Refine
Year of publication
Document Type
- Doctoral Thesis (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Gephyrin (3)
- Glycinrezeptor (3)
- Ortspezifische Mutagenese (2)
- Acetylcholin-Bindeprotein (1)
- Caged Verbindungen (1)
- Glyzinrezeptor (1)
- Inhibition (1)
- Ligand <Biochemie> (1)
- Ligandenbindung (1)
- Maus (1)
Institute
- Biochemie und Chemie (9)
- Biowissenschaften (4)
- Medizin (1)
- Pharmazie (1)
Metabotropic glutamate receptor subtype 7 (mGluR7) belongs to the family of G-protein coupled receptors. mGluR7 is widely distributed in the brain and primarily localized at presynaptic terminals, where it is thought to regulate neurotransmitter release and synaptic plasticity. Studies have shown that the intracellular C-terminal tail of mGluR7 binds a variety of proteins in addition to trimeric G-proteins. These newly identified protein interactions are believed to play a key role in the synaptic targeting and G-protein dependent signaling of mGluR7. Protein interacting with C kinase 1 (PICK1), a PDZ-domain protein, is a strong interaction partner of mGluR7a. In order to investigate the role of PICK1 in the synaptic trafficking and signaling of mGluR7a, a knock-in mouse line in which the interaction of mGluR7a and PICK1 is disrupted was generated. Analysis of the mutant mice by immunocytochemistry and immunoelectron microscopy showed that the synaptic targeting and clustering of mGluR7a was not altered, indicating that PICK1 is not required for mGluR7a receptor membrane trafficking and synaptic localization. However, when the spontaneous synaptic activity of cerebellar granule cell cultures prepared from both wild-type and knock-in mice was monitored, and L-AP4 (400μm) was found to decrease the frequency, but not the amplitude, of spontaneous excitatory currents in wild-type neurons, while no effect of L-AP4 on spontaneous synaptic activity was observed in knock-in neurons. This indicates that PICK1 binding to the C-terminal region of mGluR7a plays an essential role in mGluR7a mediated G-protein signaling. We examined the threshold sensitivity for the convulsant pentetrazole (PTZ) in knock-in mice. It was found that mGluR7a knock-in mice had a greater sensitivity to PTZ than wild-type mice. Moreover, the surface parietal cortex EEG recordings of the mutant mice revealed spontaneous synchronous oscillation, or "spike-and-wave discharges" (SWD), which displayed similar characteristics to absence-like seizures. It was also observed that the knock-in mice responded to pharmacology as human absence epilepsy. These data suggests that the knock-in mice displayed the phenotype of absencelike epilepsy. Furthermore, the behavioral analysis of the mGluR7a knock-in mice showed no deficits in motor coordination, pain sensation, anxiety as well as spatial learning and memory, thus the interaction of mGluR7a and PICK1 appears not to contribute to these physiological processes. Taken together, our data provides evidence for an important role of PICK1 in Gprotein dependent signaling of mGluR7a, whereas PICK1 is not required for synaptic targeting and clustering of mGluR7a. Our results also provide an animal model of absencelike epilepsy generated by disruption of a single mGluR7a-PDZ interaction, thus creating a novel therapeutic target against this neurological disease.
Charakterisierung intrazellulärer Bindepartner von metabotropen Glutamatrezeptoren der Gruppe III
(2001)
Die Aminosäure Glutamat ist der maßgebliche exzitatorische Neurotransmitter im zentralen Nervensystem, und glutamaterge Synapsen sind weit über das ganze Hirn ver breitet. Neben den Ionenkanalgekoppelten (ionotropen) Glutamatrezeptoren (iGluRs) aktiviert Glutamat auch prä und postsynaptische metabotrope Glutamatrezeptoren (mGluRs), die über trimere GProteine und nachgeschalteten Signalkaskaden Einfluss auf die Signalverarbeitung in der Synapse nehmen können (Pin und Duvoisin, 1995). Diesen Rezeptoren werden Aufgaben bei verschiedenen Formen neuronaler Plastizität und Neurotoxizität zugeschrieben (Pizzi et al., 1993; Pin und Duvoisin, 1995; Pekh letski et al., 1996; Pizzi et al., 1996a; Bushell et al., 1997; Maiese et al., 2000; Sabel haus et al., 2000). Zur Zeit sind acht verschiedene mGluRs zuzüglich ihrer Spleißvarian ten bekannt, die in drei Gruppen gegliedert werden, welche sich in ihrer Lokalisation, Struktur und pharmakologischen Eigenschaften unterscheiden (Nakanishi, 1992; Pin et al., 1993). Mitglieder der Gruppe III mGluRs sind spezifisch an der aktiven Zone der Präsy napse lokalisiert und dort an der Regulation der Neurotransmission beteiligt (Shigemoto et al., 1996; Ottersen und Landsend, 1997). Die Mechanismen, die zur spezifischen Lo kalisation führen, konnten bislang noch nicht aufgezeigt werden. Bereits im Vorfeld dieser Arbeit wurde eine Ca 2 abhängige Interaktion von Calmodulin (CaM) mit