Refine
Year of publication
Document Type
- Doctoral Thesis (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- AlignMe (1)
- Alignment (1)
- Arzneimitteldesingn (1)
- Arzneimittelentwicklung (1)
- Bioenergetik (1)
- Carrier-Proteine (1)
- Cytochrom c Oxidase (1)
- Cytochromoxidase (1)
- EPR spectroscopy (1)
- Elektronenspinresonanzspektroskopie (1)
Institute
- Biochemie und Chemie (18)
- Biochemie, Chemie und Pharmazie (4)
- Biowissenschaften (2)
- MPI für Biophysik (1)
- Pharmazie (1)
- Physik (1)
G protein coupled receptors (GPCRs) constitute the largest family of cell-surface receptors in mammals and are key players in signal transduction. By responding to a plethora of extracellular stimuli ranging from photons to amines to fatty acids to peptides and proteins, these receptors trigger intracellular signalling cascades and regulate a variety of cellular responses. Approximately 800 genes in humans encode GPCRs which are classified according to sequence conservation into rhodopsin-like, glutamate, adhesion, frizzled/taste2 and secretin receptors. GPCRs share a seven transmembrane domain fold undergoing a conformational change upon ligand binding which is translated to the intracellular surface of the receptor thereby allowing a heterotrimeric G protein to couple. Heterotrimeric G proteins consist of a Ga, Gb and Gg subunit and dissociate into their Ga and Gbg entities upon activation by a GPCR. Subsequently, distinct signalling cascades are triggered by each G protein protomer.
Membrane proteins and GPCRs in particular, are highly important targets in drug design and development as currently approximately 60% of all marketed drugs target membrane proteins. Although these classes of proteins are of high therapeutic interest, our understanding of their mechanism of action and structure remains limited. The first structure of a human GPCR was determined in 2007 and required the development of protein engineering and innovative crystallisation techniques. Since then, approximately 130 GPCR structures of less than 40 individual receptors have been determined providing insights into the structural arrangement of the transmembrane helices, ligand binding pockets and G protein interactions. Combined with spectroscopic methods, these studies allowed a more detailed understanding of the molecular aspects of GPCR activation and signalling. Despite the tremendous advances in GPCR structural biology, certain aspects of GPCR function still remain poorly understood. Due to their size and inherent flexibility, the interaction of protein and peptide ligands with their receptors remains a challenging aspect in the structural characterisation of GPCRs. Moreover, structural information on subtype selectivity of peptide ligands continues to be scarce. To contribute functional and structural information on the molecular mechanisms of peptide interactions with GPCRs, this thesis focused on characterising receptors from the chemoattractant cluster using radioligand binding assays as well as NMR spectroscopy.
The chemoattractant cluster mainly groups the kinin, angiotensin, anaphylatoxin chemotactic complement and apelin receptors according to conserved residues in their ligand binding cavities. All receptors in this cluster bind to peptide ligands deriving from high molecular weight protein precursors upon proteolytic processing. Comparable to the conserved binding pocket of the chemoattractant receptors, the peptide ligands display a certain sequence conservation although they differ strongly in size. The largest ligands used in this thesis are the anaphylatoxins complement 3a and 5a, comprising 77 or 74 residues, respectively. Due to their size and complex fold involving three intramolecular disulphide bonds, solid phase synthesis is impossible, which prompted us to develop a modified cell-free expression system to produce these ligands in tritiated form for subsequent functional characterisation of the complement receptors. To demonstrate the versatility of the developed system, it was applied to another disulphidebond containing peptide ligand, the 21 amino acid endothelin-1. We describe a reliable and multifaceted tool to generate custom labelled peptide ligands for the structural and functional characterisation of GPCRs. The system allows the production of custom radioligands, peptides labelled for NMR studies or with fluorescent amino acids.
