Refine
Year of publication
Document Type
- Doctoral Thesis (19)
- diplomthesis (1)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- Laser (2)
- terahertz (2)
- 2D materials (1)
- Absolute Phase (1)
- Aluminiumarsenid (1)
- Antenne (1)
- Brechungsindex (1)
- Carrier Envelope Phase (1)
- E-beam induced deposition (1)
- EBID (1)
Institute
- Physik (20)
Im Rahmen der vorliegenden Arbeit wird experimentell ein oszillatorischer Hall-Strom nachgewiesen, der sich in einem impulsiv optisch angeregten Halbleiterühergitter ausbildet, sobald sich dieses in einem statischen magnetischen Feld und einem dazu senkrechten statischen elektrischen Feld befindet. Das Übergitter dient dabei als Modellsystem für ein dreidimensionales Material und ermöglicht die Beobachtung eines unter dem Begriff "kohärenter Hall-Effekt" zusammengefassten Bewegungsverhaltens der Ladungsträger, das durch eine charakteristische Frequenzabhängigkeit des oszillatorischen Hall-Stromes von den äußeren Feldern gekennzeichnet ist. Dabei wird in der vorliegenden Arbeit das spezielle Bewegungsverhalten mit Hilfe eines semiklassischen Modells hergeleitet und diskutiert. Die zentrale Aussage des Modells ist die Existenz zweier scharf voneinander abgegrenzter Bewegungsregimes, (die sich durch eine entgegengesetzte Feldabhängigkeit der Oszillationsfrequenz auszeichnen. Am Übergang zwischen diesen beiden Regimes werden alle Oszillationen aufgrund einer gegen Null gehenden Frequenz unterdriickt. Dabei lässt sich im Gegensatz zum Ortsraum der Übergang zwischen den beiden Bewegungsregimes im k-Raum einfach klarmachen. Er wird durch die Überwindung der Mini-Brillouin-Zonengrenze durch das Ladungsträgerwellenpaket markiert und bestimmt, ob die Bewegungsform Bloch-oszillationsartig oder zyklotronartig ist. Der experimentelle Nachweis des kohärenten Hall-Effektes wird durch die Anwendung einer berührungsfreien optoelektronischen Technik ermöglicht, mit deren Hilfe das emittierte elektrische Feld der kohärenten, transienten Hall-Ströme zeitaufgelöst detektiert werden kann. Da diese Technik die Messung frei propagierender Strahlung im THz-Frequenzbereich gestattet, bezeichnet man die Methode als THiz-Emissionsspektroskopie. Im Gegensatz zum klassischen Hall-Effekt stellt sich der kohärente Hall-Effekt als Manifestation der Wellennatur (der Ladungsträger dar, die sich im Festkörper durch eine periodische Dispersionsrelation äußert,. Erst. die kohärente Präparation eines Ladungsträgerensembles ermöglicht dabei (die Beobachtung der mikroskopischen Vorgänge in Form einer transienten Bewegung, die, bedingt durch ultraschnelle Streuprozesse, auf kurzen Zeitskalen von etwa 1 ps dephasiert. Die Kohärenz wird dem System dabei mittels eines kurzen Laserpulses von etwa 100 fs Dauer aufgeprägt, mit dessen Hilfe die Ladungsträger im Übergitter optisch generiert werden. Diese Vorgehensweise ist mit der experimentellen Untersuchung von Bloch-Oszillationen vergleichbar, die ebenfalls erst durch die kohärente Präparation der Ladungsträger messbar werden. Die inkohärente Bewegung der Ladungsträger in einem Kristall unter dem Einfluss eines konstanten elektrischen Feldes wird bekanntermaßen durch das Ohmsche Gesetz beschrieben analog etwa der Beschreibung der IIall-Spannung beim klassischen Hall-Effekt.. Im Rahmen der vorliegenden Arbeit gelingt der erste Nachweis des beschriebenen kohärenten Effektes und damit, der Beleg, dass es auch in dreidimensionalen Halbleitern, hier repräsentiert durch ein Übergitter, möglich ist, kohärente Signaturen des Hall-Effektes zu beobachteten. Im Gegensatz zu speziellen zweidimensionalen Strukturen, wie sie beim integralen und fraktionalen Quanten-Hall-Effekt verwendet werden, ist dies hier aufgrund des größeren Zustandsraumes und der dadurch bedeutenderen Dephasierungsprozesse nur auf sehr kurzen Zeitskalen realisierbar.
