Refine
Document Type
- Doctoral Thesis (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- Biomarker (1)
- Ecotoxicogenomics (1)
- Ecotoxicology (1)
- Freshwater Ecosystems (1)
- Mikroplastik (1)
- Mikroplastik, Boden, Reifenabrieb, Analytik (1)
- Organic micropollutants (1)
- Proteomics (1)
- Risk assessment (1)
- Schistosomiaisis (1)
Institute
Wastewater treatment plants (WWTPs) do not eliminate micropollutants completely and are thus important point sources for these substances. In particular, concerns about en-docrine disrupting compounds in WWTP effluents give rise to the implementation of advanced treatment steps for the elimination of trace organic contaminants. The present study investigated ozonation (O3) and activated carbon treatment (AC) at two WWTPs. For an ecotoxicological assessment at WWTP Regensdorf, conventionally treated wastewater, wastewater after ozonation, and ozonated wastewater after sand filtration were evaluated in parallel via the fish early life stage toxicity test (FELST) using rainbow trout (Oncorhynchus mykiss). Additionally, a comparative toxicity evalu-ation of ozonated and activated carbon treated effluents was performed at the pilot scale treatment plant in Neuss (WWTP Neuss). For this purpose, four invertebrate tests and one higher plant toxicity test were selected to assess potential biological effects on or-ganisms [Lemna minor growth inhibition test, chironomid toxicity test with Chironomus riparius, Lumbriculus variegatus toxicity test, comet assay with haemolymph of the zebra mussel (Dreissena polymorpha), reproduction test with Potamopyrgus antipo-darum]. All in vivo assays were performed on site at the treatment plants in flow-through test systems. Furthermore, the present study investigated the effects of ozona-tion and activated carbon treatment on endocrine activities [estrogenicity, anti-estrogenicity, androgenicity, anti-androgenicity, aryl-hydrocarbon receptor (AhR) agonistic activity] with yeast based bioassays using solid phase extracted water samples. To evaluate the removal of in vitro non-specific toxicity, a cytotoxicity assay using a rat cell line was applied. The FELST at WWTP Regensdorf revealed a considerable developmental retardation of test organisms exposed to ozonated WW. This was accompanied by a significant decrease in body weight and length compared to reference water, to the conventionally treated WW, and to the ozonated water after sand filtration. Hence sand filtration obvi-ously prevents from adverse ecotoxicological effects of ozonation. An additional test – starting with yolk-sac larvae – resulted in a significant reduction of vitellogenin levels in fish exposed to ozonated wastewater compared to fish reared in conventionally treat-ed wastewater. This demonstrates the effective removal of estrogenic activity by ozonation. At WWTP Neuss, the reproduction test with the mudsnail P. antipodarum exhibited a decreased reproductive output after advanced treatment compared to conventional treatment. This indicates an effective estrogenicity removal by ozonation and activated carbon treatment and is confirmed by results of the yeast estrogen screen with a reduc-tion of in vitro estrogenic activity by > 75%. The L. variegatus test revealed a signifi-cantly enhanced toxicity after ozonation compared to conventional treatment, whereas this effect was reduced following subsequent sand filtration. When ozonation was applied, a significantly increased genotoxicity was observed, detected with the comet assay using haemolymph of the zebra mussel. Again, this effect was removed by subsequent sand filtration to the level of conventional treatment. Activated carbon treatment even resulted in a significant reduction of genotoxicity. At both treatment plants, adverse effects after ozonation may have been a result of the formation of toxic oxidation by-products. However, sand filtration reduced toxication effects, indicating that these oxidation by-products are readily degradable or adsorbable. The results point out that, in any case, ozonation should not be applied without subsequent biologically active post treatment appropriate for oxidation by-products removal (e.g. sand filtration). However, only activated carbon achieved a toxicity reduction compared to the conventional treated wastewater. Thus, it cannot be excluded that po-tential beneficial effects due to ozonation might be masked by residual toxic oxidation by-products passing the sand filter or ozonation is not as effective in toxicity removal as PAC treatment. The yeast based assays with solid phase extracted samples revealed an effective endo-crine activity removal during ozonation and activated carbon filtration (estrogenicity: 77 – 99%, anti-androgenicity: 63 – 96%, AhR agonistic activity: 79 – 82%). The cyto-toxicity assay exhibited a 32% removal of non-specific toxicity after ozonation com-pared to conventional treatment. Ozonation in combination with sand filtration reduced cytotoxic effects by 49%, indicating that sand filtration contributes to the removal of toxicants. Activated carbon treatment was the most effective technology for cytotoxici-ty removal (61%). Sample evaporation reduced cytotoxic effects by 52% (after activated carbon treatment) to 73% (after ozonation), demonstrating that volatile substances contribute considerably to toxic effects, particularly after ozone treatment. These results confirm an effective removal or transformation of toxicants with receptor mediated mode of action and non-specific toxicants during both investigated treatment steps. However, due to the limited extractability, polar ozonation by-products were neglected for toxicity analysis, and hence non-specific toxicity after O3 is underestimated. In the long run, only on-site comparisons at WW receiving water bodies (e.g. communi-ty analysis of fish, macroinvertebrates, plants, microorganisms) – before and after up-grading WWTPs – allow drawing environmentally relevant conclusions regarding bene-fits and risks of advanced WW treatment methods. Conclusively, the benefits and possible negative impacts have to be carefully evaluated to prove that not more environmental impact will be induced than removed by advanced treatment technologies as each additional treatment requires considerable amounts of energy, resources, and infrastructure facilities. Accordingly, comprehensive sustainable approaches for pollution prevention and wastewater treatment (e.g. source control and source separation) are preferable compared to end-of-pipe treatment systems.
