch die Frage geklärt worden, auf welche Weise ein Dämpfungssystem auch auf numerischem Wege mit Hilfe von Computerprogrammen wie z.B. MAFIA berechnet werden kann.