In der vorliegenden Arbeit wurden zeitaufgelöste optische und magneto-optische Untersuchungen an den halb-metallischen gemischtvalenten Manganatverbindungen La0.67Ca0.33MnO3 und Nd0.7Sr0.3MnO3 durchgeführt, die wichtige Informationen über die nach der optischen Anregung ablaufenden Relaxationsprozesse lieferten. Dabei wird das zu untersuchende Material mittels eines intensitätsstarken ultrakurzen Lichtpuls angeregt. Die dadurch erzeugten Änderungen in der komplexen dielektrischen Funktion der Probe tastet man mittels eines zweiten intensitätsschwächeren ultrakurzen Lichtpuls ab. Durch eine variable Weglängendifferenz zwischen den optischen Wegen des Anregeund des Abtastpulses erzeugt man eine variable Zeitverzögerung und kann damit die Änderungen in der dielektrischen Funktion zeitaufgelöst untersuchen....
In der vorliegenden Arbeit wird die Kopplung von Bloch- und Zyklotron-Oszillationen in Halbleiterübergittern unter dem Einfluss eines elektrischen und magnetischen Feldes zeitaufgelöst-elektro-optisch untersucht. Hierbei hängen sowohl die Stärke der Bloch-Zyklotron-Kopplung als auch die Charakteristika der kohärenten Ladungsträgerbewegung sensitiv von der relativen Anordnung der äußeren Felder ab. Bei gekreuzter Feldanordnung wird der Kohärente Hall-Effekt beobachtet. Semiklassisch lässt sich die Ladungsträgerdynamik in diesem Fall mit der Bewegungsgleichung eines nicht getriebenen, ungedämpften Pendels beschreiben. Abhängig vom Verhältnis E/B der äußeren Feldstärken lassen sich zwei Bewegungsregime mit gegensätzlicher Feldabhängigkeit der Frequenz der Ladungsträgeroszillationen unterscheiden. Bei schiefer Feldanordnung kommt es durch die nichtlineare Kopplung der Bloch-Oszillation mit der Zyklotron-Oszillation in der Übergitterebene zu einer phasenempfindlichen Gleichrichtung der transienten Oszillationen entlang der Wachstumsrichtung, wobei man in Resonanz eine Überhöhung dieses selbstinduzierten Gleichstroms beobachtet. In Anlehnung an ein analoges Phänomen, das an Josephson-Kontakten beobachtet wird, sprechen wir hierbei vom Fiske-Effekt. Für die räumliche Auslenkung X("unendlich") entlang der Wachstumsrichtung nach Abklingen der Kohärenz kann im Rahmen einer analytischen semiklassischen Näherung ein geschlossener Ausdruck angegeben werden. Die zeitaufgelösten Experimente zur Bloch-Zyklotron-Kopplung werden an zwei GaAs/Al0,3Ga0,7As-Übergitterstrukturen mit unterschiedlicher Quantentopfbreite durchgeführt. Im Spezialfall der gekreuzten Feldanordnung wird der Kohärente Hall-Effekt anhand der Existenz zweier Bewegungsregime mit ihrem charakteristischen Frequenz- und Dephasierungsverhalten in Abhängigkeit der äußeren Felder nachgewiesen und die lineare Abhängigkeit des Magnetfeldes am Übergang zwischen den Bewegungsregimen vom elektrischen Feld gezeigt. Die gleichermaßen prognostizierte Zunahme der Intensität höherer harmonischer Moden der Ladungsträgeroszillationen in der Nähe des Übergangs wird jedoch in der elektro-optischen Respons nicht beobachtet, wenngleich die verwendeten elektro-optischen Messtechniken im Vergleich zur Terahertz-Emissionsspektroskopie zur Untersuchung des Übergangsbereichs und höher frequenter Oszillationen prinzipiell besser geeignet sein sollten. Hierbei bestehende Einschränkungen werden diskutiert. Der für den Fall der schiefen Feldanordnung vorhergesagte selbstinduzierte Gleichstrom manifestiert sich experimentell in einem resonanzartigen Verlauf des elektro-optischen Signals nach Abklingen der Oszillationen in Abhängigkeit des Magnetfeldes. Durch Vergleich mit dem analytisch hergeleiteten Ausdruck für die räumliche Auslenkung lassen sich hieraus die relevanten Dämpfungskonstanten abschätzen und durch iterative Anpassung bestimmen. Die bei schiefer Feldanordnung mittels elektro-optischer Spektroskopie gemessenen Signale weisen nach Abklingen der kohärenten Ladungsträgeroszillationen nur einen sehr schwachen Driftanteil auf. Eine schlüssige Erklärung für diese Beobachtung ergibt sich, wenn bei der Behandlung der Ladungsträgerdynamik die Impuls- und Energierelaxation des Bloch-Oszillators unterschieden werden und eine sehr kleine Energiedämpfung angenommen wird.
