Refine
Year of publication
Document Type
- Doctoral Thesis (21)
- diplomthesis (1)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- Laser (2)
- terahertz (2)
- 2D materials (1)
- Absolute Phase (1)
- Aluminiumarsenid (1)
- Antenne (1)
- Brechungsindex (1)
- Carrier Envelope Phase (1)
- E-beam induced deposition (1)
- EBID (1)
Institute
- Physik (22)
Gegenstand dieser Arbeit war die Untersuchung der optischen und elektronischen Eigenschaften von metallorganischen Materialien, die mit dem Verfahren der Elektronenstrahlinduzierten Deposition hergestellt wurden. Da es sich bei diesen noch relativ unerforschten Endprodukten um Materialmengen von wenigen Nanogramm Gewicht und geometrische Abmessungen im Sub-µm-Bereich handelt, wurden hierzu neue Verfahren der Herstellung, Strukturierung und Charakterisierung entwickelt. Sowohl die optischen als auch die elektronischen Eigenschaften dieser Deponate besitzen einen gemeinsamen physikalischen Nenner in ihrer inneren Morphologie: ein nanokristallines dielektrisches Verbundmaterial, das aus metallischen Kristalliten und organischen Polymeren gebildet wird. Im Hinblick auf die Durchführung der Untersuchungen war das Augenmerk auf zwei potentielle industrielle Anwendungen gerichtet: den Photonischen Kristallen und den Einzelelektronen-Phänomenen bei Raumtemperatur. Mit Hilfe von Beugungsexperimenten im Fernfeld wird ein Verfahren gezeigt, das eine der periodischen Struktur von Photonischen Kristallen angepaßte Charakterisierung von Materialstrukturen mit optischer Bandlücke ermöglicht. Das mathematische Grundgerüst bildet dabei eine rigorose Streutheorie, die als Lösung der Helmholtz-Gleichung an dielektrischen Zylindern mit wenigen hundert nm Durchmesser den Experimenten zugrunde gelegt wird und sowohl für die praktische Dimensionierung des Versuchsaufbaus als auch für die theoretische Auswertung der Meßdaten, z.B. für die Brechungsindexbestimmung, dient. Die Herstellung und Kontrolle der Eigenschaften von Einzelelektronen-Tunnelelementen (SETs, Single Electron Tunneling Devices), welche bei hohen Temperaturen mit einer abzählbar kleinen Anzahl von Elektronen noch arbeiten, dürfte wohl eine der größten Herausforderungen in der heutigen Festkörperelektronik sein. Obwohl die Idee dazu, auf Basis der "Orthodoxen Theorie", bis auf die 80er Jahre des vergangenen Jahrhunderts zurückgeht, konnten nennenswerte Ergebnisse nur unter "Laborbedingungen" mit entsprechend hohem experimentellem Aufwand erzielt werden. In der vorliegenden Arbeit wird ein neuer Weg gegangen, um die beiden wesentlichen Bedingungen der orthodoxen Theorie, nämlich die Kleinheit der Kapazitäten und hohe Tunnelwiderstände, durch das ungeordnete nanokristalline Netzwerk der metallorganischen Deponate zu erfüllen. Die Motivation hierzu liegt in der hochohmigen organischen Matrix der Deponate, die mit darin eingebetteten elektrisch isolierten Nanokristalliten (die mit Durchmessern zwischen 1 nm und 2.5 nm ausgezeichnete Quantenpunkte bilden) eine ideale Umgebung für den Betrieb von Einzelelektronen-Tunnelelementen bereitstellen. Ein stabiles Verhalten unter hohen Temperaturen und eine ausgeprägte Resistenz gegen quantenmechanische Fluktuationen (z. B. dem Co-Tunneln oder Hintergrundladungen) wird durch den Aufbau von nanokristallinen Netzwerken, die in der Arbeit als "Über-SET" bezeichnet werden, erreicht. Mit Hilfe der entwickelten speziellen Technik lassen sich Nanokristallite elektrisch bis zur quantenmechanischen Tunnelgrenze voneinander isolieren und als Quantenpunkte betreiben. Die dabei beobachtbaren Phänomene sind diskretisierte I/U-Kennlinien und das Blockade-Verhalten der Spannung bei Raumtemperatur, deren Entstehung in Monte-Carlo-Simulationen auf zwei physikalische Grundprinzipien zurückgeführt wird: der Ausbildung von Einfangzuständen (Traps) für Elektronen an Grenzstellen und dem Mechanismus des negativen differentiellen Widerstandes (NDR, Negative Differential Resistance). Beide Effekte fungieren in einer gegenseitigen Kombination zueinander durch Coulomb-Wechselwirkungen zu einem mikroskopischen Schalter für den gesamten Strom.
