Refine
Year of publication
Document Type
- Doctoral Thesis (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Cytochromoxidase (2)
- Protonentransfer (2)
- Absorptionsspektroskopie (1)
- AlignMe (1)
- Alignment (1)
- Arzneimitteldesingn (1)
- Arzneimittelentwicklung (1)
- Atemwege (1)
- Bioenergetik (1)
- Cardiolipin (1)
Institute
- Biochemie und Chemie (23)
- Biochemie, Chemie und Pharmazie (5)
- Biowissenschaften (2)
- Physik (2)
- MPI für Biophysik (1)
- Pharmazie (1)
G-protein coupled receptors (GPCRs) comprise the largest superfamily of cell surface receptors and possess a signature motif of seven transmembrane helices. The endothelin B (ETB) receptor is a member of rhodopsin like GPCR family. It plays an important role in vasodilation and is found in the membranes of the endothelial cells enveloping blood vessels. Knowledge of the three-dimensional structure of G-protein coupled receptors in general would significantly add to our understanding of their molecular mechanisms and would be useful in the search for new specific drugs. However, three-dimensional structural analysis will require milligram quantities of pure and homogeneous protein. This dissertation is a study of the production, biochemical characterization and preliminary structural studies of the human ETB G-protein coupled receptor. The present work aimed at elucidating the structure and mechanistic details of function of the receptor by using a combination of X-ray crystallographic and NMR methods for collecting structural data. To obtain homogenous and monodisperse receptor protein preparation for structural and functional studies, we implemented the baculovirus expression system for the production of ETB receptor for the present work. The two step affinity purification ensured capture of full-length receptor. Silver stained SDS-PAGE of the purified receptor-ligand complex indicated greater than 90% protein purity. Based on previous reports, we used the high affinity ligand (endothelin -1) binding to the receptor for co-crystallization of receptor-ligand complex by locking the receptor in the activated conformation. As a prerequisite for 3D crystallization trials, the stability of the detergent solubilized receptor-ligand complex was assessed with respect to pH, temperature and time. Receptor-ligand complex did not show any degradation and aggregation over 6 days at 4°C and 18°C. Interestingly, change of pH suggested that receptor-ligand complex is unstable at lower pH due to possible charge induced conformational changes. In our work, we introduced the idea of using fluorophore labeled ligand for simple visual recognition of the receptor-ligand complex during purification and crystallization. On the other hand, we alternatively used biotinylated endothelin-1 to produce an adequate amount of ligand bound receptor complex, thus ensuring homogeneity of the purified complex for use in structural studies. Thus far, preliminary crystals have been obtained for both the unlabelled ET-1 and fluorophore labeled ET-1 complexed with ETB receptor. Moreover, we performed the systematic investigation of the protein/peptide binding partner for the receptor-ligand complex with the chief aims of stabilizing structure and increasing the possibilities of 3D-crystal contacts. Thus subsequent to formation of receptor-ligand complex, the additional in vitro formation of a ternary arrestin-receptor-ligand complex was also attempted for use in structural studies. We successfully demonstrated that arrestin mutant (R169E) forms a tight complex with ETB receptor regardless of its phosphorylation state. A second approach to get insight into the ETB receptor ligand binding site relied on the use of spin isotope labeled ET-1 ligand peptide by employing solid state MAS NMR method. Preliminary data provided compelling evidence that the C-terminal region of the peptide is immobilized in an ordered environment and presumably bound to the receptor. This indicates that the approach is feasible, although there are difficulties in sample preparation for further spectral measurements and data collection which are currently being discussed in ongoing investigations. At this point of our research work, we initiated a collaborative effort to obtain high yields of pure, active receptor without post translational modifications, from an E. coli cell lysate based in vitro expression system. We successfully optimized the production of homogenous and monodisperse endothelin B receptor in mg amounts. Thus this could potentially provide an alternative source of high quality receptor production in large quantities for immediate crystallization trials. Thus we hope that the results from these investigations can be applied in a more general sense to the production and crystallization of other G protein-coupled receptors.