Apart from the modulation of GPCR activity by orthosteric ligands, GPCR signalling has long been described to be regulated by allosteric ligands including peptides, small molecules and ions. In this thesis, the influence of sodium ions on the activity state of the chemoattractant cluster receptors and in particular on the apelin, bradykinin 2 and angiotensin II type 1 receptors was examined. In recent high resolution crystal structures an allosteric sodium ion pocket beneath the orthosteric ligand binding cavity was identified and residues contributing to the coordination of sodium ions are conserved throughout the chemoattractant cluster receptors. This allosteric sodium ion coordinated within the transmembrane domain bundle has been described to negatively influence the affinity of agonists but not of antagonists. It was found that sodium ions have distinct influences on the affinity state as well as the available number of binding sites of the chemoattractant receptors. In case of the apelin and bradykinin 2 receptors, sodium ions drastically reduced the number of available binding sites whereas the affinity of peptide ligands to the bradykinin 2 receptors remained constant and the ligand binding affinities to the apelin receptor were completely abolished. In contrast, the angiotensin II type 1 receptor affinity state towards the endogenous peptide ligand angiotensin II is highly dependent on the presence of sodium ions, whereas binding of the synthetic peptide antagonist Sar1-Ile8-angiotensin II remained unaffected by the sodium ion concentration. As differential effects irrespective of the efficacy class but dependent on the amino acid composition of the applied ligands are observed, it can be concluded that electrostatic interactions between charged residues of the peptide ligands and amino acids on the extracellular surface of the receptors are influenced by sodium ions thereby adding another layer of complexity on GPCR signalling.
To elucidate the structure-function relationship of ligand selectivity between the kinin receptors, the structure of desArg10-kallidin (DAK) bound to the bradykinin 1 receptor was determined using solid state NMR (SSNMR) in the course of this thesis. The kinin peptides DAK and bradykinin bind with high affinity and high selectivity to either the bradykinin 1 or bradykinin 2 receptor, respectively. The binding pockets of the receptors are highly conserved and the two peptide ligands only differ in one amino acid at their N- and C-termini whereas the remaining eight amino acids are fully conserved. DAK adopts a U-shaped structure when bound to the bradykinin 1 receptor which resembles a horse shoe-like conformation. Using 2D TEDOR spectroscopy it could furthermore be demonstrated that positively charged residues at the N-terminal part of the peptide engage in ionic interactions with negatively charged amino acids on the extracellular surface of the bradykinin 1 receptor. In contrast, bradykinin displays a distinct b-turn at the C-terminus and an S-shaped conformation of the N-terminal segment when bound to the bradykinin 2 receptor. By using SSNMR to study the binding mode of DAK on the bradykinin 1 receptor we could determine that subtype selectivity between the kinin receptors is conferred by distinct conformational restraints within the peptide ligands and by the formation of specific ionic interaction between charged residues on the peptide and receptor, respectively.
In brief, this thesis contributes structural and functional data on the binding mechanisms and binding mode of different peptide-ligand GPCRs helping to understand subtype selectivity and allosteric modulation of the chemoattractant cluster receptors. In addition, a versatile cell-free expression system was developed that allows the custom synthesis of isotopically labelled peptides containing disulphide bonds for the functional characterisation of GPCRs.
Nicotinic acid has been used in the clinical treatment of elevated blood lipid levels for over 50 years. Although it has a beneficial effect on myocardial infarction and blood lipid profiles, its widespread use has been hampered by side effects such as skin rashes and a burning sensation on the upper body. Since elevated blood lipid levels, especially ones of VLDL and LDL cholesterol are a frequent indication and high risk factor for coronary and cardiac diseases, finding a compound with an enhanced pharmacological profile, still holding the desired effects, but without inconvenient side effects, is a very appealing aim to many pharmaceutical companies. These efforts have already produced two marketed drugs, Acipimox and Acifran, but they have not been able to overcome the restrictions already imposed on the treatment by nicotinic acid. Although proposed long before, in the year 2000 the gene for the nicotinic acid receptor in mouse PUMA-G was cloned, and in 2003 the discovery of the genes HM74 and HM74A followed, which comprise the homologous low and high affinity receptors for nicotinic acid in humans. The discovery of this G Protein-coupled receptor target allowed a more directed approach for the search of alternative compounds. This work is the first report of the heterologous overexpression of the high affinity GPCR gene HM74A in the methylotrophic yeast Pichia pastoris. The protein product, NAR1, was pharmacologically characterized, and displayed a binding affinity of 224.8 nM to its ligand nicotinic acid, showing a similar activity profile compared to those displayed in human tissue, which were determined to be 60 nM to 90 nM. Additionally, inhibitory constants (Ki) for Acifran and Acipimox were determined to be 4.5 µM and 50.5 µM, respectively. Furthermore, the total yield of NAR1 reached 42 pmol/mg membrane protein, which corresponds to 0.4 mg of receptor produced per liter yeast culture, opening up the perspective of large scale protein production to facilitate high throughput screening drug discovery efforts and structural studies. In addition, NAR1 could be solubilized in n-decyl-β-D-maltopyranoside and purified to homogeneity after immobilized metal affinity chromatography and a second affinity chromatography step on immobilized monomeric avidin, yielding a single peak on gel filtration, while the purified receptor was able to bind ligand, as shown in NMR Saturation Transfer Difference (STD) measurements. It could be shown that NAR1 is desensitized by β-arrestin 1 in vivo in confocal microscopy studies on HEK and BHK cells. This finding provides a native binding partner for the stabilization of the receptor upon solubilization and purification. Finally human β-arrestin 1 could be produced as a constitutively active variant, comprising residues 1-382 in Pichia pastoris and Escherichia coli. The purified protein was used for in vitro binding experiments and shown to be capable of interacting with NAR1. Although the interaction and formation of the complex was only possible to a limited extent, it leaves open the perspective of crystallizing NAR1 in its active conformation, bound to nicotinic acid and β-arrestin 1.