mGluR7a durch Kopräzipitationsstudien gezeigt. Die CaMBindung ist dabei von phy siologischer Relevanz für die Aktivierung des Rezeptors (O'Connor et al., 1999). In der vorliegenden Arbeit wurde nach neuen Interaktionspartnern für die Gruppe III mGluRs gesucht, um so weitere Aufschlüsse über die präsynaptische Verankerung und Regulati on dieser Rezeptorgruppe zu gewinnen. In einem ZweiHybridScreen konnten dabei die Proteine PxF und SGT, beides Genprodukte unbekannter Funktion, als zwei mögliche Interaktionspartner für mGluR4b identifiziert werden. Die Natur dieser Interaktionen konnte im Verlauf dieser Arbeit nicht genauer bestimmt werden und bleibt somit Gegenstand weiterer Untersuchungen. In einem parallelem Ansatz wurde die Interaktion von mGluR7a mit CaM näher untersucht. Dabei konnte ein hochkonservierter Bereich in allen Gruppe III mGluRs mit Ausnahme von mGluR4b und mGluR6 identifiziert werden, der eine Konsensussequenz zur CaMBindung (1510Motiv) enthält. Neben der CaMBindung konnte für diesen Bereich in Zusammenarbeit mit der Arbeitsgruppe von Dr. Michael Freissmuth auch eine Interaktion mit Gbetagamma nachgewiesen werden. Die GbetagammaBindung an den Rezeptor wird durch Ca 2 abhängige Aktivierung von CaM gehemmt. Es wird daher ein Modell zur dualen Aktivierung von Gruppe III mGluRs vorgeschlagen, welches mögliche Mecha nismen zur negativen Rückkopplung der Glutamatfreisetzung aufzeigt. Zusätzlich wurde eine mögliche Regulation der Gruppe III mGluRs durch PKC Phosphorylierung untersucht. Dabei konnte die in vitroPhosphorylierung eines einzel nen Restes (S862) im intrazellulären CTerminus von mGluR7a nachgewiesen werden, welche zur Hemmung der CaMBindung führte. Aufgrund dieser Daten wird ein erwei tertes Modell formuliert, in dem die Hemmung der Ca 2 /CaMabhängigen Aktivierung der GProteinsignalkaskade durch Phosphorylierung von mGluR7a eine übergeordnete Regulation des Rezeptors darstellt. Da die Gruppe III mGluRs bei Aktivierung zu einer Selbsthemmung der Neuro transmission führen (Pin und Duvoisin, 1995; Takahashi et al., 1996), stellt deren Ca 2 /CaMregulierte Aktivierung und die zusätzliche Regulation durch Phosphorylie rung eine Möglichkeit der Regulation von Lernprozessen dar.
Untersuchungen zur Rolle von 14-3-3-Proteinen beim Wachstum von Neuriten in neuronalen Kulturen
(2004)
In dieser Arbeit konnte per Western-Blot-Analyse gezeigt werden, dass 14-3-3-Proteine ein primär überlappendes Expressionsmuster in den Organen der Ratte Herz, Leber, Niere, Pankreas, Lunge, Milz, Groß- und Kleinhirn, zeigen. 14-3-3 zeta wird in Großhirnhomogenaten wesentlich stärker exprimiert als in allen anderen Organen, auch dem Kleinhirn, was für eine wichtige Rolle bei höheren neurologischen Funktionen sprechen könnte. Daher wurde auf eine isoformspezifische Funktion von 14-3-3 zeta in Nervenzellen spekuliert. Es wurden Deletionsmutanten von 14-3-3 zeta per PCR hergestellt und in den Expressionsvektor pcDNA3.1 kloniert. HEK-Zellen wurden mit diesem Plasmid und pEGFP-C-Aktin, einem Vektor, der die Gene für F-Aktin und grünes Fluoreszenzprotein aneinander gekoppelt enthält, kotransfiziert. Die Konstrukte 14-3-3 zeta-C-Terminus und -Helix 5/6 sollten in den Zellen so reichlich exprimiert werden, dass sie dominant-negativ wirken, indem sie die Funktion des endognen, intakten Proteins unterdrücken. Der generelle Transfektionserfolg zeigte sich durch eine kräftige grüne Anfärbung des neu synthetisierten Aktins in einem Großteil der Zellen. Die Zellen waren sämtlich, egal mit welchem 14-3-3-Konstrukt sie transfiziert waren, zu einer bedarfsgerechten Umlagerung ihres Aktins in wachsenden und sich teilenden Zellen in der Lage und zeigten einen normalen Aktinkortex. Auch morphologische Auffälligkeiten ergaben sich nicht. Die Methode der Aktinfärbung mittels pEGFP-C-Aktin-Transfektion konnte etabliert und mit der Darstellung des Aktins durch fluoreszenzmarkiertes Phalloidin verglichen werden. Ferner konnten durch die Proteinbestimmung in sich differenzierenden PC12-Zellen die unterschiedlichen Expressionsmuster der einzelnen 14-3-3 Isoformen während der Neurogenese und die frühe und drastische Induktion von 14-3-3 epsilon zum Zeitpunkt der Neuritenanlage gezeigt werden. Schließlich wurde die subzelluläre Kompartimentierung der verschiedenen 14-3-3-Isoformen durch Doppelimmunfluoreszenzfärbung gezeigt. Sie haben untereinander sehr ähnliche Expressionsmuster und halten sich überwiegen im Zytoplasma und der perinukleären Region auf. Den Nukleus sparen 14-3-3-Proteine in diesen Zellen im wesentlichen aus und gelangen auch nicht direkt an die Plasmamembran. Die Vesikelpopulation, die mit dem Vesikelmarker Synaptophysin angefärbt wurde, befindet sich in denselben Zellkompartimenten wie 14-3-3, innerhalb derer die beiden Proteine aber räumlich voneinander getrennt bleiben und nicht kolokalisieren.