Die vorliegende Arbeit befaßte sich mit der Untersuchung der Protonenbewegung während des O-E Schrittes im katalytischen Zyklus der Cytochrom-c-Oxidase von P. denitrificans. Die Zuordnung der Protonenbewegung zu den einzelnen Schritten des katalytischen Zyklus der Cytochrom-c-Oxidase ist immer noch ein Gegenstand zahlreicher Kontroversen. Obwohl von Ruitenberg et al. (2000) durch Spannungsmessungen gezeigt wurde, daß die Reduktion von Häm a während des ersten Elektrontransfers in das oxidierte Enzyme eine schnelle Protonenaufnahme von der gegenüberliegenden Seite der Membran bewirkt, wurden diese Ergebnisse angezweifelt. Daher sollte mit einer unabhängigen und direkten Methode herausgefunden werden, ob Protonen bereits während des ersten Schrittes des katalytischen Zyklus aufgenommen werden. Dazu wurde ns-zeitaufgelöste Blitzlicht-Absorptionsspektroskopie in Kombination mit pH-sensitiven Farbstoffen genutzt, und zwar sowohl mit Fluorescein kovalent an der Proteinoberfläche gebunden als auch mit Phenolrot löslich im Medium vorliegend. Zur kovalenten Kopplung von thiolreaktiven Farbstoffen mußten zuerst die nötigen Voraussetzungen geschaffen werden. Dazu wurde in dieser Arbeit ein Mutagenesesystems für sowohl Untereinheit I als auch Untereinheit II etabliert und eine oberflächencysteinfreie Variante und elf Einzelcystein-Varianten hergestellt, exprimiert und aufgereinigt sowie die Enzymaktivitäten überprüft. Danach wurde ein Protokoll zur Kopplung der Einzelcysteinvarianten mit Iodoacetamidfluoresein ausgearbeitet und die Varianten Fluorescein-markiert. Dabei zeigte es sich, daß nur sieben Varianten erfolgreich mit IAF reagierten. Mittels dieser AF-markierten Varianten konnte die Pufferkapazität an der Oberfläche der Cytochrom-c-Oxidase bestimmt werden. Es zeigte sich, daß die Pufferkapazität des Enzyms in Lösung im Vergleich zu Bakteriorhodopsin dreimal so groß ist, an der Oberfläche sogar 10-15mal so groß. Dies deutet auf eine hohe Anzahl protonierbarer Gruppen um die für die Markierung ausgewählten Aminosäuren im Bereich der Eintrittsstellen der Protonen hin. Die gezielte Übertragung eines Elektrons auf die Cytochrom-c-Oxidase erfolgte durch Licht anregbare Rutheniumkomplexe. In unserem Meßsystem war die Elektronentransfereffizienz von [Ruthenium(2,2‘-bipyridin)2]2quarterpyridin am höchsten. Nach einer sorgfältigen Optimierung der Meßbedingungen wie pH-Wert, Ionenstärke und Energie des Lasers konnte eine 10-15 %ige Reduktion von Häm a mit einer Zeitkonstanten von t = 13,7 ± 2,4 µs nachgewiesen werden. Die Protonenkonzentrationsänderungen im Medium konnten durch Phenolrot verfolgt werden. Durch den Vergleich von Funktionsvarianten, bei denen jeweils einer oder beide Protoneneingangswege blockiert sind, konnte ein Modell für die Protonenaufnahme und -abgabe während der Einelektronen-Reduktion der Cytochrom-c-Oxidase entwickelt werden. Dies konnte durch Messungen an in Liposomen inkorporierter wt Cytochrom-c-Oxidase verifiziert werden. Die Nettoprotonenaufnahme von der N-Seite der Cytochrom-c-Oxidase beträgt somit 0,3 H+ für das im O-E Schritt aufgenommene Elektron. Die Variante CS-I302C-AF wurde dazu genutzt, die Oberflächenladungsdichte an der N-Seite der Cytochrom-c-Oxidase zu bestimmen. Die Oberflächenladungsdichte auf der N-Seite des Enzyms in der Nähe zum Eingang des K-Wegs ist negativ und beträgt 0,5 e-/1000 Å2.
