Refine
Year of publication
Document Type
- Doctoral Thesis (24)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- Altern (3)
- Mitochondrium (3)
- Ageing (2)
- Mitochondria (2)
- Molekularbiologie (2)
- Podospora anserina (2)
- ageing (2)
- molecular biology (2)
- Autophagy (1)
- CLPXP-Protease (1)
Institute
Die im Rahmen dieser Arbeit durchgeführten Untersuchungen führten zu folgenden Ergebnissen: 1. Eindimensionale Gelelektrophoresen Die Analyse mitochondrialer Proteine aus juvenilen und seneszenten P. anserina-Wildstämmen mit Hilfe von eindimensionalen SDS- und eindimensionalen Blau-Nativen-Gelelektrophoresen zeigt keine deutlichen, seneszenzspezifischen Unterschiede. Im Gegensatz dazu werden in initialen Versuchen der nicht-radioaktiven 2D-PAGE differentiell gebildete Proteine visualisiert. 2. 2D-PAGE mit radioaktiv-markierten, mitochondrialen Proteinen aus jungen und alten P. anserina-Wildstämmen In der ungerichteten Proteomanalyse wurden 29 differentiell-gebildete Proteine identifiziert und zusätzlich zahlreiche Isoformen einiger Proteine gezeigt. Von der ß-ATPase wurden modifizierte Isoformen gefunden. Außerdem wurde eine seneszenspezifisch verringerte Bildung von ROS-Abwehr-Proteinen in den Mitochondrien detektiert. Im Gegensatz dazu wurde eine größere Menge eines Chaperons gefunden, das bei der Proteinsynthese eine Rolle spielt: eine Protein-Disulfid-Isomerase, die die Umlagerung und Neubildung von Di-Sulfid-Brücken bei der Faltung von Proteinen katalysiert. Zusätzlich wurde eine erhöhte Menge des Proteins SSC1 identifiziert. Dieses gehört zur Hsp70-Hitzeschock-Proteinfamilie. Es wurde ebenfalls eine erhöhte Menge des Apoptosefaktors Cyclophilin D in den mitochondrialen Proben aus den seneszenten Wildstämmen identifiziert. Die Identifizierung dieses Proteins in Mitochondrien von P. anserina stellt neben der Charakterisierung der Metacaspasen (Hamann et al., 2007) einen weiteren Ansatzpunkt für die Apoptoseforschung in P. anserina dar. Die molekularbiologische Analyse dieses Proteins wurde aufgrund dieser Proteomanalyse im Arbeitskreis aufgenommen (Dissertation D. Brust). Ein weiteres Protein, das in stark erhöhter Menge in den Proteinisolaten identifiziert wurde, ist PaMTH1. Im Rahmen der vorliegenden Arbeit wurden die Struktur und die Funktion dieser neu identifizierten differentiell-gebildeten Methyltransferase während der Alterung in P. anserina mit Hilfe molekularbiologischer, biochemischer und physiologischen Analysen untersucht. 3. Charakterisierung von PaMTH1 Im Rahmen von Northernblot-Analysen wurde gezeigt, dass die PaMth1-Transkriptmenge in drei unabhängigen alten Wildstämmen im Vergleich zu den entsprechenden jungen Wildtsämmen deutlich erhöht ist. In einer Westernblot-Analyse von Gesamtproteinen und Mitochondrien aus jungen und seneszenten Wildstämmen wird der seneszenzspezifische Anstieg der Proteinmenge verifiziert. Die genauere Einordnung von PaMTH1 in die Klasse I der Methyltransferasen und die Ergebnisse der Analyse der Substratspezifizität geben einen Hinweis auf eine Schutzfunktion durch die Verhinderung einer ROS-Entstehung unter der Beteiligung von Substanzen mit einer Catecholgruppe. Die Ergebnisse der Analyse der Modulation der PaMth1-Expression in P. anserina deuten ebenfalls auf eine Schutzwirkung von PaMTH1 hin: PaMth1-Überexpressionsstämme zeigen eine verbesserte Wuchsrate auf stress-induzierenden Medien, weniger carbonylierte Proteine und vor allem eine verlängerte Lebensspanne ohne physiologische Nachteile im Vergleich zum Wildstamm. Dagegen lebt die PaMth1-Deletionsmutante kürzer und wächst schlechter auf ROS-induzierenden Medien, sie zeigt allerdings keine erhöhte Menge von carbonylierten Proteinen im eindimensionalen „Oxyblot“. Die beobachtete Lebensspannenverkürzung der PaMth1-Deletionsmutante wird jedoch durch die Reversion dieser Stämme wieder aufgehoben, sodass die Hypothese des Schutzes vor der ROS-Generierung durch die Methylierung von Dihydroxylgruppen anhand der erhaltenen Daten unterstützt wird.