Gegenstand dieser Arbeit war die Untersuchung der optischen und elektronischen Eigenschaften von metallorganischen Materialien, die mit dem Verfahren der Elektronenstrahlinduzierten Deposition hergestellt wurden. Da es sich bei diesen noch relativ unerforschten Endprodukten um Materialmengen von wenigen Nanogramm Gewicht und geometrische Abmessungen im Sub-µm-Bereich handelt, wurden hierzu neue Verfahren der Herstellung, Strukturierung und Charakterisierung entwickelt. Sowohl die optischen als auch die elektronischen Eigenschaften dieser Deponate besitzen einen gemeinsamen physikalischen Nenner in ihrer inneren Morphologie: ein nanokristallines dielektrisches Verbundmaterial, das aus metallischen Kristalliten und organischen Polymeren gebildet wird. Im Hinblick auf die Durchführung der Untersuchungen war das Augenmerk auf zwei potentielle industrielle Anwendungen gerichtet: den Photonischen Kristallen und den Einzelelektronen-Phänomenen bei Raumtemperatur. Mit Hilfe von Beugungsexperimenten im Fernfeld wird ein Verfahren gezeigt, das eine der periodischen Struktur von Photonischen Kristallen angepaßte Charakterisierung von Materialstrukturen mit optischer Bandlücke ermöglicht. Das mathematische Grundgerüst bildet dabei eine rigorose Streutheorie, die als Lösung der Helmholtz-Gleichung an dielektrischen Zylindern mit wenigen hundert nm Durchmesser den Experimenten zugrunde gelegt wird und sowohl für die praktische Dimensionierung des Versuchsaufbaus als auch für die theoretische Auswertung der Meßdaten, z.B. für die Brechungsindexbestimmung, dient. Die Herstellung und Kontrolle der Eigenschaften von Einzelelektronen-Tunnelelementen (SETs, Single Electron Tunneling Devices), welche bei hohen Temperaturen mit einer abzählbar kleinen Anzahl von Elektronen noch arbeiten, dürfte wohl eine der größten Herausforderungen in der heutigen Festkörperelektronik sein. Obwohl die Idee dazu, auf Basis der "Orthodoxen Theorie", bis auf die 80er Jahre des vergangenen Jahrhunderts zurückgeht, konnten nennenswerte Ergebnisse nur unter "Laborbedingungen" mit entsprechend hohem experimentellem Aufwand erzielt werden. In der vorliegenden Arbeit wird ein neuer Weg gegangen, um die beiden wesentlichen Bedingungen der orthodoxen Theorie, nämlich die Kleinheit der Kapazitäten und hohe Tunnelwiderstände, durch das ungeordnete nanokristalline Netzwerk der metallorganischen Deponate zu erfüllen. Die Motivation hierzu liegt in der hochohmigen organischen Matrix der Deponate, die mit darin eingebetteten elektrisch isolierten Nanokristalliten (die mit Durchmessern zwischen 1 nm und 2.5 nm ausgezeichnete Quantenpunkte bilden) eine ideale Umgebung für den Betrieb von Einzelelektronen-Tunnelelementen bereitstellen. Ein stabiles Verhalten unter hohen Temperaturen und eine ausgeprägte Resistenz gegen quantenmechanische Fluktuationen (z. B. dem Co-Tunneln oder Hintergrundladungen) wird durch den Aufbau von nanokristallinen Netzwerken, die in der Arbeit als "Über-SET" bezeichnet werden, erreicht. Mit Hilfe der entwickelten speziellen Technik lassen sich Nanokristallite