Ein transgenes Mausmodell zur Untersuchung der Zink-vermittelten Modulation des Glyzinrezeptors
(2002)
Zink (Zn2+) ist ein im Zentralnervensystem der Säuger weitverbreitetes Metallion, das in kleinen synaptischen Vesikeln hoch angereichert wird. Zink-reiche Vesikel sind besonders gut dokumentiert in exzitatorischen Synapsen, z.B. im Hippocampus, sie werden jedoch auch in inhibitorischen Synapsen von Neuronen des Rückenmarks oder der Retina gefunden. Nach exozytotischer Freisetzung dieser Vesikel in den synaptischen Spalt können Zink-Konzentrationen von bis zu zehn mikromolar erreicht werden. In vitro hat Zink modulatorische Effekte auf eine Vielzahl von Neurotransmitter-Rezeptoren, so u.a. auf Glutamat-Rezeptoren vom AMPA-, NMDA-, oder Kainat-Typ, aber auch auf GABAA- und Glyzinrezeptoren (GlyR). Zink wurde daher als endogener Neuromodulator vorgeschlagen. Der modulatorische Effekt von Zink auf den GlyR ist biphasisch: Niedrige mikromolare Konzentrationen bewirken eine Potenzierung Glyzin-induzierter Ströme, höhere mikromolare Konzentrationen dagegen deren Inhibition. Dieser potenzierende Effekt von Zn2+ kann in transfizierten HEK 293 Zellen oder cRNA-injizierten Xenopus laevis Oozyten durch eine Punktmutation im N-terminalen Bereich des α1-Polypeptids aufgehoben werden (D80A (Lynch et al., 1998), oder D80G (Laube et al., 2000)). Ein revers-genetischer Ansatz wurde in der vorliegenden Arbeit benutzt, um Rückschlüsse auf die physiologische Relevanz der Potenzierung Glyzin-induzierter Ströme durch Zn2+ zu gewinnen: In einem „Knock-In“ Mausmodell wurde durch homologe Rekombination in ES-Zellen eine Mutation in der kodierenden Sequenz des GlyRα1-Genlocus eingeführt, die den o.g. AS Austausch (D80A) in der adulten ligandenbinden Untereinheit des GlyR bewirkt. Um die Veränderung des Genlocus zu minimieren war die als Selektionsmarker bei der Einführung der Mutation benötigte Neor-Kassette von zwei loxP-Sequenzen flankiert, und konnte so nach dem Nachweis des homologen Rekombinationsereignisses durch Wirkung der Cre-Rekombinase wieder entfernen werden. Nach Blastozysteninjektion homolog rekombinierter ES-Zellen zur Herstellung chimaerer Tiere und Keimbahntransmission der Mutation in einem Teil dieser Chimaeren konnten so Mauslinien mit zwei verschiedenen mutierten Allelen generiert werden: In zwei Linien wurde das intronisch miteingeführte Neor-Element bereits in ES-Zellen in vitro deletiert, wonach lediglich eine der loxP-Sequenzen verbleibt; in einer dritten Linie wurde der Selektionsmarker als intronische Insertion belassen. Während heterozygote Tiere aller drei Linien keinerlei offensichtliche Auffälligkeiten zeigen, findet sich bei homozygot-mutanten Tieren aller Linien ein mit der zweiten postnatalen Woche eintretender Phänotyp, dessen auffälligste Symptome eine verstärkte akustisch oder taktil induzierbare Schreckreaktion, ein erhöhter Muskeltonus, taktil induzierbarer Tremor und generalisierter Myoklonus sowie ein verlangsamtes Wiederaufrichten sind. Dieser Symtomkomplex ähnelt stark dem der spontanen Mutationen des GlyRs spasmodic, spastic oder oscillator und weist auf einen Verlust glyzinerger Inhibition als Ursache hin. Die verschiedenen Allele verursachen unterschiedlich starke Phänotypen: Das mutierte Allel, in welchem die Neor–Kassette deletiert ist, bewirkt einen schwachen Phänotyp, wohingegen das Verbleiben des intronischen Neor-Elements einen schwerwiegenderen Phänotyp zur Folge hat, und homozygote Tiere bis auf wenige Ausnahmen bis zur achten Lebenswoche sterben. Die Immunoblot-Analyse zeigt, daß bei homozygot mutanten Tieren dieser stärker betroffenen Linie ein partieller Verlust der Proteinexpression der GlyRα -Untereinheit auftritt. Dagegen ist in Tieren, in denen die Neor-Kassette deletiert ist, keine Verringerung der GlyRα-Expression durch Immunoblot nachweisbar. Der milde Phänotyp ist demnach am einfachsten durch den spezifischen pharmakologischen Effekt der Mutation, d. h. den Verlust der Zn2+-induzierten Potenzierung des GlyR, erklärbar. Hiermit wurde erstmals ein Hinweis daraufhin gewonnen, daß niedrige mikromolare Konzentrationen von Zn2+ für die physiologische Funktion des adulten GlyR notwendig sind. Darüberhinaus unterstreichen die Ergebnisse das Potential des GlyR als Ansatzpunkt zur Entwicklung neuer Muskel-relaxierender oder sedativer Substanzen, die - ähnlich der Wirkung von Zn2+ - einen potenzierenden Effekt auf die glyzinerge Inhibition haben.