Mitochondrien, Organellen der oxidativen Phosphorylierung, sind in vielfältiger Weise an Alterungsprozessen in unterschiedlichen Modellorganismen beteiligt. Viele Mechanismen und Faktoren, die das Altern beeinflussen, scheinen konserviert zu sein. In dem in dieser Arbeit untersuchten Ascomyzeten Podospora anserina treten z. B. altersabhängige Reorganisationen der mtDNA auf, die zu einem Verlust lebensnotwendiger Gene führen können. In Menschen wurden ebenfalls Umstrukturierungen des mitochondrialen Genoms in unterschiedlichen Geweben mit fortschreitendem Alter beschrieben. Umgekehrt treten manche Faktoren, die die Lebensspanne beeinflussen, nur in einigen Modellsystemen auf. Hierzu gehört z. B. die Induktion der alternativen Oxidase in vielen langlebigen P. anserina-Mutanten. Diese Modifikation in der Atmungskette kann in S. cerevisiae und Säugern nicht beobachtet werden, da diesen Organismen eine alternative terminale Oxidase der oxidativen Phosphorylierung fehlt. Der Fragestellung, wie die Atmungskette im Falle der exklusiven PaAOX-abhängigen Respiration in der unsterblichen Mutante ex1 hinsichtlich der Zusammensetzung und kinetischer Eigenschaften des Elektronentransports charakterisiert ist, wurde in der vorliegenden Arbeit nachgegangen. Über die funktionalen Eigenschaften der Mitochondrien hinaus ist auch die Morphologie dieser Organellen altersabhängiger Änderungen unterworfen. Hinsichtlich der Gestalt der Mitochondrien in verschiedenen Altersstadien ist nur sehr wenig bekannt. Bisher steht nur fest, dass der P. anserina-Wildstamm „S“ im mittelalten Stadium filamentöse Mitochondrien aufweist. Ob und in welchem Ausmaß es zu Veränderungen der mitochondrialen Morphologie während des Alterns im Wildstamm „s“ und der Mutante grisea kommt, wurde im Rahmen der vorliegenden Arbeit analysiert. In der vorliegenden Arbeit wurde darüber hinaus PaDnm1 als putativer mitochondrialer Teilungsfaktor charakterisiert. Insbesondere die Modulation der PaDnm1-Expression durch Überexpression bzw. Deletion soll zeigen, welchen Einfluss PaDnm1 auf die mitochondriale Morphologie und andere phänotypische Parameter wie z. B. die Lebensspanne hat. Die in dieser Arbeit durchgeführten Untersuchungen führten zu folgenden Ergebnissen: 1. Im Wildstamm „s“ wurde im Gegensatz zu ex1 durch enzymkinetische Analysen eine starke Interaktion der Komplexe I und III nachgewiesen. Ein Großteil der Komplexe I und III ist im Wildstamm „s“ in Form von Superkomplexen organisiert. In der Mutante ex1 liegen die Komplexe I und III dagegen hauptsächlich frei vor. Die spezifische Aktivität der Cytochrom-c-Reduktase ist in ex1 niedriger als im Wildstamm „s“. 2. Seneszente Isolate des Wildstammes „s“ und der PaDnm1::ble-Mutante weisen im Gegensatz zur Mutante grisea eine starke Freisetzung von Wasserstoffperoxid auf. 3. Juvenile und mittelalte Wildstamm „s“-Isolate enthalten überwiegend kurze, filamentöse Mitochondrien, die entlang der Hyphenachse im Cytoplasma orientiert sind. Im seneszenten Stadium kommt es zu einer starken mitochondrialen Fragmentierung. Der Übergang von einer filamentösen zu einer sphärischen Morphologie dieser Organellen tritt auch in Mutante grisea auf. In ex1-Hyphen sind hauptsächlich filamentöse Mitochondrien enthalten. Initiale Analysen zur mitochondrialen Feinstruktur zeigen, dass in Wildstamm „s“ und Mutante grisea eine lamellenartige Cristaestruktur erkennbar ist. In der Mutante ex1 hingegen erscheinen die Cristae ungeordneter und weniger zahlreich. 4. Die Mitochondrienfragmentierung im seneszenten Wildstamm „s“ korreliert mit einer Induktion der Transkription von PaDnm1. In Mutante grisea ist die PaDnm1-Transkriptmenge während des Alterns konstant, obwohl sich die mitochondriale Morphologie wie im Wildstamm „s“ verändert. Überexpression von PaDnm1 führt zur Mitochondrienfragmentierung während die gezielte Deletion dieses Gens eine starke Elongation der Mitochondrien zur Folge hat. PaDnm1 ist somit das erste in einem filamentösen Pilz charakterisierte Gen der mitochondrialen Teilungsmaschinerie. 5. PaDnm1::ble-Isolate zeigen im seneszenten Stadium mitochondriale Fragmentierung wie Wildstamm „s“ und Mutante grisea. Das mitochondriale Genom von PaDnm1::ble ist stabilisiert, d. h. die Bildung der seneszenzfördernden plDNA wird unterdrückt. Die mittlere Lebensspanne der PaDnm1::ble-Mutante ist deutlich (> Faktor 10) gegenüber der des Wild-stammes „s“ erhöht. Bemerkenswerterweise zeigt PaDnm1::ble im Gegensatz zu anderen langlebigen P. anserina-Mutanten nach der Sporenkeimung keine physiologischen Defekte: Wuchsrate, männliche und weibliche Fertilität, Myzelmorphologie und Mitochondrien-segregation während der Ascosporengenese sind nicht eingeschränkt. Allerdings weist PaDnm1::ble eine erhöhte Empfindlichkeit gegenüber Ammoniumazetat auf. Dies äußert sich in einer Inhibierung der Sporenkeimung und einer Verringerung der Wuchsrate bei Anzucht der Mutante auf AmAc-haltigem Medium.