elektrisch bis zur quantenmechanischen Tunnelgrenze voneinander isolieren und als Quantenpunkte betreiben. Die dabei beobachtbaren Phänomene sind diskretisierte I/U-Kennlinien und das Blockade-Verhalten der Spannung bei Raumtemperatur, deren Entstehung in Monte-Carlo-Simulationen auf zwei physikalische Grundprinzipien zurückgeführt wird: der Ausbildung von Einfangzuständen (Traps) für Elektronen an Grenzstellen und dem Mechanismus des negativen differentiellen Widerstandes (NDR, Negative Differential Resistance). Beide Effekte fungieren in einer gegenseitigen Kombination zueinander durch Coulomb-Wechselwirkungen zu einem mikroskopischen Schalter für den gesamten Strom.
In der vorliegenden Arbeit wird die Anwendung einer optischen Detektionsmethode zur Messung der magnetischen Eigenschaften eines verdünnten Systems angewandt und zur Untersuchung von High-Spin–Low-Spin-Komplexen etabliert. Die von uns angewandte MCD-Spektroskopie vereint eine optische Messtechnik, die auf die Messung ultraschneller Effekte erweiterbar ist, mit einer direkten Messmethode für die magnetischen Eigenschaften einer verdünnten Probe des LD-LISC-Komplexes Fe(stpy)4(NCSe)2 (stpy = 4-styrylpyridin). Der LD-LISC-Effekt ist ein licht-induzierter Spinübergang, der auftreten kann, wenn von einem Paar metallorganischer Komplexe eines einen thermischen Spinübergang aufweist und optisch zwischen den beiden Komplexes geschaltet werden kann, beispielsweise durch eine Photoisomerisation. Im Falle von Fe(stpy)4(NCSe)2 ist der cis-Komplex für alle Temperaturen im high-Spin-Zustand, während der trans-Komplex einen thermischen Spinübergang aufzeigt. Mit MCD-Spektroskopie wurde die Magnetisierung des Grundzustands des Fe(II)(stpy)4 (NCS)2-Komplexes in der trans- und der cis-Konfiguration in verdünnten dotierten Polymerfilmen untersucht. Diese magnetooptische Spektroskopie-Technik ermöglicht die Identifizierung von MLCT-Bändern des Eisen-Komplexes, die in optischen Spektren durch stärkere Ligandenabsorptionsbäder überlagert sind und sich nur schlecht auflösen lassen. Das untersuchte System dient als Beispiel für eine Reihe von Verbindungen, die photoschaltbare magnetische Eigenschaften besitzen. Für den Komplex in der cis-Form können bei tiefen Temperaturen durch die Messung von MCD-Daten bei variablem Feld und variabler Temperatur der Spinzustand, der g-Tensor und die Übergangspolarisierung M, sowie achsiale und rhombische Verzerrungen der oktaedrischen Geometrie des Moleküls bestimmt werden. Für den Komplex in der trans-Form konnte erstmals der Unterschied im Spinübergangsverhalten zwischen einer verdünnten Probe und einer konzentrierten Pulverprobe mit einem High-Spin–Low-Spin-Übergangskomplex gezeigt werden. Mit MCD-Spektroskopie konnten die Spinübergangsparameter bestimmt werden, die mit SQUID-Magnetometrie nur unzureichend untersucht werden können. Erste Messungen der MCD-Spektren während gleichzeitiger optischer Anregung zur Beobachtung des LD-LISC-Effekts auf langsamen Zeitskalen zeigen keine Änderung der MCD-Spektren trotz ausreichender Anregungsleistung, die zu einer deutlich messbaren Photoisomerisation geführt hat. Bei einer Temperatur von 120K der Messung ist der trans-Komplex bereits zu einem großen Teil im High-Spin-Zustand, so daß der Unterschied zwischen den Spinzuständen des cis- und des trans-Zustandes unterhalb der Auflösung des verwendeten Aufbaus liegt. Die in dieser Arbeit erzielten Resultate demonstrieren, daß die MCD-Spektroskopie eine geeignete Technik zur Messung des magnetischen Zustands von LD-LISC-Komplexen (oder anderen Komplexen) in verdünnten, zufällig orientierten Proben ist.