Clean water is fundamental to human health and ecosystem integrity. However, water quality deteriorates due to novel anthropogenic pollutants present at microgram per liter concentrations in urban water cycles (termed micropollutants). Wastewater treatment plants (WWTP) have been identified as major point sources for aquatic (micro-)pollutants. Chemical and ecotoxicological analyses have shown that conventional biological WWTPs do not fully remove micropollutants and associated toxicities, which is often because of mobile, polar and/or recalcitrant compounds and transformation products (TPs). To minimize possible environmental risks, advanced wastewater treatment (AWWT) technologies could be a promising mitigation measure. Multiple processes are therefore being developed and evaluated such as ozonation and ozonation followed by granulated activated carbon (GAC) or biological filtration. Assessing the performance of these combined AWWTs was the focus the TransRisk project. Within this project, this thesis accomplished four major goals.
Firstly, the preparation of (waste)water samples was optimised for in vitro bioassays. Acidification, filtration and solid phase extraction (SPE) were tested for their impact on environmentally relevant in vitro endocrine activities, mutagenicity, genotoxicity and cytotoxicity. Significantly different outcomes of these assays were detected comparing neutral and acidified samples. Sample filtration had a lesser impact, but in some cases retention of particle-bound compounds could have caused significant toxicity losses. Out of three SPE sorbents the Telos C18/ENV at sample pH 2.5 extracted highest toxicity, some undetected in aqueous samples. These results indicate that sample preparation needs to be optimised for specific sample matrices and bioassays to avoid false-positive or -negative detects in effect-based analyses.
Secondly, the above listed in vitro toxicities were monitored in a protected region for drinking water production in South-West Germany (2012-2015). Out of 30 sampling sites surface water and groundwater were the least polluted. Nonetheless, a few groundwater samples induced high anti-estrogenic activity that prompted further monitoring. The latter included a waterworks in which no toxicity was detected. Hospital wastewater also had elevated in vitro toxicities and hospitals are, thus, relevant intervention points for source control. The biological WWTPs were effective in removing most of the detected toxicity, and the selected bioassays proved to be pertinent tools for water quality assessment and prioritisation of pollution hotspots.
Thirdly, the in vivo bioassay ISO10872 based on Caenorhabditis elegans (C. elegans) was adapted for this thesis. Using this model, a median effect concentration (EC50) for reproductive toxicity of the polycyclic aromatic hydrocarbon β-naphthoflavone (β- NF) of 114 µg/L was computed which is slightly lower than reported in the scientific literature. β-NF induced cyp-35A3::GFP (a biomarker in transgenic animals) in a time and concentration dependent manner (≤ 21.3–24 fold above controls). β-NF spiked wastewater samples supported earlier hypotheses on particle-bound pollutants. Reproductive toxicity (96 h) and cyp-35A3 induction (24 h) of biologically treated and/or ozonated wastewater extracts and growth promoting effects of GAC/biologically filtered ozonated wastewater extracts were observed. This suggested the presence of residual bioactive/toxic chemicals not included in the targeted chemical analysis. It also highlighted the importance of integrating multiple (apical and molecular) endpoints in wastewater assessments.
Fourthly, five in vitro and the adapted C. elegans bioassay were integrated into a wastewater quality evaluation (developed within TransRisk). Out of the five AWWT options, ozonation (at 1 g O3,applied/g DOC, HRT ~ 18 min) combined with nonaerated GAC filtration was rated most effective for toxicity removal. All five AWWTs largely removed estrogenic and (anti-)androgenic activities, but not anti-estrogenic activity and mutagenicity, which even increased during ozonation. This has been observed in related studies and points towards toxic TPs. These results also emphasized the need for implementing an effective post-treatment for ozonation. The results from a parallel in vivo study with Lumbriculus variegatus and Potamopyrgus antipodarum conducted on site at the WWTP (using flow through systems) were in accordance with the C. elegans results. In this context, it is suggested to further implement C. elegans as sensitive, feasible and ecologically relevant model.