Untersuchungen zur molekularen Kontrolle der Kupferhomöostase in dem Ascomyceten Podospora anserina
(2007)
Das essentielle Spurenelement Kupfer ist Co-Faktor mehrerer Schlüsselenzyme (z B. Cu/Zn-SOD, Cytochrom c Oxidase). Da Kupfer leicht Elektronen aufnehmen und abgeben kann, eignet es sich besonders gut für Redox-Reaktionen. Wenn Kupfer jedoch mit Sauerstoff reagiert, entstehen hoch cytotoxische reaktive Sauerstoffspezies (ROS), die nach der „freien Radikaltheorie des Alterns“ (nach D. Harman 1956) ursächlich für Alterung und Zelltod sind. Um deren Bildung zu vermeiden, erfolgen alle Aspekte des Kupferstoffwechsels – Aufnahme, Transport und Speicherung - stets proteingebunden. In der vorliegenden Arbeit konnte gezeigt werden, dass sich bis auf drei Ausnahmen die gesamte bislang bekannte Maschinerie der molekularen Kupferhomöostase aus anderen Modellorganismen (z.B. S. cerevisiae oder H. sapiens) auch im Genom des Ascomyceten Podospora anserina mit Homologen bzw. Orthologen wiederfindet. Die drei Ausnahmen betreffen jeweils Proteine, für die in anderen Organismen mehrere Isoformen existieren und P. anserina nur jeweils ein Homolog/Ortholog besitzt. Für mehrere der neu vorhergesagten Gene (PaAtx1, PaCcc2, PaCcs1, PaCox11, PaCox19, PaCox23, PaSco1) konnte eine Expression im Wildstamm nachgewiesen werden. Dazu wurden Standardtechniken (Northern Blot Analyse, RT-PCR) und auch neu etablierte eGFP-Reporterkonstrukte verwendet. In Podospora anserina scheint Kupfer auf zwei verschiedene Arten Einfluss auf die Lebensspanne zu nehmen: Zum einen mittelbar darüber, dass die Verfügbarkeit von Kupfer über die in der mitochondrialen Atmung verwendete Endoxidase entscheidet. Bei Kupfermangel wird eine Eisen-abhängige alternative Oxidase (AOX) induziert. Durch Atmung über die AOX entstehen weniger ROS, was die Lebensspanne verlängert. Anhand einer Vielzahl langlebiger Mutanten konnte dieser Zusammenhang bereits mehrfach demonstriert werden. Zum anderen scheint Kupfer auch eine unmittelbare Rolle in der Seneszenz von P. anserina zu spielen. In früheren Arbeiten konnten mehrere indirekte Hinweise (Transkript- und Aktivitätsanalysen) gesammelt werden, dass im Alter die cytoplasmatische Kupferkonzentration drastisch ansteigt. Durch Messung der Kupferkonzentration mittels einer direkten chemisch-analytische Methode (TXRF) in fraktionierten Zellbestandteilen (Cytoplasma und Mitchondrien) konnten in dieser Arbeit diese Hinweise weiter untermauert werden. Experimente mit in die mitochondriale Matrix geleitetem eGFP brachten zusätzliche Indizien dafür, dass das mitochondriale Kupfer-Reservoir die Quelle des sich in seneszenten Pilzstämmen im Cytoplasma wiederfindenden Kupfers ist. Durch einen Prozess, der größenabhängig reguliert und in anderen Organismen als „Mitochondrial Permeability Transition – MPT“ zu Beginn der Apoptose bekannt ist, ergiesst sich beim Eintritt in die Seneszenz der Inhalt der mitochondrialen Matrix in das Cytosol. Die Bedeutung dieses Vorgangs und v.a. die Folgen der Umverteilung von Kupfer innerhalb der Zelle bleiben im Detail weiter zu klären. Durch die durchgeführten Arbeiten konnte ein weiterer deutlicher Beweis für das Ablaufen apoptotischer Mechansimen im Alterungsprozeß des Ascomyceten P. anserina erbracht werden.