Es wurde eine Meßstation zum Vermessen von THz-Photomischern vorgestellt und aufgebaut. Weiterhin konnte gezeigt werden, wie diese Station es ermöglicht, das Vermessen von THz-Photomischern, im Vergleich zum bisher verwendeten Meßaufbau, deutlich zu vereinfachen und zu beschleunigen. Mit dieser Station wurden zwei Proben, die sich in der Dicke der LT-GaAs-Schicht unterscheiden, vermessen. Um die gemessenen Daten analysieren zu können wurden zuvor beschrieben, wie eine Modulation des Photostroms in Photomischern erhalten und damit THz-Strahlung erzeugt werden kann. Gemessen wurde die THz-Leistung in Abhängigkeit von Frequenz , Vorspannung und Leistung der optischen Beleuchtung. Diese Messungen haben zu Ergebnissen geführt, die nur zum Teil mit den theoretisch vorhergesagten Ergebnissen übereinstimmen. So wurde festgestellt, daß nur etwa 1 bis 2 % der theoretisch erwarteten THz-Leistung detektiert wurde. Dies kann an langlebigen Ladungsträgern liegen, die im Substrat erzeugt werden. Diese Ladungsträger unterhalb der LT-GaAs-Schicht führen zu einer erhöhten Leitfähigkeit und können dadurch Reflexion und Absorption von THz-Strahlung verursachen. Diese Vermutung wird unterstützt durch die Beobachtung einer starken Reduktion des Signals in einem gepulsten THz-System, wenn eine konstante Hintergrundbeleuchtung eingeschaltet wird.[45] Weiterhin ist nicht auszuschließen, daß die für die THz-Erzeugung relevante Lebenszeit der Ladungsträger deutlich größer ist, als die mit Anrege-Abfrage-Messungen bestimmte. Analog könnte auch eine deutlich höhere Kapazität des Photomischers als die theoretisch berechnete diese Beobachtung erklären. Ob langlebige Ladungsträger im Substrat für die geringe gemessen Leistung verantwortlich sind kann überprüft werden, indem zwischen Substrat und LT-GaAs-Schicht einen Bragg-Refelektor gewachsen wird. So kann verhindert werden, daß eingestrahlte Leistung das Substrat erreicht. Dadurch können keine Ladungsträger im Substrat angeregt werden. Zusätzlich hat dies den Effekt, daß ein größerer Anteil der eingestrahlten Strahlung absorbiert werden kann, weil die einfallende Strahlung wegen der Reflexion zweimal durch die LT-GaAs-Schicht läuft. Ein solcher Mischer wurde bereits von E. R. Brown vorgeschlagen.[46] Bei den Messungen der THz-Leistung gegen Vorspannung konnte beobachtet werden, daß der Photostrom eine andere Abhängigkeit von der Vorspannung zeigt, als theoretisch vorhergesagt wurde. Erwartet wurde ein linearer Zusammenhang. Bei höheren Vorspannungen wurde aber ein stärkerer Anstieg beobachtet. Dies kann z.B. an einem zusätzlichen nichtlinearen Strom durch das Substrat oder an einer vom elektrischen Feld abhängigen Lebenszeit der Ladungsträger liegen. Für beide Erklärungsansätze wurden vereinfachte Modelle vorgestellt. Beide Modelle treffen dabei unterschiedliche Vorhersagen über die Änderung der Effizienz beim Auftreten des höheren Stromes. Deutlich werden die Unterschiede in den Vorhersagen im Frequenzverlauf. So führt ein zusätzlicher Strom durch das Substrat zu einer Verringerung der Effizienz um einen von der Frequenz unabhängigen konstanten Faktor. Der Frequenzverlauf verschiebt sich also zu geringeren Effizienzen. Eine Erhöhung der Lebenszeit hingegen führt zu einem geänderten Frequenzverlauf. So ist die Änderung der Effiienz bei niedirgen Frequenzen gering, zu höheren Frequenzen hin ändert sich die Effizienz jedoch immer stärker. Die Vorhersagen beider Modelle wurden mit dem gemessenen Daten verglichen. Bei den gegebenen Parametern war der Unterschied zwischen den beiden Modellen jedoch zu gering und die Fluktuation in den Meßdaten zu hoch, um entscheiden zu können, welches der beiden Modelle die gemessenen Daten besser beschreibt. Um erkennen zu können, welches der Modelle den Effekt beschreibt, der zu einem höheren Strom führt, müßte der Effekt in den Meßdaten erhöht werden. Dies kann geschehen, indem zusätzlich bei höheren Spannungen gemessen wird. Es müßte dabei allerdings die optische Leistung reduziert werden, um ein Zerstören der Mischer zu vermeiden. In dieser Arbeit konnte somit gezeigt werden, daß die aufgebaute Meßstation ein vereinfachtes Messen von THz-Photomischern ermöglicht. Weiterhin konnte das Verhalten von zwei vermessenen Mischern gezeigt und analysiert werden, sowie weitere Messungen vorgeschlagen werden, die eine exaktere Analyse der Photomischer ermöglichen sollten.
A fundamental work on THz measurement techniques for application to steel manufacturing processes
(2004)
The terahertz (THz) waves had not been obtained except by a huge system, such as a free electron laser, until an invention of a photo-mixing technique at Bell laboratory in 1984 [1]. The first method using the Auston switch could generate up to 1 THz [2]. After then, as a result of some efforts for extending the frequency limit, a combination of antennas for the generation and the detection reached several THz [3, 4]. This technique has developed, so far, with taking a form of filling up the so-called THz gap . At the same time, a lot of researches have been trying to increase the output power as well [5-7]. In the 1990s, a big advantage in the frequency band was brought by non-linear optical methods [8-11]. The technique led to drastically expand the frequency region and recently to realize a measurement up to 41 THz [12]. On the other hand, some efforts have yielded new generation and detection methods from other approaches, a CW-THz as well as the pulse generation [13-19]. Especially, a THz luminescence and a laser, originated in a research on the Bloch oscillator, are recently generated from a quantum cascade structure, even at an only low temperature of 60 K [20-22]. This research attracts a lot of attention, because it would be a breakthrough for the THz technique to become widespread into industrial area as well as research, in a point of low costs and easier operations. It is naturally thought that a technology of short pulse lasers has helped the THz field to be developed. As a background of an appearance of a stable Ti:sapphire laser and a high power chirped pulse amplification (CPA) laser, instead of a dye laser, a lot of concentration on the techniques of a pulse compression and amplification have been done. [23] Viewed from an application side, the THz technique has come into the limelight as a promising measurement method. A discovery of absorption peaks of a protein and a DNA in the THz region is promoting to put the technique into practice in the field of medicine and pharmaceutical science from several years ago [24-27]. It is also known that some absorption of light polar-molecules exist in the region, therefore, some ideas of gas and water content monitoring in the chemical and the food industries are proposed [28-32]. Furthermore, a lot of reports, such as measurements of carrier distribution in semiconductors, refractive index of a thin film and an object shape as radar, indicate that this technique would have a wide range of application [33-37]. I believe that it is worth challenging to apply it into the steel-making industry, due to its unique advantages. The THz wavelength of 30-300 ¼m can cope with both independence of a surface roughness of steel products and a detection with a sub-millimeter precision, for a remote surface inspection. There is also a possibility that it can measure thickness or dielectric constants of relatively high conductive materials, because of a high permeability against non-polar dielectric materials, short pulse detection and with a high signal-to-noise ratio of 103-5. Furthermore, there is a possibility that it could be applicable to a measurement at high temperature, for less influence by a thermal radiation, compared with the visible and infrared light. These ideas have motivated me to start this THz work.