In conclusion, this thesis shows how optimised sample preparation, long-term (in vitro) environmental monitoring, sensitive and ecologically relevant (in vivo) bioassays as well as innovative evaluation concepts, are pivotal in improving the removal of micropollutants and their toxicities with AWWTs. Future research should further develop and evaluate measures at sewer systems, conventional biological, tertiary and other advanced treatment technologies, as well as sociopolitical strategies (e.g., source control or natural conservation) and restoration projects. The effect-based tools optimised in this thesis will support assessing their success.
In the past decades, the use and production of chemicals has been on the rise globally due to increasing industrialization and intensive agriculture; resulting in the occurrence and ecotoxicological risks of chemicals of emerging concern (CECs) in the aquatic compartments. Risks include changes in community structure resulting in the dominance of one species and ecosystem imbalance. When dominant disease-causing organisms are in the environment, the disease transmission is increased. For example, host snails for the schistosomiasis, a human trematode disease, are known to be tolerant to pesticide
exposure compared to the predators. This would therefore result in an increased abundance of snails which consequently increase the disease transmission in the human population.
Kenya, being a low income country faces a lot of challenges with provision of clean water, diseases and sanitation facilities, and increasing population which results in intensive agriculture coupled with pesticide use. Although a lot of research has been carried out on the environmental occurrence and risk of CECs (Chapter 1), most of these studies have been done in developed countries with limited information from Africa. Additionally, research in Africa focused on urban areas with limited number of compounds analyzed and mostly in the water phase, and inadequate information on the effects of CECs on the aquatic organisms. In order to reduce this knowledge gap, this dissertation focused on identification and quantification of CECs present in water, sediment and snails from western Kenya, and the contribution of pesticides to the transmission of schistosomiasis.
Chapter 2 gives a summary of the results and discussion of the dissertation. In Chapter 3, a comprehensive chemical analysis was carried out on 48 water samples to identify compounds, spatial patterns and associated risks for fish, crustacean and algae using toxic unit (TU) approach. A total of 78 compounds were detected with pesticides and biocides being the compounds most frequently detected. Spatial pattern analysis revealed limited compound grouping based on land use. Acute risk for crustaceans and algae were driven by one to three individual compounds. These compounds responsible for toxicity were prioritized as candidate compounds for monitoring and regulation in Kenya.
In Chapter 4, an extension of Chapter 3 was done to cover the CECs present in snails and sediment from the 48 sites. A total of 30 compounds were found in snails and 78 in sediments with 68 additional compounds being found which were not previously detected in water. Higher contaminant concentrations were found in agricultural sites than in areas without anthropogenic activities. The highest acute toxicity (TU 0.99) was determined for crustaceans based on compounds in sediment samples. The risk was driven by diazinon and pirimiphos-methyl. Acute and chronic risks to algae were driven by diuron whereas fish were found to be at low to no acute risk.
In Chapter 5, the effect of pesticide contamination on schistosomiasis transmission was evaluated by applying complimentary laboratory and field studies. In the field studies, the ecological mechanisms through which pesticides and physical chemical parameters affect host snails, predators and competitors were investigated. Pesticide data was obtained from the results in chapter 3. The overall distribution of grazers and predators was not affected by pesticide pollution. However, within the grazers, pesticide pollution increased dominance of host snails. On the contrary, the host-snail competitors were highly sensitive to pesticide exposure. For the laboratory studies, macroinvertebrates including Schistosoma-host snails, competitors and predators were exposed to 6 concentrations levels of imidacloprid and diazinon. Snails showed higher insecticide tolerance compared to competitors and predators. Finally, Chapter 6 summarizes the conclusions of this dissertation, placing it in a broader
context. In this dissertation, a comprehensive chemical characterization and risk assessment of CECs has been carried out in freshwater systems; together with the effects of pesticides on schistosomiasis transmission in rural western Kenya. Results of this dissertation showed that rural areas are contaminated posing a risk to aquatic organisms which contribute to schistosomiasis transmission. This shows the need for regular monitoring and policy formulation to reduce pollutant emissions which contributes negatively to both ecological and human health effects.