Die Grundlage dieser Arbeit bilden Befunde über den Kupfer-Metabolismus des Ascomyceten Podospora anserina. In der Kupfermangel-Mutante grisea ist der Transkriptionsfaktor GRISEA inaktiv, welcher die Aktivität der hochaffinen Kupfer(I)-Permease PaCTR3 kontrolliert. Der Kupfer-Mangel aller Zellkompartimente führt zu pleiotropen Effekten und zu einer moderaten Verlängerung der mittleren Lebensspanne (60%). Um Effekte des Kupfermangels, die positiven bzw. negativen Einfluß auf die Lebensspanne zeigen, voneinander zu trennen, erschien es vielversprechend, den Kupfermangel auf ein Kompartiment der Zelle zu beschränken. In Hefe komplexiert COX17 Kupfer und gibt es im mitochondrialen Intermembranraum an SCO1 und COX11 (Assemblierungsfaktoren der Cytochrom-c-Oxidase) weiter. Zur Aufschlüsselung Kupfer-abhängiger Stoffwechsel-Wege wurde in dieser Arbeit eine PaCox17-Nullmutante konstruiert und charakterisiert. Die PaCox17::ble-Deletionsmutante ist durch AOX-Respiration, hohe Aktivität der Cu/Zn-SOD und ein stabilisiertes Chondriom charakterisiert. Eine vergleichende Analyse von Mutante und Wild-Stamm führte zu folgenden Ergebnissen: 1. Die Disruption des PaCOX17-Weges verhindert die Assemblierung der COX beinahe völlig. COX-Respiration kann nur in sehr geringem Umfang nachgewiesen werden. 2. Der Ausfall der COX induziert die alternative Oxidase und führt zu AOX-Respiration. 3. Die Atmungsrate der Mutante PaCOX17::ble ist, aufgrund der AOX-Respiration, gegenüber dem Wild-Stamm annähernd verdreifacht. 4. Weiterhin zeigen PaCox17::ble-Stämme ein stabilisiertes mitochondriales Genom, normalerweise wird weder plDNA amplifiziert noch wird beta-senDNA gebildet. 5. Der Kupfer-Spiegel des Zytoplasmas ist gegenüber Wild-Stämmen stark erhöht. 6. PaCox17::ble-Stämme sind durch konstant starke Expression der Cu/Zn-SOD charakterisiert. Die Mn-SOD spielt eine untergeordnete Rolle. 7. Die beschriebenen Effekte führen zu einer enormen Verlängerung der mittleren Lebensspanne (1250% des Wild-Stammes). Neben der Isolation und Charakterisierung der Mutante PaCox17::ble wurde PaSco1 isoliert und initial charakterisiert. PaSco1 liegt in P. anserina wahrscheinlich in einer Kopie vor. Es kodiert das Kupferbindeprotein PaSCO1, welches Kupfer vermutlich von PaCOX17 übernimmt und an die Untereinheit 2 der COX weitergibt. In dieser Arbeit wurden Teilaspekte des Kupfermetabolismus von P. anserina untersucht. Von besonderem Interesse waren Zusammenhänge zwischen Kupfer-Metabolismus und mitochondrialen Funktionen. Einen weiteren Schwerpunkt bildeten entwicklungsbiologische Prozesse, der Alterungsprozess war von übergeordneter Bedeutung. Es konnte gezeigt werden, daß Störungen der Kupfer-Homöostase die Respiration, den zellulären oxidativen Stress, die Stabilität des Chondrioms und diverse Entwicklungsprozesse, wie beispielsweise Fortpflanzung und Alterung des Hyphenpilzes beeinflussen.
Ziel dieser Arbeit war es, einen genaueren Einblick in die Rolle von PaCLPXP für den Energiemetabolismus von P. anserina zu erhalten und mögliche Komponenten zu identifizieren, welche wichtig für die Langlebigkeit der PaClpP-Deletionsmutante sind. Folgende neue Erkenntnisse konnten hierbei gewonnen werden:
1. Die Substrat-Analyse durch eine Cycloheximid-Behandlung und anschließender Proteom-Analyse legte erfolgreich eine Reihe potentieller bisher nicht bekannter Substrate von PaCLPP offen. Interessanterweise waren unter den identifizierten Proteinen viele ribosomale Untereinheiten und Komponenten verschiedener Stoffwechselwege des Energiemetabolismus zu finden. Am auffälligsten unter diesen Substraten war die extreme Anreicherung eines Retikulon-ähnlichen Proteins, das einen neuen Aspekt der möglichen molekularbiologischen Rolle von PaCLPP in P. anserina andeutet.
2. Durch die Zugabe von Butyrat zum Medium, konnte erfolgreich die Autophagie sowohl im P. anserina Wildtyp als auch in der PaClpP-Deletionsmutante reduziert werden. Diese Verminderung der Autophagie sorgt bei ΔPaClpP für eine Verkürzung der Lebensspanne. Dieser Effekt ist spezifisch für die PaClpP-Deletionsmutante, während die Auswirkung von Butyrat auf den Wildtyp nur marginal ist. Dieses Ergebnis untermauert frühere Analysen dieser Deletionsmutante, welche besagen, dass die Langlebigkeit von ΔPaClpP Autophagie abhängig ist (Knuppertz und Osiewacz, 2017).