With the discovery of light beyond human visibility, scientists strove to extend the range of observation to invisible parts of the light’s spectrum. Realising that light of all frequencies is part the same physical phenomenon, brought a leap in understanding about electromagnetic waves. With the development of more advanced technology, detectors with higher sensitivity for adjacent frequencies to the visible were built. From this, with each new observable wavelength, more insight into otherwise invisible processes and phenomenons were observed. Hand in hand with this went the enhancement of the output power of corresponding sources. This has lead to higher sensitivity setups throughout the spectrum, leading to observations which have given a deeper understanding in various fields of science. Nowadays, detectors and emitters in many different regions of the invisible electro magnetic spectrum have found their way in our every day life. Innovations in technology has lead to practical applications such as X-rays in medicine, motion sensors and remote controls using infrared light, distance sensors and data transmission using radar and radio devices. The frequency regions above infrared are optically generated and below radar can be produced using electric methods. There is no straight line that separates these frequencies. There rather is a whole intermediate region known as the terahertz (THz) regime. Due to the lack of sensitive detectors and efficient sources, the THz frequency region has not been exploited for application use on a widespread basis so far. It combines properties from the surrounding frequency ranges which make it an ideal spectrum for various applications. Consequently, THz radiation and THz imaging are active fields of research.
The work presented in this thesis consists of the development and testing of novel THz imaging concepts, which uses a THz antenna coupled field effect transistor (TeraFET) detector. Two detection principles are applied using two different optical setups. The first uses a pulsed optical parametric oscillator (OPO) THz source where the optical output power is detected. The source relies on a nonlinear effect of a lithium niobate crystal to generate tunable THz pulses from a Q-switched pump laser. The THz signal is detected and amplified by a double stage operational amplifier for monitoring the real time 20 ns pulses on an oscilloscope where a signal to noise ratio (SNR) of ⇠ 25 at a frequency range from 0.75 to 1.1 THz is reached. Imaging of the area of interest with a resolution of 1.2 mm is achieved through raster scanning of the THz pulses. Also spectroscopy with a frequency resolution of ⇠ 50 GHz is demonstrated using a para-aminobenzoic acid sample. The second setup utilises two synchronised electronic multiplier chain sources where their output is mixed on the detector. To form a heterodyne detection setup, the intermediate frequency is fed to a lock-in amplifier which then amplifies the so called beat signal from the TeraFET detector. One source is fixed relative to the detector even through scanning to ensure a stable signal. This detection method allows for amplitude and phase detection for every scanning position, making numerical light field propagation and object reconstruction possible. Numerical focussing is a key feature achieving a lateral resolution of the input transmittance of ⇡ 2 mm.
After the introduction, the second chapter describes the setup, measurement results and challenges which arise using a TeraFET together with the pulsed THz source “Firefly-THz”. In the description of the setup, special attention is given to the shielding of the detector and the electronics. General findings discuss first the overall performance and later spectroscopy and imaging as application examples. Another subsection continues with potential noise sources before the chapter is concluded. Chapter three expands on the topic of Fourier optics from a theoretical point of view. First, parts of the theory of the Fourier Transform (FT) are set out for the reader and how the Fast Fourier Transform (FFT) results from the Discrete Fourier Transform (DFT). This approach is used for theoretical considerations and the implementation of a Fourier optic script that allows for numerical investigations on electro magnetic field propagation through an optical system. The boundary conditions are chosen to be practical relevant to make predictions on measurements presented in chapter four. The following fourth chapter describes the realisation of a heterodyne THz detection setup. Before the measurement results are presented, the setup and its electric configuration are shown. The results come close to the analytical predictions so that the same algorithm which propagates the field from an object to the Fourier plane is used to propagate the measured field back to the object. The influence of phase noise on the measurement results are discussed before simulation and measurement is compared. The last chapter in this thesis concludes on the findings in the pulsed THz detection and the heterodyne THz Fourier imaging and gives an outlook for both configurations.
This thesis deals with the simulation, optimization and realization of quasi-optical scanning systems for active THz cameras. Active THz cameras are sensitive in the THz regime of the electromagnetic spectrum and are suitable for the detection of metal objects such as weapons behind clothing or fabrics (maybe for security applications) or material investigation. An advantage of active THz-systems is the possibility to measure the phase of the THz-radiation and thus to reconstruct the surface topography of the objects under test. Due to the coherent illumination and the required system parameters (like image field size, working distance and lateral resolution) the optical systems (in the THz region often called quasi-optical systems) must be optimized. Specifically, the active illumination systems require highly optimized quasioptical systems to achieve a good image quality. Since currently no suitable multi-pixel detectors are available, the object has to be scanned in one or two dimensions in order to cover a full field of view. This further reinforces the occurring aberrations. The dissertation covers, alongside the underlying theory, the simulation, optimisation and realisation of three different active THz systems. The subdivision of the chapters is as follows: Chapter 1 deals with a motivation. Chapter 2 develops the underlying theory and it is demonstrated that the geometrical optics is an adequate and powerful description of the image field optimization. It also addresses the developed analytic on-axis and the off-axis image field optimization routine. Chapter 3, 4 and 5 are about the basis of various active THz cameras, each presented a major system aspect. Chapter 3 shows how active THz-cameras with very high system dynamics range can be realised. Within this chapter it could although be demonstrated how very high depth resolution can be achieved due to the coherent and active illumination and how high refresh rate can be implemented. Chapter 4 shows how absolute distance data of the objects under test can be obtained. Therefore it is possible to reconstruct the entire object topography up to a fraction of the wavelength. Chapter 5 shows how off-axis quasi-optical systems must be optimized. It is also shown how the illumination geometry of the active THz systems must be changed to allow for real-time frame rates. The developed widened multi-directional lighting approach also fixes the still existing problem of phase ambiguity of the single phase measurement. Within this chapter, the world’s first active real-time camera with very high frame rates around 10 Hz is presented. This could be only realized with the highly optimised quasioptical system and the multi-directional lighting approach. The paper concludes with a summary and an outlook for future work. Within the outlook some results regarding the simulation of synthetic aperture radar systems and metamaterials are shown.