Chemical contamination of the environment and thus of aquatic ecosystems is steadily increasing. Whenever environmental pollutants enter a water body, they affect not only the water, but also the sediment. Substances that bind to sediment particles can be stored for a long time, whereby sediments act as sinks for some contaminants. Therefore, sediment
assessments often more accurately describe the contamination of a water body than investigations of the water itself. Among environmental chemicals, endocrine disrupting compounds (EDCs) have gained more and more attention in recent years. Since they interfere with endocrine systems and may disturb reproduction, they endanger the survival of populations or even species. Hazardous substances enter the aquatic environment by different pathways, with sewage treatment plants (STPs) belonging to the most important contamination sources.The main objective of this work is a comprehensive sediment assessment of predominantly small surface waters in the German federal state of Hesse. The 50 study sites, located in 44 different creeks and small rivers, are situated in the densely populated and economically important Frankfurt/Rhine-Main area, as well as in rural and less urbanized regions.
Chemical analytical data, provided by the Hessian Agency for the Environment and Geology (HLUG), indicated different contamination levels of the study sites. In order to investigate the general toxicity of the sediment samples, the oligochaete Lumbriculus variegatus and the midge Chironomus riparius were exposed to whole sediments and apical endpoints regarding biomass, survival, and reproduction were determined. In further experiments, special attention was paid to the contamination with endocrine active compounds. For this purpose, the reproductive success of the New Zealand mudsnail Potamopyrgus antipodarum was analyzed after exposure to whole sediments. Additionally, a yeast-based reporter gene assay was applied with sediment eluates to assess the estrogenic and androgenic activity of the samples. Biotest results were compared with chemical analysis data to investigate whether the test organisms reflect the measured pollution of the study sites and if the observed effects can be explained by chemical contamination.
Five study sites, all located less than 1 km downstream of a STP discharger, were selected for further investigations based on the results of the sediment monitoring. The sediments from these sites were conspicuous due to their general toxic and/or estrogenic activity. In order to investigate whether the observed effects can be ascribed to the effluents, an active biomonitoring study was conducted with the mudsnail P. antipodarum and the zebra mussel Dreissena polymorpha, exposed at study sites located up- and downstream of the discharger.
In addition to endocrine activity, genotoxic effects were investigated using the comet assay and the micronucleus assay. Endocrine activity was examined based on the reproductive output of P. antipodarum and the content of vitellogenin-like proteins in D. polymorpha. Yeast-based reporter gene assays were used to estimate the endocrine potential (estrogen, anti-estrogen, anti-androgen, dioxin-like) of sediment and water samples.
22% of the 50 sediments showed ecologically relevant effects in the biotests with L. variegatus and C. riparius. Only one sediment caused a relevant effect on both test organisms, while the other ten positively tested sediments affected either L. variegatus or C. riparius, probably due to differences in inter-species sensitivities. This suggests that a combination of different biotests is necessary for a comprehensive evaluation of sediment toxicity. 78% of the sediments caused a significantly increased number of embryos in P. antipodarum, which could be ascribed to estrogenic contamination of the sediment samples. An increase in the number of embryos by 60%, as observed in this study, and an associated increase in population size may result in the displacement of other, less competitive species.
In the in vitro tests, 66% of the sediments showed estrogenic activity and 68% showed androgenic activity. Maximum observed values were 40.9 ng EEQ/kg sediment (EEQ = estradiol equivalent) for estrogenic and 93.4 ng TEQ/kg sediment (TEQ = testosterone equivalent) for androgenic activity. Natural and synthetic hormones as well as alkylphenols were the major contributors to the total estrogenicity of environmental samples in several other studies, and are likely responsible for a large part of the estrogenic activity in this case as well. Similarly, androgenic activity is mainly due to natural steroids and their metabolites.
Bioassay results reflect the analytically measured contamination levels at the study sites only very infrequently. This can be ascribed to the occurrence of integrated effects of chemical mixtures present in the sediments. Additionally, effects of substances not included in the analytical program or of substances present in concentrations below the detection limit of the chemical analytical investigations as well as varying bioavailabilities might be relevant. The fact that a large part of the observed effects cannot be explained by the chemical contamination demonstrates the need for effect studies in ecotoxicological sediment assessments.
In order to identify possible causes for the effects observed in the sediment monitoring, e.g. contamination sources, the area types (urban fabrics, arable lands, pasturages, etc.) of the catchment areas belonging to the study sites were analyzed. No significant differences were found between the area profiles of the sampling sites with and without effects in the biotests.
The results indicate that the contamination responsible for the observed effects can be ascribed to different sources. Furthermore, study sites whose sediments exerted significant effects in biotests were located in anthropogenic as well as in predominantly natural areas. The active biomonitoring study at STPs revealed genotoxic and endocrine effects only sporadically.