3. Die Metabolom-Analyse von ΔPaClpP im Vergleich zum Wildtyp zeigt, dass das Fehlen der PaCLPP zu Veränderungen in der Menge der Metaboliten der Glykolyse und des Citratzyklus kommt. Außerdem sind die Mengen der meisten Aminosäuren und der Nukleotide betroffen. Diese Analyse beweist, dass das Fehlen dieser mitochondrialen Protease weitreichende Folgen für die ganze Zelle hat. Durch die signifikante Verringerung von ATP und die Anreicherung von AMP in jungen ΔPaClpP-Stämmen und durch den Umstand der gesteigerten Autophagie in dieser Mutante, fiel das Augenmerk auf die AMPK. Dieses veränderte AMP/ATP-Verhältnis ist ein Indiz für eine gesteigerte AMPK-Aktivität und könnte auch den Umstand der gesteigerten Autophagie in ΔPaClpP erklären.
4. Das Gen codierend für die katalytische α-Untereinheit der AMPK (PaSnf1) konnte erfolgreich in P. anserina deletiert werden. Das Fehlen von PaSNF1 führt zu einer reduzierten Wuchsrate, eine beeinträchtige weibliche Fertilität und eine verzögerte Sporenreifung. Es konnte gezeigt werden, dass die Autophagie infolge einer PaSnf1-Deletion nicht gänzlich unterdrückt wird, PaSNF1 allerdings für die Stress-induzierte Autophagie notwendig ist. Überraschenderweise führt die Abwesenheit von PaSNF1 zu einer verlängerten Lebensspanne im Vergleich zum Wildtyp. Die meisten Effekte infolge einer PaSnf1-Deletion konnten durch die Einbringung eines FLAG::PaSNF1-Konstrukts komplementiert werden.
5. Eine gleichzeitige PaSnf1 und PaClpP-Deletion führt zu eine unerwarteten, extremen Lebenspannenverlängerung, die die Verlängerung der Lebensspanne bei der PaClpP-Deletionsmutante noch übertrifft. Interessanterweise geht dieser Phänotyp nicht mit einer erhöhten Autophagie einher. Des Weiteren konnte beobachtet werden, dass das Fehlen von PaSNF1 sowohl in ΔPaSnf1 als auch in ΔPaSnf1/ΔPaClpP zu einer veränderten Mitochondrien-Morphologie im Alter führt. Die Abwesenheit von PaSNF1 verursacht, dass die Stämme auch im Alter (20d) noch überwiegend filamentöse Mitochondrien aufweisen. Zudem zeigen die drei analysierten Deletionsstämme (ΔPaSnf1, ΔPaClpP und ΔPaSnf1/ΔPaClpP) massive Einschränkungen wenn sie auf die mitochondriale Funktion angewiesen sind.
6. Auffallend war, dass bei ΔPaSnf1, ΔPaClpP und bei ΔPaSnf1/ΔPaClpP die Stämme mit dem Paarungstyp „mat-“ langlebiger sind als die Stämme mit dem Paarungstyp „mat+“. Dieser Effekt ist bei der ΔPaSnf1/ΔPaClpP-Doppelmutante am stärksten ausgeprägt. Weitere Untersuchungen dazu ergaben, dass die Paarungstypen immer dann eine Rolle spielen, wenn die Stämme mitochondrialem Stress ausgesetzt, oder aber auf die mitochondriale Funktion angewiesen sind. Verantwortlich für diese Unterschiede sind zwei rmp1-Allele, die mit den unterschiedlichen Paarungstyp-Loci gekoppelt sind und mit dem jeweiligen Paarungstyp-Locus vererbt werden (rmp1-1 mit „mat-“; rmp1-2 mit „mat+“).
Die im Rahmen dieser Arbeit durchgeführten Untersuchungen führten zu folgenden Ergebnissen:
1. In-silico Analysen von putativen Apoptose-Faktoren im Genom von P. anserina
Es konnten mehrere Gene, die in einer Apoptose-Maschinerie involviert sein könnten, im Genom von P. anserina identifiziert werden. Diese Homologen wurden in zwei Ka-tegorien unterteilt: (i) die nicht-mitochondrialen Proteine PaMCA1, PaMCA2 und PaPARP und (ii) die Homologen des Apoptose-induzierenden Faktors AIF.
2. Einfluss der Metacaspase-Aktivität auf programmierte Zelltodprozesse
Mithilfe von Aktivitätsmessungen konnte eine Arginin-spezifische Aktivität der Meta-caspasen nachgewiesen werden. Diese Metacaspase-Aktivität nimmt in seneszenten Kulturen und nach H2O2-Behandlung signifikant zu. Diese Ergebnisse unterstützen die Hypothese eines programmierten, ROS-induzierten Zelltods im letzten Entwicklungs-stadium des Alternsmodell P. anserina.
3. Die Rolle von AIF-Homologen in der Entwicklung von P. anserina
GFP-Fusionsproteine identifizierten eine mitochondriale Lokalisation der AIF-Homologen PaAIF2, PaAMID2 und PaPRG3. Desweiteren konnte eine altersabhängige PaAIF2-Translokation von den Mitochondrien zum Zellkern gezeigt werden, ähnlich der Apoptose-induzierenden Translokation von humanem AIF. Die Deletion von PaAif2 und PaAmid2 führte zu einer signifikanten Resistenz gegenüber oxidativem Stress und zu einer Verlängerung der Lebensspanne. Diese Befunde weisen auf einen ROS-induzierten, AIF-vermittelten Zelltod hin, der an der Lebensspannen-Kontrolle von P. anserina beteiligt ist.