Cytochrome c oxidase (CcO), also called Complex IV of the aerobic respiratory chain, is located in the plasma membrane of prokaryotes and in the inner mitochondrial membrane of eukaryotes. The redox energy of dioxygen reduction is used to translocate protons across the membrane resulting in an electrochemical proton gradient. The generated proton gradient is exploited by the adenosine-5’-triphosphate synthase. In this work, bacterial four-subunit aa3-Type CcO from Paracoccus denitrificans (ATCC 13543, 4 SU-wt ATCC CcO) was used for analyses. 1) The recombinant homologously produced 4 SU-wt CcO (4 SU-wt rec CcO) was functionally compared with the native 4 SU-wt ATCC CcO. The 4 SU-wt rec CcO showed functional deficiencies as determined by UV-vis spectroscopy and electron paramagnetic resonance (EPR) studies. Total X-ray Reflection Fluorescence measurements show in both wild type CcOs the same ratio of the redoxactive Fe and Cu (2 Fe : 3 Cu) indicating full complement of the functional metals. If CcO contains only subunit I and II, it loses its functional integrity during continuous turnover activity. The importance of subunit III for integrity of CcO was demonstrated using 2 SU-wt rec CcO. Crystallisation trials of suicide inactivated 2 SU-wt rec CcOs have been ineffective using standard crystallisation conditions. Crystals of active 2 SU-wt rec CcO (positive control) have been obtained under these conditions and this result indicates possible structural changes in suicide inactivated 2 SU-wt rec CcO. The structure of active 2 SU-wt rec CcO was determined to 2.25 Å resolution. 2) Terminal oxidases require four electrons for the cleavage of the dioxygen bond (O=O). In general, the catalytic cycle of CcO is described by the electron input and thus by the different redox states of the metal centres: the O, E, R, P and F state. The two-electron reduced R intermediate is able to donate four electrons for dioxygen reduction forming the P state. The P intermediate is an oxoferryl state implying the lack of an electron for the R -> P transition, because the metal centres can only provide three electrons (Fe+II forms Fe+IV and Cu+II forms Cu+I). The P state, where the dioxygen bond is already broken, shows an oxoferryl state (FeIV=O2-) and a nearby tyrosine is proposed to form a tyrosyl radical representing the donor of the missing electron. H2O2-induced artificial intermediates provide the opportunity to investigated different catalytic intermediates in detail. Mixing equimolar amounts of H2O2 to CcO in the O state induces the "two-electron" reduced PH state at high pH and the electronically equal "two-electron" reduced F• H state at low pH. The addition of an excess amount of H2O2 leads to the three-electron reduced FH state. Functional studies using the 4 SU-wt ATCC CcO have demonstrated a bound peroxide (O- - O-) intermediate during the catalytic cycle. Using EPR it was previously shown that Y167 hosts a radical species in PH/F• H state which suggests that Y167 could provide this "missing electron". While X-ray structural models of CcO and Fourier-transformed infrared (FTIR) measurements of oxygenated ("pulsed") 4 SU-wt ATCC CcO suggest a bound peroxide in the O state, UV-vis and EPR spectroscopic studies indicate that other intermediates may also contain such peroxide species. Equimolar and excess amounts of H2O2 induce the PH/F• H and FH states, respectively and catalase treatment of the FH state leads, contrary to the natural direction of the catalytic cycle, to the apparent transition of the FH -> PH/F• H states, which is accompanied by reappearance of an EPR signal from the Y167• radical. The novel PFH/F• FH states are presented here and we postulate that the FH state hosts a superoxide (or peroxide) adduct at CuB in the binuclear site. In addition, the novel P10 state is also introduced having a maximum at lambda = 612 nm in the difference absorption spectrum (minus the O state). The P10 state is induced by mixing CcO in the O state with a pH 10 buffer. This pH 10 induced state resembles standard P states such as PCO, PH and PR. However, the P10 state evolves out of the O state without addition of reduction equivalents. Using EPR spectroscopy it was shown that Y167 hosts a radical species in the P10 state such as in the PH state. In summary, all functional data presented here provide evidence for a peroxide bound during the O state. Finally, a new model for the natural catalytic cycle is proposed. If the O state contains a peroxide, it is also likely that the E and R state contain this species. Even the oxoferryl intermediates P and F states may complex a peroxide at CuB in the binuclear site. 3) The amino acid residue Y167, which hosts the radical in the PH/F•H states, is not directly part of the binuclear site of CcO. For identification of the primary electron donor, two tryptophan variants of CcO, W272F and W164F, which are located nearby the binuclear site, were produced. Evidence is provided that W272 is a kinetically fast electron donor for the O2 molecule. The electron is replenished by Y167, or probably by Y280 in the natural cycle. The Y167 radical is detectable by EPR spectroscopy after treatment with equimolar amounts of H2O2 in the active variant W164F, but is absent in the inactive variant W272F. 4) CcO contains two proton conducting pathways, the D- and the K-pathway. Proteoliposomes of the variants H28A and D30N, mutations located at the entrance of the D-pathway, both show the identical proton pumping activity as the 4 SU-wt rec CcO (pumped H+/e- = 1). The variant N113D shows abolished proton pumping (pumped H+/e- = 0), but a relative high cytochrome c oxidation activity (63 %). G196D displays no cytochrome c oxidation and proton pumping activity. Overall, the addition or removal of a negative charge within the D-pathway such as in D124N, N131D, N113D and G196D leads to a decoupled phenotype indicating the high degree of electrostatic coupling in CcO.