In der Doktorarbeit wurde ein Verfahren zur Ermittlung der Schwerpunkthöhe eines Fahrzeugs aus den Messwerten von Sensoren, die serienmäßig in vielen geländegängigen Fahrzeugen verbaut sind, entwickelt. Dieses Verfahren benötigt nur die Signale von Sensoren des elektronischen Stabilitätssystems (ESP) und eines Fahrwerks mit Luftfeder. Um die Höhe des Schwerpunkts zu bestimmen, wurde ein Modell entworfen, das die Drehbewegung des Fahrzeugs um seine Längsachse beschreibt. Eine der unbekannten Größen in diesem Modell ist das Produkt m_g\Deltah, wobei mit m_g die gefederte Masse des Fahrzeugs und mit Deltah der Abstand zwischen dem Schwerpunkt und der Wankachse des Fahrzeugs bezeichnet wird. Die Höhe des Schwerpunkts wird berechnet, indem zu diesem Abstand der als bekannt vorausgesetzte Abstand der Wankachse von der Straße addiert wird. Es wurden drei Varianten des Modells betrachtet. Die eine Modellvariante (stationäres Modell) beschreibt das Fahrzeugverhalten nur in solchen Fahrsituationen exakt, in denen die Wankgeschwindigkeit und die Wankbeschleunigung vernachlässigbar klein sind. In dieser Modellvariante wurden die Federkräfte mit einem detaillierten Modell der Luftfeder berechnet. Eine Eingangsgröße dieses Modells ist der Druck in den Gummibälgen der Luftfeder. Um diesen Druck zu ermitteln, wurde ein Algorithmus auf dem Steuergerät des Luftfedersystems implementiert. Um die Genauigkeit des Luftfedermodells zu testen und um die Abmessungen bestimmter Bauteile der Luftfeder zu ermitteln, wurden Messungen am Federungsprüfstand durchgeführt und eine Methode entwickelt, wie aus diesen Messungen die gesuchten Größen berechnet werden können. Bei den zwei übrigen Modellvarianten (dynamisches Modell) gelten die Einschränkung für die Fahrsituationen nicht. Die einzelnen Varianten des dynamischen Modells unterscheiden sich darin, dass das eine Mal die Feder- und Dämpferkonstanten als bekannt vorausgesetzt und das andere Mal aus den Sensorsignalen geschätzt werden. Passend zu jeder Modellvariante wurde ein Verfahren gewählt, mit dem Schätzwerte für das Produkt m_g\Deltah berechnet wurden. Des Weiteren wurde auch eine Methode entwickelt, mit der die Masse mg geschätzt wurde, ohne zuvor ein Wert für das Produkt m_g\Deltah zu ermitteln. Die Schätzwerte wurden unter Verwendung von Daten ermittelt, die bei einer Simulation und bei Messfahrten gewonnen worden sind. Das Ergebnis des Vergleiches der betrachteten Modellvarianten ist, dass die eine Variante des dynamischen Modells zum Teil falsche Werte für m_g\Deltah liefert, weil die Modellgleichungen ein nicht beobachtbares System bilden. Die andere Variante dieses Modells liefert nicht bei jeder Beladung exakte Werte, was vor allem daran liegt, dass in den Modellgleichungen dieses Modells ein konstanter Wert für die