Gephyrin ist ein Protein mit strukturellen und enzymatischen Eigenschaften. Ein Aspekt der strukturellen Funktion ist die synaptische Verankerung inhibitorischer Rezeptoren an das Zytoskelett. Darüber hinaus besteht die Möglichkeit, dass ein Interaktionspartner von Gephyrin, Collybistin, die Organistion des Aktin-Zytoskeletts reguliert. Die enzymatische Funktion von Gephyrin besteht in der Synthese eines Kofaktors, welcher für die Aktivität von Molybdoenzymen notwendig ist. Das gezielte Ausschalten des für Gephyrin kodierenden Gens weist im Mausmodell einen letalen Phänotyp auf. Als Ursache hierfür kommen die fehlende synaptische Aggregation von Glyzin- und GABAA-Rezeptoren in neuronalem Gewebe, sowie die fehlende Aktivität von Molybdoenzymen in peripheren Organen in Frage. Da sowohl Molybdän-Kofaktor-Defizienzen beim Menschen, wie auch bestimmte Mutationen von Glyzin- und GABAA-Rezeptoren bei Mäusen letal sind, kann der beobachtete Phänotyp nicht eindeutig zugeordnet werden. Die vorliegende Arbeit verfolgt zwei Ziele. Das erste ist eine Einengung der Binderegion von Collybistin an Gephyrin. Dabei konnte diese durch immunzytochemische und biochemische Methoden auf wenige Aminosäuren genau beschrieben werden. Verschiedene Strukturvorhersageprogramme weisen auf eine helikale Struktur für diesen Sequenzabschnitt hin. Der Austausch der Aminosäuren R107, D108, R111 und E117 mit Alanin führt über den Verlust ionischer Ladungen zum Verlust der Bindungseigenschaft. Das zweite verfolgte Ziel ist die Einführung eines transgenen Konstrukts, welches nur die Molybdän-Kofaktor-Synthesefunktion wiederherstellen soll, in den genetischen Hintergrund der Gephyrin-„knock-out“ Maus. Ziel dieser Analyse ist die Herstellung eines Phänotyps, bei dem die inhibitorische Transmission in einer Weise gestört ist, welche Symptome der Molybdän-Kofaktor-Insufizienz ausschließt. So sollte die Ursache für die Letalität der Gephyrin-Mutation zugeordnet werden können. Dazu wurde das pflanzliche Gephyrin-Homolog Cnx1 in ein Expressionskonstrukt kloniert, und nach biochemischer, immunzytochemischer und funktioneller Analyse in heterologen Zellen in eine Wildtyp-Mauslinie injiziert. Diese wurde mit Geph-/--Mäusen gekreuzt und die daraus resultierenden homozygoten, transgenen Tiere analysiert. Diese Tiere sterben ebenso wie die Geph-/--Mäuse am Tag der Geburt. mRNA des Transgens konnte in Hirn und Leber nachgewiesen werden, das Protein allerdings nur in Hirnextrakten. Dementsprechend lag die Aktivität des für die Lebensfähigkeit von Säugetieren wichtigsten Molybdoenzyms, der Sulfitoxidase, in Leberextrakten nur bei 30%. Eine morphologische Untersuchung von Gehirnschnitten ergab keine Auffälligkeiten. Eine Immunhistochemische Analyse von Rückenmarkschnitten zeigte in Übereinstimmung mit Beobachtungen an Gephyrin-„knock out“-Mäusen diffus verteilte Glyzin-Rezeptoren. Somit wurde eine Maus mit beeinträchtigter inhibitorischer synaptischer Transmission und partiell wiederhergestellter Molybdän-Kofaktor Biosynthese hergestellt. Aufgrund der großen Schwankungsbreite der Aktivität der Sulfitoxidase in Leberextrakten verschiedener Geph-/- + cnx Tiere wäre ein Unterschied in der Lebenserwartung verschiedener Tiere zu erwarten gewesen, wenn die Defizienz dieses Molybdoenzyms die Ursache für den letalen Phänoyp gewesen wäre. Da die transgenen Tiere aber wie die Geph-/- Mäuse wenige Stunden nach der Geburt sterben, ist davon auszugehen, dass der beschriebene Phänotyp auf das Fehlen der strukturellen Eigenschaften von Gephyrin zurückzuführen ist, und nicht von einer durch Beeinträchtigung des Schwefelstoffwechsels hervorgerufene progressive Schädigung des ZNS.