However, in the in vitro tests considerable endocrine activities of sediment and water samples were determined. No conclusive picture emerges as to whether the observed effects occur more frequently downstream of the dischargers, and thus could be attributed to a contamination by sewage. This indicates that contamination sources other than STP dischargers, for example agricultural runoff, may contribute to the observed effects. Weaker effects and biological activities downstream of a discharger compared to an upstream site might be ascribed to a dilution effect by the effluents. A comparison of the measured in vitro estrogenicity with exposure studies described in the literature shows that adverse effects in aquatic organisms can be expected at the EEQ concentrations determined in the present study.
The results of the sediment monitoring and the STP study revealed a widespread endocrine pollution of small surface waters in Hesse. The fact that the bioassay results only rarely reflect study site contamination as determined by chemical analysis demonstrates the need for effect studies in comprehensive sediment assessments. In some cases STP dischargers increased, in other cases they decreased the observed in vivo effects and in vitro activity of environmental samples. Transferring the results obtained in laboratory studies to the field, adverse effects on aquatic ecosystems can be expected. The study illustrates the need for restrictive measures that contribute to the removal or reduction of environmental pollutants.
For the identification of substances that have so far not been linked to adverse effects on the environment, methods such as effect-directed analyses (EDA) or toxicity identification evaluation (TIE) should be increasingly applied in future studies. Furthermore, bioassays for the assessment of endocrine activity should be implemented in standardized monitoring programs.
The intensive use of the North Sea area through offshore activities, sand mining, and the spreading of dredged material is leading to increasing pollution of the ecosystem by chemicals such as hydrophobic organic contaminants (HOCs). Due to their toxicological properties and their ability to accumulate in the environment, HOCs are of particular concern. The contaminants partition between aqueous (pore water, overlying water) and solid phases (sediment, suspended particulate matter, and biota) within these systems. The accumulated contaminants in the sediment are of major concern for benthic organisms, who are in close contact with sediment and interstitial water. It is thus particularly important to better understand how contaminants interact with biota, as these animals may contribute to trophic transfer through the food web. Furthermore, sediments are a crucial factor for the water quality of aquatic systems. They not only represent a sink for contaminants but also determine environmental fate, bioavailability, and toxicity. The Marine Strategy Framework Directive (MSFD) was introduced to protect our marine environment across Europe and includes the assessment of pollutant concentrations in the total sediment, which, however, rarely reflects the actual exposure situation. The consideration of the pollutant concentrations in the pore water is not implemented, although this is needed for the evaluation of bioavailability and risk assessment. For this reason, special attention is given to further development, implementation, and validation of pollutant monitoring methods that can determine the bioavailable fraction in sediment pore water. For risk assessment purposes, it is furthermore important to use biological indicators in addition to classical analytics to determine the effect of pollutants on organisms. The main objective of this thesis was to gain insight into the pollution load and the potential risk of hydrophobic organic chemicals (HOCs) in the sediment of the North Sea and to evaluate these results with regard to possible risks for benthic organisms and the ecosystem. The following five aims are covered within these studies to gain a holistic assessment of sediment contamination:
1. Assessment of the pore water concentrations of PAHs and PCBs
2. Determination of the bioturbation potential by macrofauna analysis
3. Application of the SPME method on biological tissue
4. Assessment of recreated environmental mixtures in passive dosing bioassays
5. Development of SPME method for DDT in sediments
The thesis is comprised of three main studies supported by three additional studies ...
The European Community has set a milestone in the European water policy in 2000: all water directives and policies were united into one comprehensive document – the European Water Framework Directive (EU WFD). The EU WFD requires the monitoring of 45 priority substances, primarily in the water phase, which is not related to a substantial amount of chemicals available on the market worldwide (about 50,000). About 60% of these are human and environmentally toxic. Hence, the currently monitored 45 priority substances are not even close to being sufficient to provide a comprehensive picture of the actual chemical pollution in the aquatic environment.
Furthermore, the EU WFD in its original shape paid less attention to sediments as an important source and sink for chemical contamination. Under stable hydrological conditions, polluted old sediments are covered by less polluted younger sediments preventing erosion of deeper sediment layers and, therefore, the release of particle-bound contaminants. However, urbanization, deforestation, flooding, dredging, riverbed renaturation, and stormwater overflow basin releases can lead to an unpredictable release of particle-bound pollutants. Therefore, in 2008, sediments were added to the EU WFD as a monitoring matrix for substances that tend to accumulate there. As a result, after 18 years of the EU WFD, less than half of all European waterbodies reached a good ecological (40%) and chemical (38%) status.