Federsteifigkeit angenommen wird. Bei Fahrzeugen mit Luftfeder ändert sich jedoch dieser Wert in Abhängigkeit von der Fahrzeugmasse. Die Werte von m_g\Deltah und mg können am genauesten mit dem stationären Modell ermittelt werden. Des Weiteren wurden Methoden entwickelt, die die Genauigkeit der durch den Schätzalgorithmus ermittelten Werte verbessern. So wurde zusätzlich zu dem Produkt m_g\Deltah und der Masse mg auch die Verteilung des Gewichtes auf die Vorder- und Hinterachse betrachtet. Es wurde ermittelt, welche Zusammenhänge zwischen dieser Verteilung und dem Produkt m_g\Deltah sowie zwischen dieser Verteilung und der Masse des Fahrzeugs bestehen. So konnte der Fehler in den Schätzwerten dieser Größen minimiert werden. Außerdem wurde auch der Zusammenhang zwischen dem Produkt m_g\Deltah und der Masse des Fahrzeugs ermittelt. Damit konnten die Schätzwerte dieser Größen genauer bestimmt werden. Aus den so gewonnenen Werten kann die Schwerpunkthöhe von einem Mercedes ML auf etwa 8cm genau berechnet werden. Diese Genauigkeit reicht aus, um das elektronische Stabilitätsprogramm auf die aktuelle Beladung des Fahrzeugs abzustimmen und damit einen Gewinn an Agilität für dieses Fahrzeug zu realisieren.
Es wurde eine Meßstation zum Vermessen von THz-Photomischern vorgestellt und aufgebaut. Weiterhin konnte gezeigt werden, wie diese Station es ermöglicht, das Vermessen von THz-Photomischern, im Vergleich zum bisher verwendeten Meßaufbau, deutlich zu vereinfachen und zu beschleunigen. Mit dieser Station wurden zwei Proben, die sich in der Dicke der LT-GaAs-Schicht unterscheiden, vermessen. Um die gemessenen Daten analysieren zu können wurden zuvor beschrieben, wie eine Modulation des Photostroms in Photomischern erhalten und damit THz-Strahlung erzeugt werden kann. Gemessen wurde die THz-Leistung in Abhängigkeit von Frequenz , Vorspannung und Leistung der optischen Beleuchtung. Diese Messungen haben zu Ergebnissen geführt, die nur zum Teil mit den theoretisch vorhergesagten Ergebnissen übereinstimmen. So wurde festgestellt, daß nur etwa 1 bis 2 % der theoretisch erwarteten THz-Leistung detektiert wurde. Dies kann an langlebigen Ladungsträgern liegen, die im Substrat erzeugt werden. Diese Ladungsträger unterhalb der LT-GaAs-Schicht führen zu einer erhöhten Leitfähigkeit und können dadurch Reflexion und Absorption von THz-Strahlung verursachen. Diese Vermutung wird unterstützt durch die Beobachtung einer starken Reduktion des Signals in einem gepulsten THz-System, wenn eine konstante Hintergrundbeleuchtung eingeschaltet wird.