Towards a THz Bloch laser
(2011)
The realisation of tunable THz laser sources working at room temperature would give
rise to further applications in this range of the electromagnetic spectrum. The THz
Bloch laser could therefore become the basis for a technological breakthrough. Beside
this practical relevance, the physics of the gain mechanism has been investigated
theoretically for a long time and the experimental implementation of a self-starting
laser still has not been achieved.
At the beginning of this thesis the basic principles of Bloch oscillations and the
related Bloch gain are described. The need of a superlattice structure to make Bloch
oscillations possible in a semiconductor material is discussed. In this context, the effect
of negative differential resistance and its influence on the field distribution due to Gunn
domains is explained. The latter lead to an inhomogeneous field which may suppress
the Bloch gain mechanism. The Krömer criterion is introduced and the concept of
field-pinning layers to improve the field homogeneity is deduced. Finally, the design of
the laser material is shown and different types of laser waveguides are compared.
In chapter 3 detailed recipes for the processing of samples are given. Different types of
contacts (ohmic and Schottky), the wafer bonding process required for double-metal
lasers and the application of different photoresists for different purposes are described.
An explanation of the formation of waveguides due to dry etching, wet etching
and ion implantation follows. Dry etching is an established technique in the field
of microstructure processing but the challenge of etching about 20 μm has led to
problems. The high etching depth also makes wet etching difficult but this method
could be improved due to a hard bake of the photoresist. The protection of critical
areas on the surface of the samples with photoresist during ion implantation was
increased by optimising the spin coating process. However, a full implantation of the
active layer between the waveguides was not achieved which was the reason for the
development of the hybrid technology. Here a prior wet etching of about 10 μm is
performed and the rest of the material is implanted.
The experimental setup is shown in chapter 4. An alternative method for the electrical
contacting with the help of a copper bar is introduced. This improves the current
distribution and the risk of an electrical breakdown during the measurements could
therefore be lowered. Devices for THz beam guidance and spectroscopic measurements
are shown and the method of biasing the samples with pulses below 100 ns and
determining the effective voltage applied to the sample is depicted. These short pulses
are required to prevent the samples heating up drastically due to high power.
Chapter 5 contains the current-voltage characterisation of several structures including
I-V-samples, Bloch laser samples and a quantum cascade laser. Different contacts
(ohmic and Schottky) and different techniques for the formation of the ridges have
been used in the processing of these samples (performed at the University of Frankfurt
in all cases) and their influence on the I-V-dependence is discussed. The properties of
the THz emission of the quantum cascade laser are in good agreement with published
results from lasers processed with the same material. Another important result of
this chapter is that the Bloch laser samples show unstable behaviour compared to the
quantum cascade structure even with short pulses (of about 10 ns) where the risk of an
electrical breakdown or the building of filaments is low. THz radiation emitted from
one of the Bloch laser samples could not be observed.
Two aspects that may have prevented the Bloch laser to emit are discussed in
chapter 6. The saturation of the gain for higher amplitudes of the THz wave is
investigated in single mode and multiple mode operation (the latter could occur due
to the Bloch gain being expected to be broadband). In both cases it is shown that
the saturation effect would limit the output power only to values clearly above the
detection limit. In the subsequent section the distribution of the electric field is
simulated with SILVACO software. Structures with transit layer lengths above the
Krömer criterion are compared with structures which include field-pinning layers. It is
shown that the latter are useful to avoid propagating Gunn domains as they build up
in similar structures without field-pinning layers. Nevertheless, the electric field inside
the superlattice regions is not stable. Beside spatial inhomogeneities also temporal
variations of the field magnitude are observed. The lack of a suitable field distribution
is expected to be the main reason for the samples not to work.