One of the primary pollution sources in aquatic ecosystems are wastewater treatment plants (WWTPs). Advanced wastewater treatment by ozonation is promising to remove most micropollutants. However, the knowledge about the possible improvement of the receiving waterbody is rare. The latter aspects were the main reasons for the start of the DemO3AC project in 2014. The study area was located in the federal state of North Rhine-Westphalia (Germany). The study area included the Wurm River and its tributary, the Haarbach River. Both waterbodies act as receiving waterbodies for WWTPs. One of them is the Aachen-Soers WWTP (receiving waterbody: Wurm River), upgraded by full stream ozonation as an advanced effluent treatment. Therefore, the extensive investigation program within the DemO3AC project included an investigation of the ecological and chemical status of both receiving waterbodies and the investigation of a possible improvement of the Wurm River after implementing advanced effluent treatment.
The current study was a part of the DemO3AC project and covered the sediment toxicity and a possible impact of the ozonation on aquatic organisms in the receiving waterbody. Time-resolved sampling campaigns allowed investigations under different hydrological conditions, mainly determined by the weather. The first sampling campaign took place in June 2017 during a prolonged dry period with low water flow in the receiving waterbodies. The second sampling campaign was performed exactly one year later (June 2018) after a long rainy period and corresponding high-water levels. Full-stream ozonation at the Aachen-Soers WWTP had been in operation for half a year. Furthermore, a wide range of organic micropollutants was investigated in the effluent of the studied WWTPs to assess a possible hazard emerging from contaminants released into the receiving waterbody.
The study design was developed based on the holistic approach to assessing the ecotoxicological pollution of surface waterbodies. It included the detection of chemical compounds combined with effect-based methods to identify possible drivers of toxicity. The sediment's ecotoxicological assessment included studies on endocrine-disrupting activity, genotoxic and embryotoxic potentials. These endpoints were evaluated using in vitro and in vivo bioassays. In addition, sediments’ chemical profiling was performed using modern analytical chemistry techniques.
The genotoxic potential was investigated using the Ames fluctuation assay with Salmonella typhimurium bacterial strains TA98, TA100, YG1041, and YG1042, sensitive to different classes of compounds, and the Micronucleus assay as a eukaryotic assay with mammalian cells. A unique feature of the present study was the implementation of non-standard Salmonella typhimurium bacterial strains YG1041 and YG1042 in the Ames fluctuation assay. Moreover, a comprehensive genotoxicity ranking of chemical compounds identified in sediments was used and combined with statistical analysis to identify the drivers of genotoxicity. The results of this study were published in Shuliakevich et al. (2022a) (see also Annex 1), describing the mutagenic potential of all sampling sites, which was primarily driven by polycyclic aromatic hydrocarbons, nitroarenes, aromatic amines, and polycyclic heteroarenes. In addition, the rainwater overflow basin was identified as a significant source for particle-bound pollutants from untreated wastewater, suggesting its role as a possible source of genotoxic potential. The present study showed high sensitivity and applicability of non-standard Salmonella typhimurium bacterial strains YG1041 and YG1042 in the Ames fluctuation assay to assess the different classes of mutagenic compounds. A combination of effect-based methods and a chemical analysis was shown as a suitable tool for a genotoxic assessment of freshwater sediments.
The sediments' endocrine-disruptive activity was investigated using the cell-based reporter gene CALUX® assay. A simultaneous launch of the full-scale effluent ozonation at the Aachen-Soers WWTP was used for investigation of the entrance of the ozonated effluent into the Wurm River and the endocrine-disrupting activity in the water phase. A particular focus of the present study was the unique investigation of PAHs as possible drivers of the endocrine-disrupting activity in sediments of the Wurm River. The results of this study were laid down in the publication by Shuliakevich et al. (2022b) (see also Annex 2), describing variations in endocrine-disrupting activity in the Wurm River under different weather conditions. Briefly, under stable hydrological conditions in June 2017, the estrogenic and the antiandrogenic activities in sediments of the Wurm River were within the range of 0.03-0.1 ng E2 equivalents (eq.)/g dry weight sediment equivalents (dw SEQ) and 3.0-13.9 µg Flu eq./g dw SEQ, respectively. After extensive rain events in June 2018, the sediments' estrogenic and antiandrogenic activities were detected within the range of 0.06-0.2 ng E2 eq./g dw SEQ and 1.7-39.2 µg Flu eq./g de SEQ, respectively. Increased endocrine-disruptive activity (up to 0.2 ng E2 eq./g dw SEQ in ERα- and 39.2 µg Flu eq./g dw SEQ in anti-AR-CALUX® assays) in sediments downstream of the rainwater overflow basin suggested it as a possible source of pollution. A unique result of the second study was finding a positive correlation between measured particle-bound antiandrogenic activity and detected polyaromatic hydrocarbons (PAHs) ...