[45] Weiterhin ist nicht auszuschließen, daß die für die THz-Erzeugung relevante Lebenszeit der Ladungsträger deutlich größer ist, als die mit Anrege-Abfrage-Messungen bestimmte. Analog könnte auch eine deutlich höhere Kapazität des Photomischers als die theoretisch berechnete diese Beobachtung erklären. Ob langlebige Ladungsträger im Substrat für die geringe gemessen Leistung verantwortlich sind kann überprüft werden, indem zwischen Substrat und LT-GaAs-Schicht einen Bragg-Refelektor gewachsen wird. So kann verhindert werden, daß eingestrahlte Leistung das Substrat erreicht. Dadurch können keine Ladungsträger im Substrat angeregt werden. Zusätzlich hat dies den Effekt, daß ein größerer Anteil der eingestrahlten Strahlung absorbiert werden kann, weil die einfallende Strahlung wegen der Reflexion zweimal durch die LT-GaAs-Schicht läuft. Ein solcher Mischer wurde bereits von E. R. Brown vorgeschlagen.[46] Bei den Messungen der THz-Leistung gegen Vorspannung konnte beobachtet werden, daß der Photostrom eine andere Abhängigkeit von der Vorspannung zeigt, als theoretisch vorhergesagt wurde. Erwartet wurde ein linearer Zusammenhang. Bei höheren Vorspannungen wurde aber ein stärkerer Anstieg beobachtet. Dies kann z.B. an einem zusätzlichen nichtlinearen Strom durch das Substrat oder an einer vom elektrischen Feld abhängigen Lebenszeit der Ladungsträger liegen. Für beide Erklärungsansätze wurden vereinfachte Modelle vorgestellt. Beide Modelle treffen dabei unterschiedliche Vorhersagen über die Änderung der Effizienz beim Auftreten des höheren Stromes. Deutlich werden die Unterschiede in den Vorhersagen im Frequenzverlauf. So führt ein zusätzlicher Strom durch das Substrat zu einer Verringerung der Effizienz um einen von der Frequenz unabhängigen konstanten Faktor. Der Frequenzverlauf verschiebt sich also zu geringeren Effizienzen. Eine Erhöhung der Lebenszeit hingegen führt zu einem geänderten Frequenzverlauf. So ist die Änderung der Effiienz bei niedirgen Frequenzen gering, zu höheren Frequenzen hin ändert sich die Effizienz jedoch immer stärker. Die Vorhersagen beider Modelle wurden mit dem gemessenen Daten verglichen. Bei den gegebenen Parametern war der Unterschied zwischen den beiden Modellen jedoch zu gering und die Fluktuation in den Meßdaten zu hoch, um entscheiden zu können, welches der beiden Modelle die gemessenen Daten besser beschreibt. Um erkennen zu können, welches der Modelle den Effekt beschreibt, der zu einem höheren Strom führt, müßte der Effekt in den Meßdaten erhöht werden. Dies kann geschehen, indem zusätzlich bei höheren Spannungen gemessen wird. Es müßte dabei allerdings die optische Leistung reduziert werden, um ein Zerstören der Mischer zu vermeiden. In dieser Arbeit konnte somit gezeigt werden, daß die aufgebaute Meßstation ein vereinfachtes Messen von THz-Photomischern ermöglicht. Weiterhin konnte das Verhalten von zwei vermessenen Mischern gezeigt und analysiert werden, sowie weitere Messungen vorgeschlagen werden, die eine exaktere Analyse der Photomischer ermöglichen sollten.