4. Die Funktion des Proteins PaCYPD bei Seneszenz und programmiertem Zelltod
Membranpotential-Messungen konnten einen Rückgang des mitochondrialen Memb-ranpotentials von 21 % bei den PaCYPD-Überexpressionsstämmen nachweisen. Durch die Behandlung mit dem spezifischen PaCYPD-Inhibitor CSA konnte das Membranpo-tential wieder normalisiert werden. Zusammen mit dem detektierten Verlust von
7 Zusammenfassung
125
Cytochrom c in den Mitochondrien der Überexpressionsstämme wird durch diese Studi-en die Vermutung einer PaCYPD-abhängigen Öffnung der mPTP untermauert. Die Pa-PaCypD-Deletion führte zu einer signifikanten Resistenz gegenüber mitochondrial-abhängigem, oxidativem Stress und gegenüber verschiedenen Apoptose-Induktoren. Die Überexpression von PaCypD hingegen führte zu einem beschleunigten Alterungspro-zess (Präseneszenz), einem verschlechterten Resistenzverhalten gegenüber Stress- und Apoptose-Induktoren und zu einer massiven Verkürzung der Lebensspanne. Die Le-bensspanne konnte aber durch die Behandlung mit CSA wieder auf Wildtyp-Niveau verbessert werden. Dies weist auf einen PaCYPD-vermittelte Zelltod hin. Interessan-terweise konnte durch das Wachstum auf CSA-haltigem Medium auch die Lebensspanne des Wildtyps verlängert werden. Um die hier nachgewiesene, lebensver-längernde Wirkung von CSA zu verifizieren, könnte diese Studie leicht auf andere Modellorganismen übertragen werden.
Biological ageing is a degenerative and irreversible process, ultimately leading to death of the organism. The process is complex and under the control of genetic, environmental and stochastic traits. Although many theories have been established during the last decades, none of these are able to fully describe the complex mechanisms, which lead to ageing. Generally, biological processes and environmental factors lead to molecular damage and an accumulation of impaired cellular components. In contrast, counteracting surveillance systems are effective, including repair, remodelling and degradation of damaged or impaired components, respectively. Nevertheless, at some point these systems are no longer effective, either because the increasing amount of molecular damages can not longer be removed efficiently or because the repairing and removing mechanisms themselves become affected by impairing effects. The organism finally declines and dies. To investigate and to understand these counteracting mechanisms and the complex interplay of decline and maintenance, holistic and systems biological investigations are required. Hence, the processes which lead to ageing in the fungal model organism Podospora anserina, had been analysed using different advanced bioinformatics methods. In contrast to many other ageing models, P. anserina exhibits a short lifespan, a less biochemical complexity and it provides a good accessibility for genetic manipulations.
To achieve a general overview on the different biochemical processes, which are affected during ageing in P. anserina, an initial comprehensive investigation was applied, which aimed to reveal genes significantly regulated and expressed in an age-dependent manner. This investigation was based on an age-dependent transcriptome analysis. Sophisticated and comprehensive analyses revealed different age-related pathways and indicated that especially autophagy may play a crucial role during ageing. For example, it was found that the expression of autophagy-associated genes increases in the course of ageing.
Subsequently, to investigate and to characterise the autophagy pathway, its associated single components and their interactions, Path2PPI, a new bioinformatics approach, was developed. Path2PPI enables the prediction of protein-protein interaction networks of particular pathways by means of a homology comparison approach and was applied to construct the protein-protein interaction network of autophagy in P. anserina.
The predicted network was extended by experimental data, comprising the transcriptome data as well as newly generated protein-protein interaction data achieved from a yeast two-hybrid analysis. Using different mathematical and statistical methods the topological properties of the constructed network had been compared with those of randomly generated networks to approve its biological significance. In addition, based on this topological and functional analysis, the most important proteins were determined and functional modules were identified, which correspond to the different sub-pathways of autophagy. Due to the integrated transcriptome data the autophagy network could be linked to the ageing process. For example, different proteins had been identified, which genes are continuously up- or down-regulated during ageing and it was shown for the first time that autophagy-associated genes are significantly often co-expressed during ageing.
The presented biological network provides a systems biological view on autophagy and enables further studies, which aim to analyse the relationship of autophagy and ageing. Furthermore, it allows the investigation of potential methods for intervention into the ageing process and to extend the healthy lifespan of P. anserina as well as of other eukaryotic organisms, in particular humans.
Ziel dieser Dissertation war es, die biologische Rolle der Autophagie für die Entwicklung, Alterung und mitochondriale Qualitätskontrolle in dem Ascomyceten Podospora anserina zu untersuchen. Folgende Ergebnisse wurden dabei erzielt:
1. Der Verlust einer funktionalen Autophagie-Maschinerie ist in P. anserina mit einem Defekt der Sporen-Entwicklung bzw. -Keimung charakterisiert.