The endothelin B receptor belongs to the rhodopsin-like G-protein coupled receptors family. It plays an important role in vasodilatation and is found in the membranes of the endothelial cells enveloping blood vessels. During the course of this work, the production of recombinant human ETB receptor in yeast, insect and mammalian cells was evaluated. A number of different receptor constructs for production in the yeast P. pastoris was prepared. Various affinity tags were appended to the receptor N-and C-termini to enable receptor detection and purification. The clone pPIC9KFlagHisETBBio, with an expression level of 60 pmol/mg, yielded the highest amount of active receptor (1.2 mg of receptor per liter of shaking culture). The expression level of the same clone in fermentor culture was 17 pmol/mg, and from a 10L fermentor it was possible to obtain 3 kg of cells that contained 20-39 mg of the receptor. For receptor production in insect cells, Sf9 (S. frugiperda) suspension cells were infected with the recombinant baculovirus pVlMelFlagHisETBBio. The peak of receptor production was reached at 66 h post infection, and radioligand binding assays on insect cell membranes showed 30 pmoL of active receptor /mg of membrane protein. Subsequently, the efficiency of different detergents in solubilizing the active receptor was evaluated. N-dodecyl-beta-D-maltoside (LM), lauryl-sucrose and digitonine/cholate performed best, and LM was chosen for further work. The ETB receptor was produced in mammalian cells using the Semliki Forest Virus expression system. Radioligand binding assays on membranes from CHO cells infected with the recombinant virus pSFV3CAPETBHis showed 7 pmol of active receptor /mg of membrane protein. Since the receptor yield from mammalian cells was much lower than in yeast and insect cells, this system was not used for further large-scale receptor production. After production in yeast and insect cells, the ETB receptor was saturated with its ligand, endothelin-1, in order to stabilize its native form. The receptor was subsequently solubilized with n-dodecyl-beta-D-maltoside and subjected to purification on various affinity matrices. Two-step affinity purification via Ni2+-NTA and monomeric avidin proved the most efficient way to purify milligram amounts of the receptor. The purity of the receptor preparation after this procedure was over 95%, as judged from silver stained gels. However, the tendency of the ETB receptor produced in yeast to form aggregates was a constant problem. Attempts were made to stabilize the active, monomeric form of the receptor by testing a variety of different buffer conditions, but further efforts in this direction will be necessary in order to solve the aggregation problem. In contrast to preparations from yeast, the purification of the ETB receptor produced in insect cells yielded homogeneous receptor preparations, as shown by gel filtration analysis. This work has demonstrated that the amounts of receptor expressed in yeast and insect cells and the final yield of receptor, isolated by purification, represent a good basis for beginning 3D and continuing 2D crystallization trials.