G protein-coupled receptors (GPCRs) constitute an important class of integral membrane proteins that are involved in several signaling pathways. About 50% of the currently available drugs are targeted against these receptors and high-resolution structures of these receptors will be of immense importance from the perspective of designing specific and potent drugs. However, structure determination of these receptors and of membrane proteins in general, has been a very challenging task till date. A major limitation in the structure determination of these proteins is that they are present in minute amounts in the native tissues and therefore, they must be produced heterologously. Additionally, crystallization of GPCRs is difficult owing to their flexible nature and limited hydrophilic surface area available for crystal contacts. The aim of my Ph.D. thesis work is two fold, first, to address the problem of GPCR crystallization by using a fusion protein complex approach and second, to tailor Rhodobacter sphaeroides as an expression system for the heterologous production of GPCRs. In the first approach, R. sphaeroides was used as an expression system to generate a fusion protein complex of the photosynthetic reaction center (RC) with a GPCR, expecting that such a complex would be easier to crystallize than the receptor alone. The notion behind this approach is that the RC will act as a scaffold in providing surface area to create crystal contacts and at the same time, it will also reduce the flexibility of the receptor, hopefully without perturbing the functionality of the receptor. Based on the computational modelling experiments, two ways to generate a fusion complex were assigned. Long linkers were inserted between the subunits of the RC and the GPCR. The linkers were designed with a possibility of straightforward alteration of their length as they contained a number of restriction enzyme sites. A series of these constructs were designed and expressed in R. sphaeroides deletion strain, which did not possess the chromosomal RC genes. Though most of these fusion constructs could be successfully expressed, as analyzed by western blot, majority of them were not functional in terms of ligand binding of the GPCR component of the fusion complex. Interestingly, one of these constructs, where the M subunit of RC was directly fused to the human angiotensin II type 1a receptor (AT1aR), exhibited significant functional expression. Based on saturation binding analysis using [125I] iodotyrosyl4Sar1Ile8-angiotensin II (an AT1aR subtype specific antagonist), an expression level of 40+5 pmol/mg of total membrane protein was calculated. This expression level corresponds to approximately 0.3 mg of functional receptor per liter culture and it is significantly higher than the AT1aR expression in native tissues. Additionally, the binding affinity of the recombinant receptor for its endogenous ligand angiotensin II was found to be 1±0.1 nM, which is similar to that observed for the AT1aR in native tissues. More interestingly, the RC part of the fusion complex was structurally assembled in other words, properly folded as judged by the presence of the characteristic peaks at 760 nm, 800 nm and 850 nm by absorption spectroscopy. However, a slight change in the intensity of the peak at 800 nm was observed while comparing the spectra of native RC with that in the fusion protein complex. This slight variation might be due to the change in the protein environment. The fusion protein complex RC-AT1aR was functionally solubilized and purified using a decahistidine tag fused at the c-terminus of the AT1aR. Subsequently, the monodispersity and integrity of the complex was confirmed by size exclusion chromatography, which revealed a homogeneous peak. Additionally, it was also possible to solubilize and purify this complex in the presence of a fluorescein tagged angiotensin II ligand which provides a nice tool to judge the functionality of the AT1aR and integrity of the complex at the same time. The purified RC-AT1aR fusion complex was then subjected to three-dimensional (3-D) crystallization trials and it was possible to obtain reproducible crystals of this complex. The crystals were fluorescent (as the complex was purified in presence of fluorescently labelled angiotensin II) and needle or tetragonal in shape, but produced a powdery diffraction pattern. Further attempts to improve the crystallization condition and to optimize the cryo-conditions are underway. In addition, attempts are also being made to obtain the crystals of this complex with the antagonist (e.g. losartan) bound to the receptor. In view of several limitations in the heterologous expression of GPCRs, as the second part of my Ph.D. thesis, I decided to explore the possibilities of developing a novel expression system based on R. sphaeroides for production of recombinant GPCRs. The notion behind using this host is that lack of inclusion bodies and high concentration of membranes in R. sphaeroides would result in efficient functional overexpression of recombinant membrane proteins. For this purpose, a R. sphaeroides strain, modified by the deletion of the genes encoding the RC and the light harvesting proteins LH1 and LH2, was used. The genes for RC and LHs constitute about 85-90% of total membrane proteins in a R. sphaeroides cell. These membranes are normally housed in special membrane vesicles called intracytoplasmic membranes (ICMs) that can fill almost the entire cell volume under certain growth conditions. Synthesis of a heterologous protein under the control of the moderately strong photosynthetic superoperonic promoter should be coordinated with the synthesis of new membranes to harbour these proteins, thus acting as a natural induction system. Moreover, as most of the native membrane proteins are absent in this deletion strain, heterologously produced protein should not experience a shortage of molecular chaperones for proper folding and insertion. Additionally, the absence of inclusion bodies in this host should enhance the functional and homogenous population of the recombinant proteins. Three human GPCRs, namely the adenosine A2a receptor (A2a), the angiotensin II type 1a receptor (AT1aR) and the bradykinin subtype 2 receptor (B2R) were tested for expression and functionality in this system. Two different constructs were used to determine the optimal position and ribosome-binding site (RBS) in the superoperon for the highest expression level. Of these three receptors, the AT1aR and B2R were successfully produced, while the A2aR failed to express, producing green carotenoid free R. sphaeroides mutants, for unknown reasons. For the recombinant B2R, [3H] bradykinin binding analysis revealed a low functional expression level of 0.7-0.8 pmol/mg of total membrane protein. This expression level corresponds to 0.01 mg functional receptor per liter of culture and is not sufficient for large-scale expression of this receptor. However, for the recombinant AT1aR, [125I] iodotyrosyl4Sar1Ile8- angiotensin II binding analysis revealed an expression level of 12±1 pmol/mg of total membrane protein. This expression level corresponds to approximately 0.1 mg functional receptor per liter culture and this is significantly higher than the AT1aR expression in native tissues. This expression system is still in the nascent stages of development and there are several parameters, which are still to be assessed for the optimal use of this system for the production of GPCRs and other membrane proteins. In conclusion, my Ph.D. work presents a novel fusion protein complex based approach for obtaining crystallizable GPCRs and a novel expression system for producing heterologous GPCRs. It was possible, for the first time, to produce a functional RC-GPCR complex that could easily be crystallized, though further finetuning of the system is required. R. sphaeroides based novel expression system was successfully used to produce functional human GPCRs under the control of a moderately strong photosynthetic superoperonic promoter. This expression system represents a naturally induced system where the expression of a heterologous protein is coordinated with the synthesis of new membranes to harbour the recombinant protein. The fusion protein complex approach and the expression system presented here can hopefully be used as a general method to facilitate the expression and crystallization of other membrane proteins.