2. Es konnten drei Methoden zur Untersuchung der Autophagie in P. anserina etabliert werden: 1) Die Verwendung eines Gfp::PaAtg8-Stamms ermöglicht die Fluoreszenzmikroskopische Bestimmung der Autophagosomen-Anzahl; 2) Die phänotypische Charakterisierung des PaAtg1-Deletionsstamms unter verschiedenen Stressbedingungen (z. B. Stickstoffmangel, Rapamycin) liefert Hinweise auf eine mögliche Autophagie-abhängige Stressadaption; 3) Die Verwendung des „GFPcleavage assays“ ermöglicht einen quantitativen Nachweis genereller und selektiver Autophagie (hier: Mitophagie).
3. In zwei voneinander unabhängigen Experimenten wurde ein altersabhängiger Anstieg der Autophagie für P. anserina demonstriert: Das Autophagie-Niveau nimmt in gealterten P. anserina-Kulturen zu. Gleichzeitig resultiert der Verlust der Autophagie in ∆PaAtg1 in eine reduzierte Lebensspanne. Unter Stressbedingungen (hier: Stickstoffmangel) wird dieser positive Einfluss der Autophagie auf die Lebensspanne im Wildtyp sogar noch verstärkt.
4. Der unerwartet „gesunde“ Phänotyp der PaSod3-Deletionsmutante ist abhängig von einer funktionalen Autophagie-Maschinerie. Der Mitophagie wurde eine besondere Rolle als Kompensationsmechanismus für den Verlust von PaSOD3 zugeteilt, da das Mitophagie-Niveau in dieser Mutante erhöht ist. Am Beispiel dieser Mutante, für die ein erhöhter Superoxid-Ausstoß nachgewiesen wurde, konnte eine Dosis-abhängige Wirkung von ROS in P. anserina identifiziert werden. Eine geringe zelluläre ROSMenge verursacht eine mitohormetische Reaktion, die eine Induktion der Mitophagie zur Folge hat und sich positiv auf den Organismus auswirkt. Übersteigt die zelluläre ROS-Dosis einen kritischen Punkt, kommt es zur Induktion des autophagischen Zelltods und damit zum vorzeitigen Tod des Individuums.
5. Der Verlust der PaCLPXP-Protease führt zu Beeinträchtigungen in der Funktion und Zusammensetzung der mitochondrialen Atmungskette. Dieses Defizit im Energiemetabolismus wird über eine Induktion der AOX, vor allem aber über eine ZUSAMMENFASSUNG 127 gesteigerte Autophagie kompensiert. Die deutlich verlängerte Lebensspanne der verschiedenen PaClpXP-Deletionsmutanten (∆PaClpX, ∆PaClpP und ∆PaClpXP) ist abhängig von einer funktionalen Autophagie-Maschinerie. Interessanterweise konnte keine kompensatorische Funktion der Autophagie oder Mitophagie für den Verlust der mitochondrialen i-AAA-Protease PaIAP in P. anserina nachgewiesen werden.
Autophagie/Mitophagie stellt einen übergeordneten Qualitätskontrollmechanismus in P. anserina dar, der den Organismus sehr effektiv vor zellulären Schäden und Dysfunktionen bewahrt und einen positiven Einfluss auf die Alterung, Entwicklung und Energieversorgung einnimmt.
RNA modifications are present in all three kingdoms of life and detected in all classes of cellular RNAs. RNA modifications are diverse, with more than 100 types of chemical modifications identified to date. These chemical modifications expand the topological repertoire of RNAs and are expected to fine-tune their functions. Ribosomal RNA (rRNA) contains two types of covalent modifications, either methylation on the sugar (Nm) or bases (mN), or base isomerization (conversion of uridine into pseudouridines, "). Pseudouridylations and ribose methylations are catalyzed by site-specific H/ACA and C/D box snoRNPs, respectively. The RNA component (snoRNA) of both types of snoRNPs is responsible for the site selection by base pairing with the rRNA substrate, whereas the protein component catalyzes the modification reaction: Nop1 in C/D box and Cbf5 in H/ACA box snoRNPs. Contrastingly, base methylations are performed by snoRNA independent, ‘protein-only’, methyltransferases (MTases). rRNA modifications occur at highly conserved positions, all clustering around functional ribosomal sites. Mutations in factors involved in rRNA modification have been linked to severe human diseases (e.g. X-linked Dyskeratosis congenita). Emerging evidences indicate that heterogeneity in RNA modification prevails, i.e. not all positions are modified at all time, and the concept of ‘specialized ribosomes’ has been coined. rRNA modification heterogeneity has been correlated with disease etiology (cancer), and shown to play a role in cell differentiation(hematopoiesis). Remarkably, alteration in rRNA modification patterns profoundly affects the preference of ribosomes for cap- versus IRESdependent translation initiation, with major consequences on cell physiology.