Der zur Familie der ionotropen Glutamatrezeptoren gehörende N-Methyl-DAspartat (NMDA)-Rezeptor ist maßgeblich an der Weiterleitung erregender Signale zwischen Nervenzellen beteiligt. Er spielt sowohl physiologisch bei z.B. Vorgängen des Lernens oder der Gedächtnisbildung, als auch pathophysiologisch bei neurologischen Erkrankungen eine entscheidende Rolle. NMDA-Rezeptoren sind tetramere Membranproteine, welche aus den homologen NR1-, NR2A-NR2D- sowie NR3A- und NR3B-Untereinheiten aufgebaut sind. Die Untereinheiten sind modular aus jeweils vier verschiedenen Domänen aufgebaut, die spezifische Rollen beim Aufbau und der Funktion der Rezeptoren erfüllen. Konventionelle NR1/NR2-NMDA-Rezeptoren bestehen aus zwei Glyzin-bindenden NR1- und zwei Glutamat-bindenden NR2-Untereinheiten. Sie werden nur durch gleichzeitiges Binden der Agonisten Glutamat und Glyzin effizient aktiviert. Ziel der vorliegenden Arbeit war, den Einfluss der extrazellulären N-terminalen Domänen (NTDs) auf die Assemblierung, Funktion und allosterische Modulation von rekombinanten NR1/NR2 NMDA-Rezeptoren mittels biochemischer und elektrophysiologischer Methoden zu untersuchen. Deletionsexperimente zeigten, dass die NTDs von NR1- und NR2A- bzw. NR2B-Untereinheiten die hochaffine, allosterische Zn2+- und Ifenprodil-Hemmung bestimmen, nicht aber für die Bildung funktioneller Rezeptoren von Bedeutung sind. Die NR2-NTDs stellen zusätzlich eine entscheidende strukturelle Determinate für die unterschiedliche Glyzinaffinität von NR1/NR2A- und NR1/NR2B-Rezeptoren dar. Ein zweiter Aspekt war die funktionelle Charakterisierung von NMDA-Rezeptoren, welche aus NR1- und NR3-Untereinheiten aufgebaut sind. Diese exzitatorischen NR1/NR3-Rezeptoren werden ausschließlich durch den Neurotransmitter Glyzin aktiviert und generieren nur sehr kleine Agonistaktivierte Ströme im Vergleich zu NMDA-Rezeptoren vom NR1/NR2-Typ. Es wurde gefunden, dass die Glyzinbindung an die NR1- und NR3-Ligandenbindungsdomänen (LBDs) entgegengesetzte Wirkungen auf die Rezeptorfunktion zur Folge hat. Während die NR3-LBD essentiell für die Aktivierung des Rezeptors ist, bewirkt Glyzin über die NR1-LBD eine Hemmung der NR1/NR3-Rezeptoren. Das erklärt die geringe Effizienz der Rezeptoraktivierung durch Glyzin. Weiterhin zeigen die Ergebnisse zum ersten Mal, dass Zn2+ an diesen Rezeptoren als Agonist und positiver Modulator wirkt und in Kombination mit einem NR1-Antagonisten die Glyzin-aktivierten Ströme >120-fach in supralinearer Weise potenzieren kann. Mutationsanalysen ergaben, dass die NR1-LBD für die Zn2+-Aktivierung und –Potenzierung verantwortlich ist. Da die physiologische Rolle von NR1/NR3-Rezeptoren noch nicht eindeutig geklärt ist, könnte die supralineare Potenzierung eine Strategie darstellen, diesen unkonventionellen NMDA-Rezeptor in zukünftigen Untersuchungen besser zu detektieren und zu charakterisieren. Zusammenfassend liefern die in dieser Arbeit gewonnenen Erkenntnisse zu Struktur-Funktionsbeziehungen in NMDA-Rezeptoren auf Ebene der NTDs und LBDs einen wichtigen Beitrag für das Verständnis der Pharmakologie dieser Rezeptorfamilie. Diese Ergebnisse können für die Entwicklung neuer neurologischer Therapeutika genutzt werden.