G-protein-coupled receptors (GPCRs) from the largest family of receptors in the human body. They contain seven transmembrane helices. There are roughly 800-900 GPCR genes expressed in humans encoded by 4-5% of the human genome. These receptors are the most important signal transducers and play a crucial role in cell physiology and pathology, by using various extracellular stimuli to start complex intracellular signaling. GPCRs interact with a wide variety of stimuli from small molecules (photons, ions, amines) to large molecules (peptides, small proteins), and trigger downstream cascade effects by interacting with G-proteins, GPCR kinases, and ß-arrestin. Because of their crucial roles in many cellular functions, GPCRs are the most important drug targets for the pharmaceutical industry. Approximately 30% of the clinically approved drugs available in the market are against GPCRs. In this work achieved successful expression and purification of GPCRs from class-C and class-A families. Combined with biochemical experiments, DNP-ssNMR, and molecular simulation helped to decipher the mechanism of crosstalk between the allosteric modulator, and the orthosteric binding sites of the peptide receptor. The main findings and major highlights of this dissertation are outlined in the following paragraphs.
The calcium-sensing receptor (CaSR) belongs to the GPCR class-C family and contains a large extracellular domain. This receptor regulates Ca2+ homeostasis in blood and its absorption in the kidney and bone. To understand the molecular and structural mechanisms of these receptors their cDNAs were cloned into the pPICZ and pOET1 vectors to express them in Pichia pastoris and in Sf9 insect cells respectively. The CaSR was successfully expressed heterologously in Pichia pastoris and in the insect cell with high yield. The purified receptor purified in LMNG shows no aggregation in a monomeric state. Further optimization was performed to use it for cryo-EM sample preparation and structure determination. In 2nd part of the thesis, different mini G (mini Gs, mini Gi, mini Gqs, and mini Gsi) DNA constructs were made and expressed in E. coli. It's challenging to obtain active GPCR structures due to the instability of G-protein or G-protein-bound receptors. In this work, all mini-G proteins and chimera mini-G-protein-maltose binding protein (MBP) were cloned and expressed in E. coli and purified with a His-trap column with high purity.
In the last part of the thesis, to decipher the mechanism of allosteric modulation of orthosteric binding sites in the bradykinin receptor was produced and characterized in insect cells. Angiotensin I converting enzyme inhibitors (ACEIs), are very important drugs and are widely used for the treatment of hypertension, congestive heart failure, and diabetic neuropathy. These drugs target primarily the catalytic zinc center of the ACE. It has been shown that enalaprilat, a well-known ACEI, binds to a proposed zinc-binding site on hB1R and even directly activates the receptor. To obtain information on the influence of ACEIs on the receptor-peptide complex, and to have a better understanding of the molecular mechanism and structural plasticity of the bradykinin receptor and PAM, we used the three commercially available ACEIs captopril, enalaprilat, and lisinopril for our studies. An important result of this thesis is that though enalaprilat, captopril, and lisinopril all have similar functional properties in humans, each one regulates the orthosteric binding site of hB1R in a unique way. These findings provide atomic insights into the allosteric modulation of the bradykinin receptor. This study along with the effects of ACEI on the binding sites of receptors also deciphers the effects of the Zn2+ as well as the crosstalk between zinc binding sites and ACEI compounds. The binding of allosteric modulators induces distinct endogenous binding, which might aid in creating new possibilities in the pharmaceutical field.
Heme-copper oxidases (HCOs) are the terminal enzymes of the aerobic respiratory chain in the inner mitochondrial membrane or the plasma membrane in many prokaryotes. These multi-subunit membrane protein complexes catalyze the reduction of oxygen to water, coupling this exothermic reaction to the establishment of an electrochemical proton gradient across the membrane in which they are embedded. The energy stored in the electrochemical proton gradient is used e.g. by the FOF1-ATP synthase to generate ATP from ADP and inorganic phosphate. The superfamily of HCOs is phylogenetically classified into three major families: A, B and C. The A-family HCOs, represented by the well-studied aa3-type cytochrome c oxidases (aa3-CcOs), are found in mitochondria and many bacteria. The B-family of HCOs contains a number of bacterial and archaeal oxidases. The C-family comprises only the cbb3-type cytochrome c oxidase (cbb3-CcO) and is most distantly related to the mitochondrial respiratory oxidases.
This work presents a biochemical, functional and structural characterization of Aquifex aeolicus F1FO ATP synthase obtained using both a native form (AAF1FO) and a heterologous form (EAF1FO) of this enzyme.