Der Pilz Podospora anserina ist seit mehr als fünf Jahrzehnten ein wichtiger Modellorganismus für die Alternsforschung. Insbesondere die Mitochondrien, essentielle eukaryotische Zellorganellen – wegen ihrer Funktion im Energiestoffwechsel häufig auch als „zelluläre Kraftwerke“ bezeichnet, sind Schlüsselfaktoren für den Alterungsprozess dieses Organismus.
Im Rahmen einer vorangegangenen Diplomarbeit wurde daher der Einfluss der mitochondrialen CLPXP-Protease, einem bisher noch wenig erforschten Bestandteil der Proteinqualitätskontrolle in Mitochondrien, auf die Alterung von P. anserina untersucht. Mitochondriale CLPXP-Proteasen sind, wie auch ihre bakteriellen Pendants, aus zwei verschiedenen Untereinheiten aufgebaut: der Protease-Komponente CLPP und der Chaperon-Komponente CLPX. Die Deletion des Gens PaClpP, kodierend für CLPP in P. anserina, führte zu einer überraschenden Verlängerung der gesunden Lebensspanne der Mutante. Darüber hinaus war es möglich, den pilzlichen PaClpP-Deletionsstamm durch Einbringen von CLPP des Menschen zu komplementieren. Dies beweist, dass die Proteasen CLPP des Menschen und von P. anserina funktionell homolog sind. Dadurch eröffnete sich die Perspektive, diesen einfachen Modellorganismus für die Gewinnung potenziell auf den Menschen übertragbarer Erkenntnisse einzusetzen. Bedeutenderweise ist die menschliche CLPXP-Protease wahrscheinlich involviert in die Entstehung verschiedener Krankheiten, darunter das Perrault-Syndrom sowie einige Krebsarten. Die zugrundeliegenden Mechanismen sind jedoch noch weitestgehend unverstanden.
Ziel des in dieser Dissertation beschriebenen Forschungsprojektes war daher die Gewinnung genauerer Einsichten in die molekulare Funktion und die daraus folgende biologische Rolle der mitochondrialen CLPXP-Protease von P. anserina. Der wohl wichtigste Punkt für das detaillierte Verständnis einer Protease ist die Kenntnis ihres Substratspektrums, d. h. der von ihr abgebauten Proteine. Tatsächlich wurde aber bis heute noch in keinem eukaryotischen Organismus eine umfassende Analyse der Substrate einer mitochondrialen CLPXP-Protease vorgenommen. Um diese Wissenslücke zu füllen, wurde in der vorliegenden Arbeit eine ursprünglich in Bakterien entwickelte Verfahrensweise, der sogenannte CLPP „Substrat-trapping Assay“, in P. anserina implementiert. Dafür mussten zunächst die notwendigen handwerklichen Voraussetzungen für den Assay geschaffen werden, insbesondere die effiziente Affinitätsaufreinigung von Proteinen aus isolierten Mitochondrien – einer bisher in P. anserina noch nicht angewandten Technik. Unter Verwendung verschiedener neu hergestellter Varianten der menschlichen Protease-Komponente CLPP, darunter einer proteolytisch inaktiven Variante zum „Einfangen“ von Substraten, konnte der CLPP „Substrat-trapping Assay“ in P. anserina erfolgreich durchgeführt werden. Insgesamt wurden, in Kooperation mit der Arbeitsgruppe von Julian D. Langer (Max-Planck-Institut für Biophysik; Durchführung von massenspektrometrischen Analysen) nahezu 70 spezifische Proteine erstmalig als potenzielle Substrate oder Interaktionspartner einer mitochondrialen CLPXP-Protease identifiziert. Bei einem Großteil dieser Proteine handelt es sich um Enzyme und Komponenten verschiedener Stoffwechselwege – vor allem um solche, die eine zentrale Rolle im mitochondrialen Energiestoffwechsel spielen. Die Ergebnisse der vorliegenden Arbeit legen somit folgende Arbeitsthese als Schlussfazit und gleichzeitig Ausganspunkt für zukünftige Untersuchungen nahe:
Die hauptsächliche molekulare Funktion der mitochondrialen CLPXP-Protease in P. anserina ist die Degradation von Stoffwechselenzymen und ihre biologische Rolle demnach die Kontrolle und Aufrechterhaltung des mitochondrialen und zellulären Energiestoffwechsels.
Insgesamt ist die auf Grundlage des CLPP „Substrat-trapping Assay“ in P. anserina anzunehmende Rolle der mitochondrialen CLPXP-Protease als regulatorische Komponente des mitochondrialen Energiestoffwechsels erstaunlich gut mit Beobachtungen in anderen eukaryotischen Organismen, gerade bezüglich der Relevanz der CLPXP-Protease des Menschen für diverse Krankheiten, zu vereinbaren. Somit erscheint es überaus sinnvoll und vielversprechend, dass in dieser Doktorarbeit erstellte und bisher beispiellose Kompendium potenzieller in vivo Substrate und Interaktionspartner dieser Protease auch als Referenz für zukünftige Untersuchungen außerhalb von P. anserina anzuwenden.