Exploring the in vivo subthreshold membrane activity of phasic firing in midbrain dopamine neurons
(2021)
Dopamine is a key neurotransmitter that serves several essential functions in daily behaviors such as locomotion, motivation, stimulus coding, and learning. Disrupted dopamine circuits can result in altered functions of these behaviors which can lead to motor and psychiatric symptoms and diseases. In the central nervous system, dopamine is primarily released by dopamine neurons located in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) within the midbrain, where they signal behaviorally-relevant information to downstream structures by altering their firing patterns. Their “pacemaker” firing maintains baseline dopamine levels at projection sites, whereas phasic “burst” firing transiently elevates dopamine concentrations. Firing activity of dopamine neurons projecting to different brain regions controls the activation of distinct dopamine pathways and circuits. Therefore, characterization of how distinct firing patterns are generated in dopamine neuron populations will be necessary to further advance our understanding of dopamine circuits that encode environmental information and facilitate a behavior.
However, there is currently a large gap in the knowledge of biophysical mechanisms of phasic firing in dopamine neurons, as spontaneous burst firing is only observed in the intact brain, where access to intrinsic neuronal activity remains a challenge. So far, a series of highly-influential studies published in the 1980s by Grace and Bunney is the only available source of information on the intrinsic activity of midbrain dopamine neurons in vivo, in which sharp electrodes were used to penetrate dopamine neurons to record their intracellular activity. A novel approach is thus needed to fill in the gap. In vivo whole-cell patch-clamp method is a tool that enables access to a neuron’s intrinsic activity and subthreshold membrane potential dynamics in the intact brain. It has been used to record from neurons in superficial brain regions such as the cortex and hippocampus, and more recently in deeper regions such as the amygdala and brainstem, but has not yet been performed on midbrain dopamine neurons. Thus, the deep brain in vivo patch-clamp recording method was established in the lab in an attempt to investigate the subthreshold membrane potential dynamics of tonic and phasic firing in dopamine neurons in vivo.
The use of this method allowed the first in-depth examination of burst firing and its subthreshold membrane potential activity of in vivo midbrain dopamine neurons, which illuminated that firing activity and subthreshold membrane activity of dopamine neurons are very closely related. Furthermore, systematic characterization of subthreshold membrane patterns revealed that tonic and phasic firing patterns of in vivo dopamine neurons can be classified based on three distinct subthreshold membrane signatures: 1) tonic firing, characterized by stable, non-fluctuating subthreshold membrane potentials; 2) rebound bursting, characterized by prominent hyperpolarizations that initiate bursting; and 3) plateau bursting, characterized by transient, depolarized plateaus on which bursting terminates. The results thus demonstrated that different types of phasic firing are driven by distinct patterns of subthreshold membrane activity, which may potentially signal distinct types of information. Taken together, the deep brain in vivo patch-clamp technique can be used for the investigation of firing mechanisms of dopamine neurons in the intact brain and will help address open questions in the dopamine field, particularly regarding the biophysical mechanisms of burst firing in dopamine neurons that control behavior.
Plastic pollution is a pervasive problem. In the environment, both the physical and chemical aspects of the material contribute to pollution. For instance, discarded plastic is useless waste that is fragmented upon degradation and so-called microplastics <5 mm are formed. Besides, the chemicals added into plastics are usually customized for specific functions, but these can easily transfer from the polymer into an ambient medium. This work examined both of these aspects. Moreover, the question of whether ecotoxicological effects are more likely to appear because of the microparticle properties or the chemicals transferring from the microplastics was addressed. A special focus was laid on the UV-weathering-induced chemical release.
First, conventional and biodegradable plastics made from fossil and bio-based resources were chosen. The different materials (pre-production and recycled pellets as well as final products)were weathered and their leachates evaluated in vitro. The leachates were analyzed with nontarget screening in order to measure the number of transferred chemicals. Plastics identified as toxic were subjected to further investigations in vivo. A biodegradable shampoo bottle was processed to microplastics and the particles’ physical and chemical properties were assessed with the freshwater worm Lumbriculus variegatus. Here, commonly used endpoints such as mortality, reproduction and weight were tested via different exposure routes. Moreover, the freshwater shrimp Neocaridina palmata was exposed to microplastic beads and fragments to clarify if the shape of the particles affects the ingestion and egestion, respectively. Thereafter, two materials that displayed the strongest toxic responses in vitro within the first study were weathered and leached. Finally, the shrimps were exposed to the leachates and the locomotor behavior was used as an ecologically relevant but less frequently studied endpoint.
