Refine
Year of publication
- 2004 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
The transcriptional regulator RcsB controls the expression of a minimum of 20 different genes having diverse functionalities and biosynthetic operons in the family of Enterobacteriaceae. While in the heterodimeric complex with the co activator RcsA, the RcsAB box consensus is recognized, DNA binding sites for RcsB without RcsA have also been identified. The conformation of RcsB might therefore be modulated upon interaction with various co activators, resulting in recognition of different DNA targets. In this study the interaction of RcsB with some of these DNA targets have been analysed by a diverse array of techniques including gel shift assay and SPR. The solution structure of the C-terminal DNA-binding domain of RcsB from Erwinia amylovora spanning amino acid residues 129-215 has been solved in this study by heteronuclear NMR spectroscopy. The C-terminal domain is composed of four α-helices where the two central helices of the H-T-H motif are similar to the structures of the regulatory proteins GerE, NarL and TraR. The DNA-binding activity of the C-terminal domain alone is established for the first time in this study and was specified by fluorescence spectroscopy, SPR and NMR titration experiments. The molecular interaction between the individual RcsB domains was analysed by cross-linking experiments and heteronuclear NMR spectroscopy and the amino acid residues of the C-terminal domain involved in this interaction were identified precisely. Another important part of this project was the cell-free production of different Trp analogue labelled RcsB protein. RcsB protein was produced in quite a good yield with different Trp analogue having spectrally enhanced properties. The isolated RcsB alloproteins proved to be ideal for protein interaction studies by fluorescence spectroscopy and the very first evidence of an oligomerization of RcsB due to molecular association has been put forth from these studies. The phosphorylated state of the RcsB protein was mimicked by a beryllofluoride complex in order to study its role in transcriptional regulation. It was found that RcsB alone could bind to DNA targets upon this modification by the beryllofluoride complex. Thus the phosphorylation of the protein that involves the Asp 56 residue induces a structural change of the protein followed probably by a domain movement also, so that the C-terminal domain having the H-T-H DNA binding motif that was previously eclipsed by the N-terminal domain is relieved of this constraint.