Der metabotrope Glutamatrezeptor Untertyp 4 gehört zusammen mit den Untertypen 6, 7 und 8 zur Gruppe III der metabotropen Glutamatrezeptoren (mGluRs). Diese präsynaptisch lokalisierten Rezeptoren sind an der Regulation der Neurotransmission an glutamatergen und nicht-glutamatergen Synapsen beteiligt. In der vorliegenden Arbeit sollten bisher unbekannte intrazelluläre Interaktionspartner für den metabotropen Glutamatrezeptor Untertyp 4 (mGluR4) identifiziert werden, um neue Erkenntnisse zur Regulation und Funktion dieses Rezeptors zu gewinnen. Dazu wurden Bindungsstudien mit Fusionsprotein aus Glutathion-S-Transferase (GST) und der kompletten C-terminalen Domäne des mGluR4 (mGluR4-C) durchgeführt. Die gebundenen Proteine wurden auf silbergefärbten SDS-Polyacrylamidgelen analysiert und anschließend über MALDI-TOF-Massenspektrometrie und Datenbank-gestützte Computerprogramme identifiziert. Außerdem wurden in Zusammenarbeit mit Dr. John Caldwell Proteine über Tandemmassenspektrometrie identifiziert. Mit diesem Ansatz konnten zwölf potentielle mGluR4-Interaktionspartner identifiziert werden. Die Bindung an mGluR4 konnte für drei dieser Proteine durch Immunoblotanalyse mit spezifischen Antikörpern bestätigt werden: für das Mikrotubuli-assoziierte Protein 1B (MAP1B), das stable tubule-only polypeptide protein (STOP-Protein) und, in geringerem Ausmaß, für die schwere Kette des nicht-muskulären Myosin II-B (MHCIIB). Die Interaktion zwischen mGluR4 und MAP1B wurde im folgenden näher charakterisiert. Bindungsstudien mit GST-Fusionsproteinen zeigten, daß MAP1B auch an die C-terminalen Domänen von mGluR6, mGluR7 und mGluR8 und damit an alle mGluRs der Gruppe III bindet. Für die mGluRs der Gruppe II konnte keine Interaktion mit MAP1B belegt werden. Weitere Bindungsstudien mit Deletionsmutanten konnten die für die MAP1B-Bindung verantwortliche Binderegion auf die 24 bzw. 38 N-terminalen Aminosäuren der C-terminalen Domänen von mGluR7 bzw. mGluR8 eingrenzen. Es wurde gezeigt, daß das Ca2+-abhängig an dieselbe Rezeptorregion bindende Calmodulin mit MAP1B um die Bindung an mGluR4 konkurriert. Immuncytochemische Experimente konnten eine partielle Kolokalisation von MAP1B und mGluR4 in transfizierten Säugetierzellen nachweisen. In kultivierten Primärneuronen konnte eine partielle Kolokalisation von endogenem mGluR4 mit endogenem MAP1B gezeigt werden. Die teilweise Überlappung der Immunreaktivitäten von mGluR4 und MAP1B läßt darauf schließen, daß eine Interaktion der beiden Proteine auch unter physiologischen Bedingungen möglich ist.
Channelrhodopsine sind blaulichtsensitive, Retinal-bindende Proteine aus der Grünalge Chlamydomonas reinhardtii. Channelrhodopsin 2 (ChR2) wurde als heptahelikaler, kationenselektiver Ionenkanal charakterisiert (Nagel et al., 2003). Wie die zur selben Proteinfamilie gehörende Protonenpumpe Bakteriorhodopsin (bR) wird ChR2 durch Licht aktiviert; allerdings wird hierbei ein passiver Strom ausgelöst, bei dem Kationen entsprechend ihres elektrochemischen Gradienten fließen. Aufgrund dieser Eigenschaft eignet sich ChR2 zur lichtinduzierten Depolarisation von Zellen und zur Auslösung von Aktionspotentialen in Neuronen, über deren Membran ein Konzentrationsgradient von Kationen anliegt (Boyden et al., 2005). Die Stimulation elektrischer Aktivität von ChR2-exprimierenden Neuronen im Hirngewebe von Mäusen, die ChR2 transgen exprimieren, kann beispielsweise genutzt werden, um die Konnektivität von Neuronen und Hirnbereichen zu untersuchen (z.B. Wang et al., 2007). Für diese und weitere Anwendungen war es interessant, ChR2 zelltyp- oder regionenspezifisch in Mäusen zu exprimieren. Zu diesem Zweck sollte ChR2/eGFP bicistronisch oder ChR2-YFP als Fusionsprotein unter einem ubiquitären Promotor exprimiert werden; die Expression sollte aber durch ein Stop-Element unterbunden werden, das von loxP-sites flankiert ist (unaktiviertes Transgen). Das Enzym Cre- Rekombinase entfernt durch Rekombination das Stop-Element an diesen Erkennungssequenzen, wodurch die ChR2-Expression ermöglicht werden sollte (aktiviertes Transgen). Die Cre-Rekombinase kann dabei sowohl viral als auch transgen unter zelltyp- und regionenspezifischen Promotoren exprimiert werden und damit die regionale Spezifität und den Zeitpunkt der ChR2-Expression bestimmen. Es wurden drei Mauslinien über Pronukleus-Injektionen erhalten, die den Reporter β-Galactosidase des unaktivierten Transgens exprimierten. Die Verpaarung von Mäusen dieser Linien mit Cre-Rekombinase-exprimierenden Mauslinien führte aber nur zu einer ineffizienten Aktivierung des