In der Doktorarbeit wurde ein Verfahren zur Ermittlung der Schwerpunkthöhe eines Fahrzeugs aus den Messwerten von Sensoren, die serienmäßig in vielen geländegängigen Fahrzeugen verbaut sind, entwickelt. Dieses Verfahren benötigt nur die Signale von Sensoren des elektronischen Stabilitätssystems (ESP) und eines Fahrwerks mit Luftfeder. Um die Höhe des Schwerpunkts zu bestimmen, wurde ein Modell entworfen, das die Drehbewegung des Fahrzeugs um seine Längsachse beschreibt. Eine der unbekannten Größen in diesem Modell ist das Produkt m_g\Deltah, wobei mit m_g die gefederte Masse des Fahrzeugs und mit Deltah der Abstand zwischen dem Schwerpunkt und der Wankachse des Fahrzeugs bezeichnet wird. Die Höhe des Schwerpunkts wird berechnet, indem zu diesem Abstand der als bekannt vorausgesetzte Abstand der Wankachse von der Straße addiert wird. Es wurden drei Varianten des Modells betrachtet. Die eine Modellvariante (stationäres Modell) beschreibt das Fahrzeugverhalten nur in solchen Fahrsituationen exakt, in denen die Wankgeschwindigkeit und die Wankbeschleunigung vernachlässigbar klein sind. In dieser Modellvariante wurden die Federkräfte mit einem detaillierten Modell der Luftfeder berechnet. Eine Eingangsgröße dieses Modells ist der Druck in den Gummibälgen der Luftfeder. Um diesen Druck zu ermitteln, wurde ein Algorithmus auf dem Steuergerät des Luftfedersystems implementiert. Um die Genauigkeit des Luftfedermodells zu testen und um die Abmessungen bestimmter Bauteile der Luftfeder zu ermitteln, wurden Messungen am Federungsprüfstand durchgeführt und eine Methode entwickelt, wie aus diesen Messungen die gesuchten Größen berechnet werden können. Bei den zwei übrigen Modellvarianten (dynamisches Modell) gelten die Einschränkung für die Fahrsituationen nicht. Die einzelnen Varianten des dynamischen Modells unterscheiden sich darin, dass das eine Mal die Feder- und Dämpferkonstanten als bekannt vorausgesetzt und das andere Mal aus den Sensorsignalen geschätzt werden. Passend zu jeder Modellvariante wurde ein Verfahren gewählt, mit dem Schätzwerte für das Produkt m_g\Deltah berechnet wurden. Des Weiteren wurde auch eine Methode entwickelt, mit der die Masse mg geschätzt wurde, ohne zuvor ein Wert für das Produkt m_g\Deltah zu ermitteln. Die Schätzwerte wurden unter Verwendung von Daten ermittelt, die bei einer Simulation und bei Messfahrten gewonnen worden sind. Das Ergebnis des Vergleiches der betrachteten Modellvarianten ist, dass die eine Variante des dynamischen Modells zum Teil falsche Werte für m_g\Deltah liefert, weil die Modellgleichungen ein nicht beobachtbares System bilden. Die andere Variante dieses Modells liefert nicht bei jeder Beladung exakte Werte, was vor allem daran liegt, dass in den Modellgleichungen dieses Modells ein konstanter Wert für die Federsteifigkeit angenommen wird. Bei Fahrzeugen mit Luftfeder ändert sich jedoch dieser Wert in Abhängigkeit von der Fahrzeugmasse. Die Werte von m_g\Deltah und mg können am genauesten mit dem stationären Modell ermittelt werden. Des Weiteren wurden Methoden entwickelt, die die Genauigkeit der durch den Schätzalgorithmus ermittelten Werte verbessern. So wurde zusätzlich zu dem Produkt m_g\Deltah und der Masse mg auch die Verteilung des Gewichtes auf die Vorder- und Hinterachse betrachtet. Es wurde ermittelt, welche Zusammenhänge zwischen dieser Verteilung und dem Produkt m_g\Deltah sowie zwischen dieser Verteilung und der Masse des Fahrzeugs bestehen. So konnte der Fehler in den Schätzwerten dieser Größen minimiert werden. Außerdem wurde auch der Zusammenhang zwischen dem Produkt m_g\Deltah und der Masse des Fahrzeugs ermittelt. Damit konnten die Schätzwerte dieser Größen genauer bestimmt werden. Aus den so gewonnenen Werten kann die Schwerpunkthöhe von einem Mercedes ML auf etwa 8cm genau berechnet werden. Diese Genauigkeit reicht aus, um das elektronische Stabilitätsprogramm auf die aktuelle Beladung des Fahrzeugs abzustimmen und damit einen Gewinn an Agilität für dieses Fahrzeug zu realisieren.
Alignment, characterization and application of polyfluorene in polarized light-emitting devices
(2001)
Ziel im Rahmen der vorliegenden Dissertation war die Realisierung der polarisierten Elektrolumineszenz blau emittierender flüssigkristalliner Polyfluorene. Polymere Leuchtdioden, die aufgrund hoher Orientierung der Moleküle in der aktiven Schicht polarisiert emittieren, sind für eine Anwendung beispielsweise als Hintergrundbeleuchtung in Flüssigkristallanzeigen (LCDs) von Interesse. Es wurde gezeigt, dass sich mit der Ausrichtung von Polyfluoren auf Ori entierungsschichten auf der Basis von geriebenem Polyimid hohe Ordnungsgrade erzielen lassen. Die Dotierung mit lochleitenden Materialien erlaubte erstmals den Einbau solcher Orientierungsschichten in Leuchtdioden und ermöglichte die Realisierung polarisierter Elektrolumineszenz. Die Morphologie und Struktur sowohl der hoch orientierten Polyfluoren filme als auch lochleitender Orientierungsschichten wurden eingehend untersucht. Die ElektrolumineszenzEigenschaften von isotropen sowie polarisierten Leuchtdioden wurden ausführlich analysiert und anschließend durch chemische Modifizierung des Polyfluorens entscheidend verbessert. Zusätzlich wurde Polyfluoren mit fluoreszierenden Farbstoffen dotiert, um ausgehend von blauem Licht grüne und rote Emission zu erhalten. Hierbei wurde unter sucht, in welchem Maß FörsterEnergietransfer sowie Ladungsträgereinfang für die Emission der eingemischten Farbstoffe verantwortlich sind. Eine Einführung in die Grundlagen der Elektrolumineszenz konjugierter Polymere findet sich in Kapitel 2 dieser Arbeit. Da polarisierte Elektrolumineszenz ein hohes Maß an Anistotropie der emittierenden Schicht erfordert, werden anschließend verschiedene Methoden zur Ausrichtung von Polymeren besprochen, wobei besondere Betonung auf der Orientierung flüssigkristalliner Polymere liegt. Kapitel 3 behandelt die signifikanten Eigenschaften der Polymere sowie die experimentel len Methoden, die im Rahmen dieser Arbeit verwendet wurden. Neben Polyfluoren