Purification and characterization of heterologously produced cannabinoid receptor 1 and G proteins
(2007)
G protein coupled receptors form the largest group of transmembrane proteins, which are involved in signal transduction and are targeted directly or indirectly by 40-50% of the drugs in the market. Even though a lot of biochemical and pharmacological information was acquired for these receptors in the past decades, structural information is still insufficient. G protein coupled receptors are expressed in a very minute scale in the tissues. Purification of G protein coupled receptors, in amounts needed for structural studies, from native tissue is tedious and almost impossible. To overcome this first hurdle of insufficient protein, several heterologous protein expression systems are being used. Another difficulty in structural determination of a G protein coupled receptor is that it is a membrane protein. Membrane proteins are difficult targets for structural studies. One of the possible reasons is the little hydrophilic surface area on the membrane protein, reducing the chances of crystal contact between the molecules. The present work is an attempt to investigate possible ways to overcome these problems. Aim of the project was to use G proteins to increase the hydrophilic area of the G protein coupled receptor. G protein is a physiological partner to the G protein coupled receptor which makes the complex functionally relevant. In the present work five G alpha proteins were purified to homogeneity by a two step purification using metal affinity and ion-exchange chromatography. The G alpha subunits purified were tested for their detergent susceptibility. It was found that only some G proteins were active in the presence of detergent. Observation from contemporary reports also suggest that the G alpha proteins expressed in Escherichia coli, alone may not be sufficient to bind to the G protein coupled receptors in solution. So the project was extended towards expressing a G protein coupled receptor which was reported to exist in a complex with the G proteins, in the cells. Purifying such a functional complex could be more beneficial to use for crystallization. Cannabinoid receptors were chosen for heterologous expression and purification. Production of recombinant cannabinoid receptor 2 was investigated in Pichia pastoris. The protein obtained was highly heterogenous. There were several oligomeric forms as well as degradation products in the cell membranes. Most of the protein was lost in the purification steps leading to a poor yield. Several oligomeric forms and other impurities were still present in the protein sample after purification. Alternatively, a baculovirus mediated insect cell expression system was investigated, to produce the receptors. Cannabinoid receptor 1 was investigated in insect cell expression system because of its better biochemical understanding and pharmacological importance than cannabinoid receptor 2. Cannabinoid receptor 1 was produced in two forms, a full length and a distal carboxy terminal truncated version. All the several gene constructs made could be expressed in the Spodoptera frugiperda (Sf9) insect cells. Expression levels (Bmax) for the constructs with a decahistidine tag at the amino terminus and Strep-tagII at the carboxy terminus were 40 pmol/mg and 53 pmol/mg respectively, for full length and truncated versions. These expression levels are 2 fold higher than the levels reported till now in the literature. As was quite evident from previous experiences of other research groups, purification of this receptor was a challenge. Protein purified from immobilized metal affinity chromatography (Ni-nitrilo tri acetate)(Ni-NTA) was not even 50% pure. A second purification by immobilized monomeric avidin or Streptactin agarose, making use of Biotag and StreptagII respectively, drastically reduced the protein recovery. Later on, purification of receptor was investigated on different metal chelating resins. His-Select, a Ni-NTA based matrix from Sigma, with much lesser density than Ni-NTA from Qiagen, showed a better purification profile. Purification was optimized to get 80% homogeneity but with low yield (20%). Further efforts are needed to improve the yield and purity of the receptor, to use it for crystallization. Cannabinoid receptors are known to exist in a precoupled form to G proteins in the cells. The existence of such precoupled forms of the receptor was investigated using the fluorescence techniques. Guanosine-5-triphosphate binding assay on the cell membranes, in the absence of agonists confirmed the active precoupled form of the receptor. It was found that it is possible to co-immunoprecipitate the complex. These results show that the truncated cannabinoid receptor can be produced in functional form in insect cells in much higher yields than reported. This receptor exists as a complex with G proteins even in the absence of ligands. It was also shown that the receptor/G protein complex can be coimmunoprecipitated. Further work is required to investigate the possibility of purifying this complex to use it for co-crystallization.
G-protein coupled receptors (GPCRs) comprise the largest superfamily of cell surface receptors and possess a signature motif of seven transmembrane helices. The endothelin B (ETB) receptor is a member of rhodopsin like GPCR family. It plays an important role in vasodilation and is found in the membranes of the endothelial cells enveloping blood vessels. Knowledge of the three-dimensional structure of G-protein coupled receptors in general would significantly add to our understanding of their molecular mechanisms and would be useful in the search for new specific drugs. However, three-dimensional structural analysis will require milligram quantities of pure and homogeneous protein. This dissertation is a study of the production, biochemical characterization and preliminary structural studies of the human ETB G-protein coupled receptor. The present work aimed at elucidating the structure and mechanistic details of function of the receptor by using a combination of X-ray crystallographic and NMR methods for collecting structural data. To obtain homogenous and monodisperse receptor protein preparation for structural and functional studies, we implemented the baculovirus