Transgens, so dass ChR2-Expression einzig mittels RT-PCR nachgewiesen werden konnte. Nach viraler Expression der Cre-Rekombinase im Hippokampus konnte eine Aktivierung des ChR2-Transgens auch mittels Immunfluoreszenz gezeigt werden. Mangels GFP-Fluoreszenz waren die transgenen Linien aber nicht für gezielte elektrophysiologische Ableitungen verwendbar. In einem zweiten Ansatz wurden transgene Mäuse über embryonale Stammzellen (ES-Zellen) generiert. Bei diesem Ansatz wird eine geringere Kopienzahl des Transgens ins Genom integriert. In den ES-Zellen konnte durch transiente Cre-Rekombinase-Expression gezeigt werden, dass das Transgen effizient aktiviert werden konnte. Aus mehreren ES-Zell-Klonen wurden chimäre Mäuse erhalten, die zum jetzigen Zeitpunkt auf Keimbahntransmission getestet werden. Wie ChR2 einen Kationenkanal bildet und welche Transmembrandomänen und Aminosäuren daran beteiligt sind, ist unbekannt. Daher wurde im zweiten Teil dieser Arbeit untersucht, ob die Positionen E90, E97 und E101, welche in der zweiten Transmembranhelix untereinander zu liegen scheinen, Teil einer Ionenpore sein könnten. Um den Einfluss dieser Aminosäuren auf die Kationenleitung und/ oder – selektivität zu untersuchen, wurden diese Positionen substituiert und die resultierenden ChR2-Mutantenproteine in Xenopus laevis Oozyten exprimiert und elektrophysiologisch analysiert. Um Na+- bzw. Protonen-mediierte Ströme unterscheiden zu können, wurden Na+-haltige und Na+-freie Puffer verschiedener pH-Werte verwendet. Lichtinduzierte Ströme von ChR2E97A, ChR2E97Q, ChR2E97K und ChR2E101K waren im Vergleich zum Wildtyp stark reduziert, ausschließlich bei pH 4 zu detektieren und wohl hauptsächlich durch Protonen getragen. Die isofunktionale, aber ladungsneutrale Mutation ChR2E90Q zeigte nur geringe Unterschiede zum Wildtyp. Alaninsubstitution (E90A) als auch Ladungsinversion (E90K) führte zu starken Veränderungen des ChR2-Stroms im Vergleich zum Wildtyp. ChR2E90A zeigte im Vergleich zum Wildtyp reduzierte Protonenströme sowie einen erhöhten Natriumstrom, der durch Protonen inhibierbar war. Die Ladungsinversion ChR2E90K führte zu allgemein stark verminderten Leitfähigkeiten, lediglich bei pH 4 konnten noch Ströme gemessen werden. Die Ergebnisse sind der erste Hinweis auf eine Beteiligung von Glutamatresten an der Ionenleitfähigkeit in der Transmembranhelix 2 von ChR2.
In dieser Arbeit wurde erstmals ein monokolonaler Antikörper gegen die GlyRbeta-Untereinheit (GlyRbeta) hergestellt. Zur Immunisierung der Mäuse wurde die 120 AS lange große cytoplasmatische Schleife (engl. loop) zwischen den transmembranen Domänen 3 und 4 von GlyRbeta gewählt, da diese nur geringe Sequenzhomologie zu GlyRalpha-Untereinheiten aufweist. Diese Schleifenregion wurde als GST-Fusionsprotein in Bakterien exprimiert und affinitätsgereinigt. Sowohl die Immunisierung der Mäuse als auch die Herstellung der Hybridoma-Klone wurde in Zusammenarbeit mit Synaptic Systems GmbH (Göttingen) durchgeführt. Die Spezifität der Antikörperbindung an GlyRbeta wurde zunächst in Western Blot-Experimenten mit affinitätsgereinigtem GlyR aus Rattenrückenmark demonstriert. Eine nachfolgende Untersuchung der Antikörperbindestelle führte zur Identifikation der ersten 20 AS des beta-loop (GlyRbeta336-355) als Epitop. Ein 20 AS kurzes, synthetisches Peptid, welches die Epitop-Sequenz enthielt, war ausreichend, um Färbungen von Western Blots und Gewebeschnitten durch den Antikörper effizient zu verhindern. Außerdem wurden Protokolle für die Antikörperfärbung von GlyRbeta in transfizierten Zelllinien und primären Neuronen aus Rattenrückenmark etabliert. Weiterhin ermöglichte die Herstellung dieses Antikörpers erstmals die direkte immunhistochemische Färbung von GlyRbeta-Protein im ZNS von Mäusen. GlyRbeta konnte hierbei im Hirnstamm, Rückenmark, dem Bulbus olfactorius und der Retina von Mäusen nachgewiesen werden, was zeigt, dass GlyRbeta-Protein weit weniger verbreitet ist als aufgrund von in situ Hybridisierungs-Studien vermutet. Die gefundene Verteilung von GlyRbeta-Protein unterscheidet sich demnach stark von der Verteilung der GlyRbeta-mRNA, was für eine posttranskriptionelle Regulation der GlyRbeta-Proteinmenge spricht. Weiterführende immunhistochemische Untersuchungen an der Retina von Mäusen zeigten, dass GlyRbeta in diesem Gewebe wie erwartet mit Gephyrin an inhibitorischen Synapsen kolokalisiert ist. In Bezug auf GlyRalpha-Untereinheiten geht man bislang davon aus, dass sie an Synapsen des adulten ZNS immer mit GlyRbeta assoziiert sind, und somit indirekt mit Gephyrin verbunden