wird ein weiteres blau emittierendes Polymer, Polyphenylenethynylen (PPE), eingeführt. Bei der Cha rakterisierung der Polyfluorene wird im Anschluss an die Beschreibung der reinen Polymere insbesondere der positive Einfluss des Anbringens von lochleitende Endgruppen an die Hauptkettenenden auf wesentliche Eigenschaften bezüglich der Elektrolumineszenz aufgezeigt. Außerdem werden die wesentlichen Merkmale von Polyimid, welches die Matrix der Orientierungsschicht bildet, sowie von verschiedenen Polymeren, die der Lochleitung und der Lochinjektion dienen, besprochen. Die Beschreibung der Methoden zur Präparation isotroper und polarisierter Leuchtdioden sowie zur Untersuchung der optischen, elektrischen und mor phologischen Eigenschaften der Polymerfilme bilden den Abschluss dieses Abschnitts. Im vierten Kapitel dieser Arbeit werden unterschiedliche Verfahren zur Ausrichtung der Polymermoleküle auf Polyfluoren sowie auf PPE angewandt und hinsichtlich der erreichbaren Ordnungsgrade verglichen und beurteilt. Im Falle von Polyfluoren wurde gezeigt, dass eine Orientierung im flüssigkristallinen Zustand mit Hilfe zusätzlicher Orientierungsschichten, welche auf geriebenem Polyimid basieren, die einzige geeignete Methode zur Orientierung dieses Po lymers ist. Durch den Zusatz von niedrigmolekularen lochleitenden Materialien in geeigneter Konzentration in die PolyimidMatrix konnte das nichtleitende Polyimid so modifiziert wer den, dass es sich in Leuchtdioden einbinden ließ, ohne dass die Orientierungseigenschaften der Schichten verloren gingen. Vergleiche unterschiedlicher Polyfluorene ergaben, dass die Länge und Struktur der AlkylSeitenketten das Orientierungsverhalten entscheiden beeinflussen. Hierbei wurde gezeigt, dass sich für verzweigte Seitenketten deutlich höhere Orientierungsgrade erreichen lassen als für solche mit linearen Seitenketten. Dies wurde mit dem vergrößerten Verhältnis aus Persistenzlänge und Polymerdurchmesser erklärt, was gemäß der Theorie der flüssigkristallinen Polymere zu einer Zunahme des erreichbaren Ordnungsparameter führt. Außerdem wiesen die Absorptionsspektren der Polyfluorene mit langen Seitenketten auf eine planare Konformation der Polymerrückgrate hin, welche aufgrund der starken Wechselwirkung zwischen den einzelnen Ketten eine Orientierung im flüssigkristallinen Zustand verhindert. Von allen untersuchten Polyfluorenen ließ sich Poly(diethylhexylfluoren) (PF2/6) am besten orientieren. Im Gegensatz zu Polyfluoren scheiterte der Versuch, PPE im flüssigkristallinen Zustand auf Orientierungsschichten auszurichten. Kalorimetrische DSCUntersuchungen machten deutlich, dass sich die Struktur von PPE in flüssigkristalliner und kristalliner Phase nur unwesentlich voneinander unterscheiden. In beiden Phasen deuteten Absorptionsuntersuchungen auf eine planare Konformation der PPERückgrate. Die Viskosität des als sehr steif bekannten Polymers PPE ist daher auch in flüssigkristallinem Zustand zu hoch, um eine Umordnung der Moleküle zu verursachen, welche allein durch Wechselwirkung mit einer Orientierungsschicht hervorgerufen wird. PPE konnte jedoch im kristallinen Zustand orientiert werden, indem anstatt einer zusätzlichen Orientierungsschicht der Polymerfilm selbst gerieben wurde. Die hohe Steifigkeit von PPE erlaubte die Übertragung der Kräfte, die durch das Reiben verursacht werden, auf das starre Polymerrückgrat und ermöglichte eine homogene Ausrichtung der Moleküle. Mit Hilfe dieser Methode konnten Leuchtdioden mit PPE in der aktiven Schicht verwirklicht werden, die polarisiert emittierten. Die bestmöglichen Methoden zur Ausrichtung der Moleküle unterschie den sich demnach für die beiden flüssigkristallinen Polymere Polyfluoren und PPE, und für beide Polymere wurden Verfahren gefunden, die die Herstellung von polarisierten Leuchtdioden ermöglichten. In Kapitel 5 dieser Arbeit werden die Morphologie, die Struktur sowie weitere wesentliche Eigenschaften sowohl orientierter Polyfluorenfilme als auch der zur Ausrichtung benötigten lochleitenden Orientierungsschichten aus dotiertem Polyimid besprochen. Hierfür wurden die Filme mit Hilfe von Licht und Elektronenmikroskopie sowie von Elektronen und Röntgen beugungsexperimenten untersucht. Im ersten Teil wird die beobachtete Abnahme der Orien tierbarkeit von Polyfluoren mit zunehmendem Molekulargewicht durch Elektronenbeugungs untersuchungen näher beschrieben. Ergebnisse aus TransmissionsElektronenmikroskopie Untersuchungen zeigten, dass sich die Morphologie orientierter PF2/6Filme durch hochgeordnete Lamellen auszeichnet, welche in regelmäßigen Abständen von ungeordneten Regionen unterbrochen werden. Innerhalb der orientierten Lamellen sortieren sich die Moleküle nach ähnlicher Kettenlänge, wohingegen in den ungeordneten Gebieten vornehmlich die Endgruppen der Ketten vorzufinden sind. Strukturuntersuchungen ergaben, dass die einzelnen Polymerketten von PF2/6 zylindrisch sind und eine hexagonale Packung aufweisen, wobei die Polymerrück grate eine 5/2Helixstruktur bilden. Das wurmähnliche Rückgrat ist dabei zylinderförmig von einer Hülle aus ungeordneten Seitenketten umgeben, die ähnlich wie ein Lösungsmittel zwi schen den einzelnen Ketten wirken. Die hieraus folgende geringe Viskosität des Polymers dient als Erklärung für die beobachtete bessere Orientierbarkeit von PF2/6 im Vergleich zu Polyfluoren mit linearen OktylSeitenketten oder zu PPE. Im zweiten Teil des