F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane and therefore play a key cellular function. Because of their central role in supporting life, F1FO ATP synthases are ubiquitous and have been remarkably conserved throughout evolution. For their biological importance, F1FO ATP synthases have been extensively studied for many decades and many of them were characterized from both a functional and a structural standpoint. However, important properties of ATP synthases – specifically properties pertaining to their membrane embedded subunits – have yet to be determined and no structures are available to date for the intact enzyme complex. Therefore, F1FO ATP synthases are still a major focus of research worldwide. Our research group had previously reported an initial characterization of AAF1FO and had indicated that this enzyme presents unique features, i.e. a bent central stalk and a putatively heterodimeric peripheral stalk. Based on such a characterization, this enzyme revealed promising for structural and functional studies on ATP synthases and became the focus of this doctoral thesis. Two different lines of research were followed in this work.
First, the characterization of AAF1FO was extended by bioinformatic, biochemical and enzymatic analyses. The work on AAF1FO led to the identification of a new detergent that maintains a higher homogeneity and integrity of the complex, namely the detergent trans-4-(trans-4’-propylcyclohexyl)cyclohexyl-α-D-maltoside (α-PCC). The characterization of AAF1FO in this new detergent showed that AAF1FO is a proton-dependent, not a sodium ion-dependent ATP synthase and that its ATP hydrolysis mechanism needs to be triggered and activated by high temperatures, possibly inducing a conformational switch in subunit γ. Moreover, this approach suggested that AAF1FO may present unusual features in its membrane subunits, i.e. short N-terminal segments in subunits a and c with implications for the membrane insertion mechanism of these subunits.
Investigating on these unique features of A. aeolicus F1FO ATP synthase could not be done using A. aeolicus cells, because these require a harsh and dangerous environment for growth and they are inaccessible to genetic manipulations. Therefore, a second approach was pursued, in which an expression system was created to produce the enzyme in the heterologous host E. coli. This second approach was experimentally challenging, because A. aeolicus F1FO ATP synthase is a 500-kDa multimeric membrane enzyme with a complicated and still not entirely determined stoichiometry and because its encoding genes are scattered throughout A. aeolicus genome, rather than being organized in one single operon. However, an artificial operon suitable for expression was created in this work and led to the successful production of an active and fully assembled form of Aquifex aeolicus F1FO ATP synthase. Such artificial operon was created using a stepwise approach, in which we expressed and studied first individual subunits, then subcomplexes, and finally the entire F1FO ATP synthase complex. We confirmed experimentally that subunits b1 and b2 form a heterodimeric subcomplex in the E. coli membranes, which is a unique case among ATP synthases of non-photosynthetic organisms. Moreover, we determined that the b1b2 subcomplex is sufficient to recruit the soluble F1 subcomplex to the membranes, without requiring the presence of the other membrane subunits a and c. The latter subunits can be produced in our expression system only when the whole ATP synthase is expressed, but not in isolation nor in the context of smaller FO subcomplexes. These observations led us to propose a novel mechanism for the assembly of ATP synthases, in which first the F1 subcomplex attaches to the membrane via subunit b1b2, and then cring and subunits a assemble to complete the FO subcomplex. Furthermore, we could purify the heterologous ATP synthase (EAF1FO) to homogeneity by chromatography and electro-elution. Enzymatic assays showed that the purified form of EAF1FO is as active as AAF1FO. Peptide mass fingerprinting showed that EAF1FO is composed of the same subunits as AAF1FO and all soluble and membrane subunits could be identified. Finally, single-particle electron microscopy analysis revealed that the structure of EAF1FO is identical to that of AAF1FO. Therefore, the EAF1FO expression system serves as a reliable platform for investigating on properties of AAF1FO.
Specifically, in this work, EAF1FO was used to study the membrane insertion mechanism of rotary subunit c. Subunits c possess different lengths and levels of hydrophobicity across species and by analyzing their N-terminal variability, four phylogenetic groups of subunits c were distinguished (groups 1 to 4). As a member of group 2, the subunit c from A. aeolicus F1FO ATP synthase is characterized by an N-terminal segment that functions as a signal peptide with SRP recognition features, a unique case for bacterial F1FO ATP synthases. By accurately designing mutants of EAF1FO, we determined that such a signal peptide is strictly necessary for membrane insertion of subunit c and we concluded that A. aeolicus subunit c inserts into E. coli membranes using a different pathway than E. coli subunit c. Such a property may be common to other ATP synthases from extremophilic organisms, which all cluster in the same phylogenetic group.