expression system for the production of ETB receptor for the present work. The two step affinity purification ensured capture of full-length receptor. Silver stained SDS-PAGE of the purified receptor-ligand complex indicated greater than 90% protein purity. Based on previous reports, we used the high affinity ligand (endothelin -1) binding to the receptor for co-crystallization of receptor-ligand complex by locking the receptor in the activated conformation. As a prerequisite for 3D crystallization trials, the stability of the detergent solubilized receptor-ligand complex was assessed with respect to pH, temperature and time. Receptor-ligand complex did not show any degradation and aggregation over 6 days at 4°C and 18°C. Interestingly, change of pH suggested that receptor-ligand complex is unstable at lower pH due to possible charge induced conformational changes. In our work, we introduced the idea of using fluorophore labeled ligand for simple visual recognition of the receptor-ligand complex during purification and crystallization. On the other hand, we alternatively used biotinylated endothelin-1 to produce an adequate amount of ligand bound receptor complex, thus ensuring homogeneity of the purified complex for use in structural studies. Thus far, preliminary crystals have been obtained for both the unlabelled ET-1 and fluorophore labeled ET-1 complexed with ETB receptor. Moreover, we performed the systematic investigation of the protein/peptide binding partner for the receptor-ligand complex with the chief aims of stabilizing structure and increasing the possibilities of 3D-crystal contacts. Thus subsequent to formation of receptor-ligand complex, the additional in vitro formation of a ternary arrestin-receptor-ligand complex was also attempted for use in structural studies. We successfully demonstrated that arrestin mutant (R169E) forms a tight complex with ETB receptor regardless of its phosphorylation state. A second approach to get insight into the ETB receptor ligand binding site relied on the use of spin isotope labeled ET-1 ligand peptide by employing solid state MAS NMR method. Preliminary data provided compelling evidence that the C-terminal region of the peptide is immobilized in an ordered environment and presumably bound to the receptor. This indicates that the approach is feasible, although there are difficulties in sample preparation for further spectral measurements and data collection which are currently being discussed in ongoing investigations. At this point of our research work, we initiated a collaborative effort to obtain high yields of pure, active receptor without post translational modifications, from an E. coli cell lysate based in vitro expression system. We successfully optimized the production of homogenous and monodisperse endothelin B receptor in mg amounts. Thus this could potentially provide an alternative source of high quality receptor production in large quantities for immediate crystallization trials. Thus we hope that the results from these investigations can be applied in a more general sense to the production and crystallization of other G protein-coupled receptors.
Sodium proton antiporters are ubiquitous membrane proteins found in the cytoplasmic and organelle membranes of cells of many different origins, including plants, animals and microorganisms. They are involved in cell energetics, and play primary roles in the homeostasis of intracellular pH, cellular Na+ content and cell volume. Adaptation to high salinity and/or extreme pH in plants and bacteria or in human heart muscles requires the action of such Na+/H+ antiporters. NhaA is the essential Na+/H+ antiporter for pH and Na+ homeostasis (at alkaline pH) in Escherichia coli and many other enterobacteria. NhaA is an electrogenic Na+/H+ antiporter that exchanges 2H+ for 1Na+ (or Li+). NhaA shares with many other prokaryotic and eukaryotic antiporters a very strong dependence on pH. In order to achieve three-dimensional structure of NhaA, the previously described NhaA protein preparation was modified: (i) the wild type bacterial strain (TA16) used for homologous over-expression of NhaA was replaced with a delta nhaA strain (RK20). As a result, the purity and homogeneity of the sample was significantly improved; (ii) the previously two-step purification procedure was shortened to a single step affinity chromatography purification; (iii) a wide-range screening of crystallisation conditions, more than 20,000, was performed; (iv) a Seleno-L-methionine (SeMet) NhaA derivative was produced in order to solve the phases during structure determination. In parallel, attempts of production and crystallisation of co-complexes composed of NhaA and antibody fragments have been made. Four different monoclonal antibodies were available against NhaA. Selected antibody fragments were produced and the stability of the complex analysed. Here, the crystal structure of the pH down-regulated secondary transporter NhaA of Escherichia coli is presented at 3.45 Å resolution. A negatively charged ion funnel opens to the cytoplasm and ends in the middle of the membrane at the putative ion-binding site. There, a unique assembly of two pairs of short helices connected by crossed, extended chains creates a balanced electrostatic environment. A possible mechanism is proposed: the binding of charged substrates causes electric imbalance inducing movements, which allow for a rapid alternating access mechanism. This ion exchange machinery is regulated by a conformational change elicited by a pH signal perceived at the cytoplasmic funnel entry. The structure represents a novel fold that provides two major insights: it reveals the structural basis for the mechanism of Na+/H+ exchange and its unique regulation by pH in NhaA and in many other similar antiporters. Furthermore, it is also important for the understanding of the architecture of membrane proteins in general. However, although many aspects of the ion-translocation mechanism and pH regulation are clarified by the NhaA structure, higher resolution structures with Li+ or Na+ bound are required for understanding the ligand binding and the translocation mechanism at the atomic level. The alkaline pH-induced conformation is essential to further understand the pH-control and proton access to the binding site.