werden, wodurch das Clustering der Rezeptoren gewährleistet wird. Entgegen dieser Hypothese wurde in Doppelfärbungen von GlyRbeta und GlyRalpha-Untereinheiten gefunden, dass eine Ansammlung von GlyRalpha4-Clustern in der Retina adulter Mäuse vermutlich eine Ausnahme hierzu bildet. Für GlyRalpha4-Cluster in Stratum 3 und 4 der IPL konnte gezeigt werden, dass sie teilweise nicht mit GlyRbeta, und zu ebenso großem Teil nicht mit Gephyrin kolokalisiert sind. Dennoch scheinen diese GlyRalpha4-Untereinheiten in Clustern angereichert und zudem synaptisch lokalisiert zu sein. Der Mechanismus, durch den GlyRalpha4 in Abwesenheit dieser beiden Proteine an Synapsen immobilisiert wird, ist bislang völlig unklar. Funktionell wäre denkbar, dass derartige Rezeptorkomplexe den synaptischen Eingängen von ON-Starburst-Amakrinzellen besondere Leitungseigenschaften verleihen und somit maßgeblich an der Verarbeitung richtungsselektiver Signale in der Retina beteiligt sein könnten. In dieser Arbeit wurden außerdem Mutagenesestudien durchgeführt, um zu klären, über welchen Mechanismus die Inhibition der Proteinphosphatasen 1 und 2A (PP1 und PP2A) zum Verlust von synaptischem Gephyrin führt. Es konnte gezeigt werden, dass eine direkte Dephosphorylierung von Gephyrin durch PP1 hierfür wahrscheinlich nicht verantwortlich ist, da die Mutation etablierter Phosphorylierungsstellen von Gephyrin keinen, oder nur einen marginalen Einfluss auf dessen synaptische Lokalisation und das Clustering von GABAARs hatte. Dies spricht dafür, dass PP1/PP2A abhängige Dephosphorylierungs-/Phosphorylierungsprozesse wahrscheinlich andere Gephyrin- oder Cytoskelett-assoziierte Proteine beeinflussen, jedoch nicht direkt an Gephyrin wirken. Die Erstellung von genomweiten Expressionsprofilen ist eine effiziente Methode zur Identifikation neuer Regulationsmechanismen und potentieller Interaktionspartner von Genprodukten und wurde in dieser Arbeit auf Vorderhirnproben von WT- und Gephyrin-KO-Mäusen vergleichend angewendet. Hierbei wurde gefunden, dass die Transkription bekannter Gephyrin-Interaktionspartner durch den Verlust des Gephyrin-Gens nicht messbar verändert wird. Weil die ermittelten Unterschiede in Transkriptmengen generell sehr gering waren, ist zu vermuten, dass Gephyrin keine wesentlichen genregulatorischen Funktionen im Mausgehirn ausübt. Andererseits ergab die Expressionchip-Analyse Hinweise auf neue Genprodukte, für die in WT- und Gephyrin-KO-Mäusen signifikant verschiedene Transkriptionsmengen gefunden wurden. Die Validierung dieser Daten mit anderen Methoden steht jedoch noch aus.
NMDA-Rezeptoren sind als ionotrope Glutamatrezeptoren (iGluRs) an der Signalübertragung durch den wichtigen Neurotransmitter L-Glutamat beteiligt. Vor allem aufgrund ihrer Bedeutung für das Phänomen der neuronalen Plastizität sind NMDA-Rezeptoren außerordentlich gründlich untersucht worden. Dennoch sind auch heute noch zentrale Fragen zu ihrer Funktionsweise ungeklärt, darunter auch diejenige, wie auf molekularer Ebene die Umsetzung der Glutamatbindung in die Öffnung des Ionenkanals erfolgt. Publizierte Kristallstrukturen der Liganden-bindungsdomänen zweier iGluRs haben die Grundlage für ein Modell der ligandeninduzierten und der Kanalöffnung vorausgehenden Vorgänge in der Bindungsdomäne geschaffen. Diesem zufolge schließt sich die aus zwei Teildomänen bestehende Bindungsdomäne venusfliegenfallenartig um den Liganden und die dabei entstehende mechanische Spannung führt zur Öffnung des Ionenkanals. Dieses Modell wurde in der vorliegenden Arbeit überprüft. Hierzu wurden verschiedene in der Ligandenbindungsdomäne punktmutierte NR1/NR2A-Rezeptoren heterolog in Säugerzellen exprimiert und durch Glutamat hervorgerufene Gesamtzellströme elektrophysiologisch gemessen. Mittels kinetischer Auswertung wurden dann Aminosäurereste in der Bindungsdomäne identifiziert, die einen Beitrag zur Kanalöffnung leisten. Die notwendige Schnelligkeit der Ligandenzugabe wurde dabei durch dessen photochemische Freisetzung aus einer maskierten und dadurch inaktiven Vorstufe (caged compound) erreicht. Die Ergebnisse bestätigen das Modell der Kopplung der Kanalöffnung an das Schließen der Bindungsdomäne und erweitern das Verständnis der genauen zeitlichen Abfolge der ligandeninduzierten Konformationsänderungen in der Bindungsdomäne. Intramolekulare Wechselwirkungen zwischen den Teildomänen S1 und S2 spielen demnach erst relativ spät im Aktivierungsprozeß eine Rolle und dienen vor allem der Stabilisierung des geschlossenen Zustandes der Bindungsdomäne und damit des offenen Ionenkanals.