In conclusion, the successful production of the fully assembled and active F1FO ATP synthase from A. aeolicus in E. coli reported in this work provides a novel genetic system to study A. aeolicus F1FO ATP synthase. To a broader extent, it will also serve in the future as a solid reference for designing strategies aimed at producing large multi-subunit complexes with complicated stoichiometry.
Respiration is one of the key processes of energy transduction used by the cell. It consists of two components: electron transfer and ATP production. The electron transfer chain converts the energy released from several biochemical redox reactions into an electrochemical proton gradient across membranes. This stored energy is used as the driving force for the production of ATP by the ATP synthase. The mitochondrial electron transfer chain contains four major protein complexes called complexes I-IV, with counting starting at the lower side of the redox potentials. It has been discussed for a long time how these protein complexes are organized in the membranes. Do they diffuse freely in the membrane? Alternatively, do they form a supercomplex built up of several neighboring complexes? The evidence supporting the free diffusion mode is that both electron transfer intermediates (cytochrome c and quinone) behave as “pool”. However, respiratory supercomplexes have been detected in membranes from bacteria, fungi, yeast, plant and animal during the last decade, and sometimes the respiratory complexes are only stable inside a supercomplex. Therefore, the idea of supercomplex formation has become more popular. The argument that the supercomplex arises from solubilization and is a detergent artifact could be rejected because: 1) supercomplexes can be isolated from many organisms in an active form; 2) supercomplexes have been proven to stabilize the individual complexes in some cases; 3) supercomplexes can be very stable after chromatographic isolation in some cases....
Funktionelle und strukturelle Charakterisierung von SLC-Transportern in eukaryotischen Systemen
(2018)
Die evolutionäre Voraussetzung für die Entwicklung komplexer, differenzierter Organismen bildet die Separierung der Zelle in Reaktionsräume, die so genannte Kompartimentierung. Das Prinzip der Kompartimentierung ermöglicht zahlreiche lebensnotwendige, biochemische Prozesse, wie die Konservierung von Energie durch Protonengradienten in der Atmungskette oder parallele, gegenläufige Stoffwechselwege. Zelluläre Kompartimente werden häufig durch Biomembranen gebildet, welche aus einer zweilagigen Lipidschicht bestehen. Lipidmoleküle in einer Zelle sind meistens amphipathisch, das bedeutet, sie bestehen aus einer polaren, hydrophilen Kopfgruppe und einem unpolaren, hydrophopen Ende (Abbildung 1). Die Lipidzusammensetzung in einer Biomembran ist sehr divers und unterscheidet sich in verschiedenen Organismen und Organellen. Phosphoglyceride bilden den Hauptbestandteil der Lipidschicht. Phosphoglyceride besteht aus einem Glycerin Rückgrat, welches an dem C1- und C2-Atom mit zwei Fettsäuren verestert und an dem C3-Atom mit einem Phosphorsäurediester verbunden ist. ...
NADH:ubiquinone oxidoreductase (Complex Ⅰ) is the first and largest enzyme in the respiratory chain. It catalyzes the transfer of two electrons from NADH to ubiquinone via a series of enzyme-bound redox centers - Flavin mononucleotide (FMN) and iron-sulfur (Fe-S) clusters – and couples the exergonic reaction with the endergonic translocation of four protons across the membranes. Bacteria contain the minimal form of complex I, which is composed of 14 conserved core subunits with a molecular mass of around 550 kDa. Complex Ⅰ has an L-shaped structure which can be subdivided into two major parts (arms). The hydrophilic arm protruding into the bacterial cytosol (or mitochondrial matrix) harbors the binding site for the substrate NADH, the two- to one-electron switch FMN and all one-electron transferring Fe-S clusters and therefore considered as the catalytic unit. The membrane arm consists of the membranespanning subunits and conducts the proton pumping process. The Quinone binding site is located at the interface of both arms. ...