Die Cytochrom c Oxidase von Paracoccus denitrificans katalysiert die Reduktion von Sauerstoff zu Wasser und „pumpt“ zusätzlich vier Protonen von der cytoplasmatischen Seite auf die periplasmatische Seite der Cytoplasmamembran. Die Spaltung des molekularen Sauerstoffes im binuklearen Zentrum erfolgt im katalytischen Zyklus des Enzyms bei der Umwandlung des Intermediates A, in welchem molekularer Sauerstoff an das Häm a3 Eisen gebunden ist, in das Intermediat PM durch spontane elektronische Umorganisation. Drei der dazu benötigten vier Elektronen werden von den Metallzentren geliefert. Das vierte Elektron wird sehr wahrscheinlich von einer Aminosäure in der Nähe des binuklearen Zentrums durch Bildung eines Aminosäureradikals beigesteuert. Dieses Radikal sollte in den Intermediaten PM und F• des katalytischen Zyklus der Cytochrom c Oxidase vorhanden sein. Durch Reaktion von stöchiometrischen Mengen an Wasserstoffperoxid mit dem vollständig oxidierten Enzym lassen sich PM; F• und F-Intermediate künstlich erzeugen und durch ihre Maxima in Absorptionsdifferenzspektren charakterisieren. Mit paramagnetischer Elektronenresonanzspektroskopie (EPR-Spektroskopie) können Struktur und Dynamik paramagnetischer Zentren in Proteinmolekülen untersucht werden. Mit dieser Methode konnte in mit Wasserstoffperoxid generierten PM und F•-Intermediaten ein Tyrosinradikal nachgewiesen werden. Der Schwerpunkt der vorliegenden Arbeit war die Identifikation dieses Tyrosins mittels einer Mutagenesestudie. Dazu wurden Tyrosinvarianten (Y35F, Y167F, Y267F, Y280H, Y328F und Y414F) aus Untereinheit I, die einen maximalen Abstand von 25 Angström vom binuklearen Zentrum aufweisen, mit Hilfe von Absorptions- und EPR-Spektroskopie charakterisiert. Auf diese Weise konnte nachgewiesen werden, dass Tyrosin 167 eindeutig der Ursprungsort des Tyrosinradikals ist, das bei der Generierung von PM- und F•-Intermediaten der Cytochrom c Oxidase mit Wasserstoffperoxid entsteht. Da die Variante Y167F jedoch eine hohe katalytische Aktivität aufwies und in der Lage war, die Oxoferrylintermediate PM; F• und F zu bilden, konnte gleichzeitig gezeigt werden, dass dieses Tyrosin nicht der primäre Donor des vierten Elektrons sein kann, das im katalytischen Zyklus des Enzyms für die Spaltung der Sauerstoffbindung benötigt wird. Diese Ergebnisse wurden dahingehend interpretiert, dass Tyrosin 167 eine thermodynamische Senke darstellt, in die das von einem unbekannten kurzlebigen Elektronendonor bei der Wasserstoffperoxidreaktion gebildete Radikal verschoben wird. Als Donor des vierten Elektrons für die Sauerstoffspaltung kommt auch Tryptophan 272 infrage. Daher wurde auch die Variante W272M spektroskopisch charakterisiert. Diese Variante war katalytisch inaktiv und nicht in der Lage in Reaktion mit Wasserstoffperoxid die Intermediate PM, F• und F zu bilden. Es ließen sich weder das Tyrosin-167-Radikal noch ein anderes Radikal nachweisen. Diese Ergebnisse sprechen dafür, dass Tryptophan 272 möglicherweise der ursprüngliche Donor des vierten Elektrons für die Sauerstoffspaltung im katalytischen Zyklus der Cytochrom c Oxidase sein könnte. Während des PM zu F-Übergangs im katalytischen Zyklus der Cytochrom c Oxidase werden zwei Protonen gepumpt. Diese können vom Enzym entweder über den D-Weg oder den K-Weg aufgenommen werden. Eine Untersuchung des PM zu F-Übergangs von D-Weg- und K-Weg-Varianten der Cytochrom c Oxidase kann Aufschluss über die Beteiligung der beiden Protonenaufnahmewege des Enzyms an diesem Schritt des katalytischen Zyklus geben. Daher wurde die Reaktion der D-Weg Varianten D124N, N131D, Y35F und E278Q und der K-Weg Variante K354M mit Wasserstoffperoxid absorptionsspektroskopisch untersucht. Durch diese Experimente konnte die zentrale Bedeutung des D-Weges für die Protonentranslokation im PM zu F-Übergangs bestätigt, aber auch ein gewisser Einfluss des K-Weges nicht ausgeschlossen werden. Außerdem wurde der PM zu F-Übergang der Variante R437N, die eventuell Teil des noch nicht konkret identifizierten Protonenaustrittsweg der Cytochrom c Oxidase ist, untersucht.