fünften Kapitels werden Ergebnisse von Untersuchungen der lochlei tenden Orientierungsschichten vorgestellt. Der Einfluss der Zugabe von lochleitenden Materialien zu Polyimid auf mechanische sowie auf elektrische Eigenschaften wurde untersucht. Bei moderater LochleiterKonzentration war die mechanische Stabilität der Filme ausreichend, um nach dem Reiben keine merklichen Unterschiede zu undotierten geriebene Filmen aufzuweisen. Vergleiche entsprechender Filme hinsichtlich Ladungsinjektion und transport zeigten, dass erst durch die Dotierung eine Verwendung von PolyimidOrientierungsschichten in Leuchtdioden ermöglicht wird. Sowohl polymere als auch niedrigmolekulare lochleitende Materialien wur den hinsichtlich der erreichbaren Orientierungsgrade sowie der resultierenden ElektrolumineszenzEigenschaften verglichen, wobei nur letztere in beiden Belangen zugleich zu vorteilhaften Ergebnissen führten. Es wurde gezeigt, dass sich die besten Resultate mit polarisierten Leuchtdioden erzielen ließen, bei denen die emittierende Schicht auf eine DoppelschichtStruktur aufgebracht war, die der Lochinjektion und der Orientierung dienten. Hierbei befand sich oberhalb einer LochinjektionsSchicht aus reinem Lochleitermaterial eine weitere lochleitende Orientie rungsSchicht aus dotiertem Polyimid. Variation der Lochleiterkonzentrationen in Polyimid er gaben, dass die Helligkeit mit zunehmender Konzentration zunahm, wohingegen die erreichten Polarisationsverhältnisse gleichzeitig abnahmen. SEM und AFMUntersuchungen über den Einfluss der Lochleiterkonzentration auf die Schichtmorphologie ergaben, dass diese Beobachtungen durch Phasenseparation und mechanische Beschädigung der Filme zu erklären ist, welche bei Konzentrationen oberhalb 20 Gewichtsprozent eintreten. Im Kapitel 6 wird schließlich die Elektrolumineszenz von Leuchtdioden mit Polyfluoren als emittierende Schicht diskutiert. Zuerst wurde in isotropen Leuchtdioden die günstigste Diodenarchitektur ermittelt sowie die Optimierung der verwendeten Schichten vorgenommen. Die Ergebnisse wurden mit den Kenntnissen kombiniert, die im Rahmen der oben beschriebenen Untersuchungen erworben wurden, um die Herstellung von Leuchtdioden mit hochpolarisierter Emission zu verwirklichen. Blaue Elektrolumineszenz mit einem Emissionsmaximum von 450 nm und einem Polarisationsverhältnis von 21 wurden erzielt, wobei die Leuchtdichte bei einer angelegten Spannung von 18 V etwa 100 cd/m 2 betrug, was der typischen Helligkeit eines Computermonitors entspricht. Alle ElektrolumineszenzEigenschaften ließen sich durch End funktionalisierung des Polyfluorens weiter deutlich verbessern, indem lochleitende TriarylaminDerivate an die Enden der Hauptketten angebracht wurden ('Endcapping'). Der unerwünschte Beitrag zur Emission bei höheren Wellenlängen, welcher im Falle des reinen Polyfluoren beo bachtet wurde und gemeinhin aggregierten Polymermolekülen zugeschrieben wird, wurde durch das Konzept der Endfunktionalisierung wirksam unterdrückt. Außerdem war die Farbstabilität wesentlich verbessert und die Effizienz der Leuchtdioden um mehr als eine Größenordnung höher als bei der Verwendung des reinen Polyfluorens. Diese Beobachtungen wurden mit den elektrochemischen Eigenschaften der Endgruppen erklärt. Letztere wirken als anziehende Fallen für Ladungsträger, was dazu führt, dass die Erzeugung von Exzitonen und die anschließende Rekombination vorwiegend in der Nähe der Kettenenden stattfindet, anstatt wie im Falle des reinen Polyfluorens an weniger effizienten Aggregaten oder Exzimererzeugenden Stellen. Es wurde gezeigt, dass die Endfunktionalisierung weder das Verhalten des Polymers im flüssig-kristallinen Zustand, noch dessen Orientierbarkeit beeinträchtigte. Die Verwendung des modifizierten Polyfluorens erlaubte die Herstellung von polarisierten Leuchtdioden mit einem Polarisationsverhältnis von 22 und einer Leuchtdichte von 200 cd/m 2 bei 19 V, wobei die Schwellspannung auf 7,5 V gesenkt wurde. Dioden mit einem Anisotropiefaktor von 15 er reichten Leuchtdichten von bis zu 800 cd/m 2 . Die Effizienz dieser Leuchtdioden war mit 0,25 cd/A bei ähnlichem Polarisationsverhältnis und Leuchtdichte um mehr als doppelt so hoch wie die bisher berichteten Werte. Die Veränderung der eigentlich blauen Emissionsfarbe durch die Zugabe von Materialien mit niedrigerer Bandlücke in eine Polyfluorenmatrix wird im Kapitel 7 beschrieben. Es wurde gezeigt, dass der Zusatz bereits geringer Konzentrationen eines grün emittierenden Thiophen Farbstoffes das Emissionsspektrum des Polyfluorens entscheidend veränderte und die Realisierung grüner Emission ermöglichte. Genau wie im Falle der nichtemittierenden Lochleiter, die für die Endfunktionalisierung des Polyfluoren verwendet wurden, wirken auch die ThiophenFarbstoffe als effektive Ladungsträgerfallen, was neben der Farbveränderung eine drastische Verbesserung der Leuchtdiodeneffizienzen zur Folge hatte. Darüber hinaus konnte mit Hilfe des dotierten Polyfluorens polarisierte grüne Elektrolumineszenz verwirklicht werden, wobei die Polarisationsverhältnisse Werte von bis zu 30 erreichten, bei einer Leuchtdichte von 600 cd/m 2 und einer Effizienz von 0,3 cd/A. Im Hinblick auf rote Elektrolumineszenz wurden Leuchtdioden mit dendronisierten Pery lenfarbstoffen in der emittierenden Schicht untersucht, zum einen in reiner Form und zum an deren in Mischungen mit Polyfluoren. Hierfür wurden zwei Generationen