A fundamental work on THz measurement techniques for application to steel manufacturing processes
(2004)
The terahertz (THz) waves had not been obtained except by a huge system, such as a free electron laser, until an invention of a photo-mixing technique at Bell laboratory in 1984 [1]. The first method using the Auston switch could generate up to 1 THz [2]. After then, as a result of some efforts for extending the frequency limit, a combination of antennas for the generation and the detection reached several THz [3, 4]. This technique has developed, so far, with taking a form of filling up the so-called THz gap . At the same time, a lot of researches have been trying to increase the output power as well [5-7]. In the 1990s, a big advantage in the frequency band was brought by non-linear optical methods [8-11]. The technique led to drastically expand the frequency region and recently to realize a measurement up to 41 THz [12]. On the other hand, some efforts have yielded new generation and detection methods from other approaches, a CW-THz as well as the pulse generation [13-19]. Especially, a THz luminescence and a laser, originated in a research on the Bloch oscillator, are recently generated from a quantum cascade structure, even at an only low temperature of 60 K [20-22]. This research attracts a lot of attention, because it would be a breakthrough for the THz technique to become widespread into industrial area as well as research, in a point of low costs and easier operations. It is naturally thought that a technology of short pulse lasers has helped the THz field to be developed. As a background of an appearance of a stable Ti:sapphire laser and a high power chirped pulse amplification (CPA) laser, instead of a dye laser, a lot of concentration on the techniques of a pulse compression and amplification have been done. [23] Viewed from an application side, the THz technique has come into the limelight as a promising measurement method. A discovery of absorption peaks of a protein and a DNA in the THz region is promoting to put the technique into practice in the field of medicine and pharmaceutical science from several years ago [24-27]. It is also known that some absorption of light polar-molecules exist in the region, therefore, some ideas of gas and water content monitoring in the chemical and the food industries are proposed [28-32]. Furthermore, a lot of reports, such as measurements of carrier distribution in semiconductors, refractive index of a thin film and an object shape as radar, indicate that this technique would have a wide range of application [33-37]. I believe that it is worth challenging to apply it into the steel-making industry, due to its unique advantages. The THz wavelength of 30-300 ¼m can cope with both independence of a surface roughness of steel products and a detection with a sub-millimeter precision, for a remote surface inspection. There is also a possibility that it can measure thickness or dielectric constants of relatively high conductive materials, because of a high permeability against non-polar dielectric materials, short pulse detection and with a high signal-to-noise ratio of 103-5. Furthermore, there is a possibility that it could be applicable to a measurement at high temperature, for less influence by a thermal radiation, compared with the visible and infrared light. These ideas have motivated me to start this THz work.
The main subject of the thesis is the investigation of low-temperature-grown (LTG) GaAs-based photoconductive switches used in the generation of continuous-wave (CW) and pulsed terahertz (THz) radiation. The use of photoconductive switches based on low-temperature-grown GaAs proved to be a viable option in generating electromagnetic transients on a subpicosecond time-scale, corresponding to frequencies of ~1012 Hz (between microwave and far-infrared). The most appealing property of LTG-GaAs is the ultra-short carrier lifetime obtained by incorporation of a large number of As defects when GaAs is grown at low temperatures. However, the reason for poor THz emission efficiency (low CW-THz power lrvrls) is still up to this date not fully understood. The various reasons are to be found in both, optoelectronic properties of the active layer (photoconducting material) as well as in the device characteristics. The thesis focuses primarily on the limitation imposed to the performance of the THz emitters by the material of choice for the active layer (LTG-GaAs) and secondarily, on the impact of a particular emitter design on the THz radiation efficiency. In the beginning of the thesis one finds an ample overview on the electrical and optical properties of the LTG-GaAs material. A special chapter deals with the main features of current-voltage and CW-THz emission characteristics measured from a photoconductive antenna employed as photomixer. We observed deviations from the theoretical predictions of photomixing theory which were explained by considering the high-field electrons effects (velocity overshoot and elongation of the carrier trapping time). With the scope to provide a better understanding of the correlation between device and material properties when the LTG-GaAs material is integrated with a planar antenna (photoswitch), a special THz double-pulse technique (THz-pump and -probe) was implemented. The experimental results assisted by modeling of the double-pulse THz data provide a gainful insight into the ultrafast dynamics of the electrical field and photogenerated carriers. The outcome of the double-pulse experiments is the evidence for long-living carriers in the LTG-GaAs-based photoconductive antenna under applied bias, with a deleterious impact upon the emitter performance (especially for the CW case). Additionally, by measuring the THz transients generated by a constant laser pulse with and without a CW laser background illumination, we obtained further evidence of strong field-screening effects. This phenomenon was also attributed to the existence of long-living space-charge effects. For both cases (pulsed as well as CW) we derived the de-screening time constant. The principal conclusion of the present study is that, besides shortcomings imposed by the THz-circuitry, photomixers based on materials with traps (defects) exhibit great “affinity” for space-charge screening effects with cumulative and therefore long-lived deleterious impact upon device’s performance. An alternative would be the usage of a transient-time limited device where the response time is given by the carrier collection time, possibly with only one type of carrier responsible for THz signal generation.