Membrane proteins play vital role in a variety of cellular processes, such as signal transduction, transport and recognition. In turn they are involved in numerous human diseases and currently represent one of the most prevalent drug targets. A comprehensive understanding of the mechanisms mediated by membrane proteins requires information about their structures at near-atomic resolution, although structural studies of membrane proteins remain behind those of soluble proteins. A bottleneck in the study of membrane proteins resides in the difficulties that are encountered during their high-level production in cell based systems. However, many toxic effects attributed to the over production of membrane proteins are eliminated by cell-free expression, as viable host cells are no longer required. Therefore, the objective of this study was to obtain adequate amounts of selected membrane transport proteins for their structural studies using a cell-free expression system. For the establishment of the cell-free system for membrane proteins, the transporters YbgR and YiiP from Salmonella typhimurium LT2, PF0558 and PF1373 from Pyrococcus furiosus, from the cation diffusion family (CDF), BetP from Corynebacterium glutamicum from the betaine/carnitine/choline transporter (BCCT) family and Aq-2030 from Aquifex aeolicus VF5 from the monovalent cation/proton antiporter-2 (CPA2) family were selected. An Escherichia coli S-30 extract based cellfree system was established by generating the best expression constructs of the target proteins, preparing T7 RNA polymerase and an S-30 extract with high translation efficiency. The functionality of the S-30 extract was shown by the cell-free expression of correctly folded Green Fluorescent Protein (GFP). Essential factors of the cell-free system such as the Mg2+ concentration, the bacterial S-30 extract proportion in the reaction mixture and the time-course of cell-free reactions have been optimized. For the cell-free production of membrane proteins in soluble form, the possibility to supplement cell-free reactions with detergents was explored. A wide range of non-ionic or zwitterionic detergents, were found to be compatible with cell-free synthesis, while ionic detergents and non-ionic detergents at high concentrations had an inhibitory effect. Moreover, high concentrations of polyoxyethylene-alkyl-ethers (Brij) detergents were found to have enhancing effect on the production levels as well as on the solubility of cell-free produced proteins. As membrane proteins tend to misfold and aggregate in a membrane-free translation system, the possibility to supplement the cell-free reactions with inner membrane vesicles (IMVs) to obtain correctly folded target transport proteins was explored. All the target proteins were successfully produced in the batch cell-free reactions and were found to be incorporated in the IMVs. A continuous exchange cell-free (CECF) system was established, where consumable substrates (amino acids, nucleotides and energy regenerating compounds) were supplied to the cell-free reaction mixture through a dialysis membrane, which in consequence resulted in high-level production of target proteins compared to the batch system. The osmosensing and osmoregulated sodium-coupled symporter BetP from C. glutamicum was chosen for the large scale production in CECF set-up. The protein is easily produced in E. coli and is functional as assayed by its transport activity, after purification and reconstitution in liposomes. It is therefore possible to compare in-vivo and cell-free production. High-level cell-free production of BetP was achieved in CECF mode in different forms: (i) as precipitate, (ii) as soluble form in detergent, and (iii) incorporated in IMVs. Cell-free production of BetP resulted in the yield of about 0.5 mg of purified BetP from 1 ml of CECF reaction. The yield of purified BetP was increased to 1.6 fold by addition of 1% polyoxyethylene-(20)-cetyl-ether (Brij58) detergent in the reaction mixture. Moreover, the high level cell-free production of BetP (0.5 mg purified BetP/ml reaction mixture) incorporated in IMVs was shown for the first time in this work.However, it was observed that oligomerization of BetP was not efficient in the cell-free system. Factors that can promote the folding of membrane proteins such as lipids and chaperones were investigated. Addition of lipids and molecular chaperone GroE facilitated correct folding of BetP resulting in increased yield and stability of cell-free produced BetP. The results obtained indicate that most of the cell-free produced BetP exists in functional oligomeric form. The possibility of obtaining milligram amounts of BetP, a 12 trans-membrane protein from the cell-free reactions holds promise for structural and functional studies of other membrane proteins. In any case, the strategies adapted in this study should prove extremely valuable for the production of membrane proteins in the E. coli cell-free expression system.