von Dendrimeren, bestehend aus zentralem PerylendiimidChromophor und PolyphenylenGerüst, mit einer nichtdendronisierten Modellverbindung verglichen. Leuchtdioden mit reinen Filmen der ersten und zweiten Dendrimergeneration emittierten rotes Licht mit CIEKoordinaten (0,627/0,372) und einer Leuchtdichte von bis zu 120 cd/m 2 bei 11 V, wobei die Effizienz allerdings nur 0,03 cd/A betrug. Um die unterschiedlichen Mechanismen zu klären, die zur Emission der Farbstoffmoleküle führen, wurden die Farbstoffe in Polyfluoren beigemischt, und der Einfluss der Dendronisierung auf die Emissionsfarbe und die Intensität der Elektrolumineszenz wurde untersucht. In Photolumineszenz wurde mit zunehmender Dendronisierung eine Abnahme des Förster Energieübertrags vom PolyfluorenWirt zu dem PerylenfarbstoffGast verzeichnet, was zu einen höheren blauen Anteil im Emissionsspektrum führte. Hingegen wurde gezeigt, dass in Elektrolumineszenz die Farbstoffe als Elektronenfallen wirken und die Rekombination der Ladungsträger zu Exzitonen somit vorwiegend auf den Farbstoff anstatt auf den Polyfluorenmolekülen statt findet. Aus diesem Grund war die Betonung der roten Emission in Elektrolumineszenz ungleich stärker als in Photolumineszenz, bei der die rote Emission ausschließlich durch Energieübertrag via Förstertransfer zu Stande kommt. Die Verstärkung einer Farbverschiebung von rot nach blau, die mit zunehmender Dendronisierung und ansteigender Betriebsspannung beo bachtet wurde, konnte qualitativ mit der kinetischen Beeinträchtigung des Elektronenübertrags vom PolyfluorenWirt auf den PerylendiimidChromophor erklärt werden. Der bestmögliche Kompromiss aus roter Farbtiefe und Helligkeit wurde für die Mischung aus Polyfluoren und dem Farbstoff der ersten Dendrimergeneration erzielt. Bei angelegter Spannung von 6,5 V lag die Leuchtdichte bei 100 cd/m 2 und bei 11 V bei 700 cd/m 2 , wobei das Emission bei 600 nm ihr Maximum hatte.
Im Rahmen der vorliegenden Arbeit wird experimentell ein oszillatorischer Hall-Strom nachgewiesen, der sich in einem impulsiv optisch angeregten Halbleiterühergitter ausbildet, sobald sich dieses in einem statischen magnetischen Feld und einem dazu senkrechten statischen elektrischen Feld befindet. Das Übergitter dient dabei als Modellsystem für ein dreidimensionales Material und ermöglicht die Beobachtung eines unter dem Begriff "kohärenter Hall-Effekt" zusammengefassten Bewegungsverhaltens der Ladungsträger, das durch eine charakteristische Frequenzabhängigkeit des oszillatorischen Hall-Stromes von den äußeren Feldern gekennzeichnet ist. Dabei wird in der vorliegenden Arbeit das spezielle Bewegungsverhalten mit Hilfe eines semiklassischen Modells hergeleitet und diskutiert. Die zentrale Aussage des Modells ist die Existenz zweier scharf voneinander abgegrenzter Bewegungsregimes, (die sich durch eine entgegengesetzte Feldabhängigkeit der Oszillationsfrequenz auszeichnen. Am Übergang zwischen diesen beiden Regimes werden alle Oszillationen aufgrund einer gegen Null gehenden Frequenz unterdriickt. Dabei lässt sich im Gegensatz zum Ortsraum der Übergang zwischen den beiden Bewegungsregimes im k-Raum einfach klarmachen. Er wird durch die Überwindung der Mini-Brillouin-Zonengrenze durch das Ladungsträgerwellenpaket markiert und bestimmt, ob die Bewegungsform Bloch-oszillationsartig oder zyklotronartig ist. Der experimentelle Nachweis des kohärenten Hall-Effektes wird durch die Anwendung einer berührungsfreien optoelektronischen Technik ermöglicht, mit deren Hilfe das emittierte elektrische Feld der kohärenten, transienten Hall-Ströme zeitaufgelöst detektiert werden kann. Da diese Technik die Messung frei propagierender Strahlung im THz-Frequenzbereich gestattet, bezeichnet man die Methode als THiz-Emissionsspektroskopie. Im Gegensatz zum klassischen Hall-Effekt stellt sich der kohärente Hall-Effekt als Manifestation der Wellennatur (der Ladungsträger dar, die sich im Festkörper durch eine periodische Dispersionsrelation äußert,. Erst. die kohärente Präparation eines Ladungsträgerensembles ermöglicht dabei (die Beobachtung der mikroskopischen Vorgänge in Form einer transienten Bewegung, die, bedingt durch ultraschnelle Streuprozesse, auf kurzen Zeitskalen von etwa 1 ps dephasiert. Die Kohärenz wird dem System dabei mittels eines kurzen Laserpulses von etwa 100 fs Dauer aufgeprägt, mit dessen Hilfe die Ladungsträger im Übergitter optisch generiert werden. Diese Vorgehensweise ist mit der experimentellen Untersuchung von Bloch-Oszillationen vergleichbar, die ebenfalls erst durch die kohärente Präparation der Ladungsträger messbar werden. Die inkohärente Bewegung der Ladungsträger in einem Kristall unter dem Einfluss eines konstanten elektrischen Feldes wird bekanntermaßen durch das Ohmsche Gesetz beschrieben analog etwa der Beschreibung der IIall-Spannung beim klassischen Hall-Effekt.. Im Rahmen der vorliegenden Arbeit gelingt der erste Nachweis des beschriebenen kohärenten Effektes und damit, der Beleg, dass es auch in dreidimensionalen Halbleitern, hier repräsentiert durch ein Übergitter, möglich ist, kohärente Signaturen des Hall-Effektes zu beobachteten. Im Gegensatz zu speziellen zweidimensionalen Strukturen, wie sie beim integralen und fraktionalen Quanten-Hall-Effekt verwendet werden, ist dies hier aufgrund des größeren Zustandsraumes und der dadurch bedeutenderen Dephasierungsprozesse nur auf sehr kurzen Zeitskalen realisierbar.