The results of the studies highlight that plastics are chemically complex mixtures, containing a wide range of chemicals in terms of the number and functionality. These chemicals induced oxidative stress, baseline toxicity and endocrine activities. This shows that pellets represent a processing state that comprises chemically heterogenous materials. Moreover, it was shown that a degradation initiator is not necessarily relevant to trigger inherent substances to leach out from plastics. Despite this, the UV-weathering resulted in increasingly released chemicals and exacerbated the in vitro toxicities. Even plastics assessed as toxicologically harmless prior to weathering released toxic chemical mixtures once they were weathered. One recycled and all of the biodegradable plastics were toxicologically most concerning. This means that such materials are currently not better than conventional, virgin plastics in terms of their toxicity.
To clarify the source of the microplastic toxicity, L. variegatus was exposed to biodegradable microplastics. The particles were ingested by the worms and adversely affected the examined endpoints. In comparison, microplastics that were depleted from their chemicals via a solvent treatment were less toxic. Kaolin as a natural particle control was evaluated alongside and positively affected the weight of the worms. This emphasizes the ecological relevance of fine-sized matter for the test species. The chemicals extracted from the microplastics induced a 100% mortality. A chemical analysis of the material revealed two ecotoxicologically relevant biocides. The physically-mediated effects of the microplastics seemed to be less of a concern for the worms, which is probably linked to their adaptation to high concentrations of naturally occurring particles in the environment. However, the effects related to the chemicals of plastic cannot be ignored, especially for materials that are claimed to be environmentally friendly.
In the third study, the role of the particle shape in the gut passaging of N. palmata was studied. While the particle size was a determinant factor for the ingestion, the ingestion and egestion of the beads and fragments did not differ, respectively. The shrimps ingested less fragments when food was provided than in the absence of food. As for the worms, the shrimps are known to ingest many naturally occurring particles. Their unselective feeding behavior towards the particle shape could indicate that microplastics as a physical pollutant are negligible for the shrimps. That is why the chemicals of the two most toxic in vitro materials were tested with N. palmata. However, no trend towards elevated or reduced movements of the shrimps was observed, even though the leachates contained baseline toxicants. This shows that the in vitro toxicities of plastics are not necessarily indicative for effects to occur at the in vivo level...
Regulatory required, classical toxicity studies for environmental hazard assessment are costly, time consuming, and often lack mechanistic insights about the toxic mode of action induced through a compound. In addition, classical toxicological non-human animal tests raise serious ethical concerns and are not well suited for high throughput screening approaches. Molecular biomarker-based screenings could be a suitable alternative for identifying particular hazardous effects (e.g. endocrine disruption, developmental neurotoxicity) in non-target organisms at the molecular level. This, however, requires a better mechanistic understanding of different toxic modes of action (MoA) to describe characteristic molecular key events and respective markers.
Ecotoxicgenomics, which uses modern day omic technologies and systems biology approaches to study toxicological responses at the molecular level, are a promising new way for elucidating
the processes through which chemicals cause adverse effects in environmental organisms. In this context, this PhD study was designated to investigate and describe MoA-characteristic
ecotoxicogenomic signatures in three ecotoxicologically important aquatic model organisms of different trophic levels (Danio rerio, Daphnia magna and Lemna minor).
Applying non-target transcriptomic and proteomic methodologies post chemical exposure, the aim was to identify robust functional profiles and reliable biomarker candidates with potential
predictive properties to allow for a differentiation among different MoA in these organisms. For the sublethal exposure studies in the zebrafish embryo model (96 hpf), the acute fish embryo toxicity test guideline (OECD 236) was used as conceptual framework. As different test compounds with known MoA, the thyroid hormone 3,3′,5-triiodothyronine (T3) and the thyrostatic 6-propyl-2-thiouracil (6-PTU), as well as six nerve- and muscle-targeting insecticides (abamectin, carbaryl, chlorpyrifos, fipronil, imidacloprid and methoxychlor) were evaluated. Furthermore, a novel sublethal immune challenge assay in early zebrafish embryos (48 hpf) was evaluated for its potential to assess immuno-suppressive effects at the gene expression level. Therefore, toxicogenomic profiles after an immune response inducing stimulus with and without prior clobetasol propionate (CP) treatment were compared. For the aquatic invertebrate D. magna, the study was performed with previously determined low effect concentrations (EC5 & EC20) of fipronil and imidacloprid according to the acute immobilization test in water flea (OECD 202). The aim was to compare toxicogenomic signatures of the GABA-gated chloride channel blocker (fipronil) and the nAChR agonist (imidacloprid). With similar low effect concentrations, a shortened 3 day version of the growth inhibition test with L. minor (OECD 221) was conducted to find molecular profiles differentiating between photosynthesis and HMG-CoA reductase inhibitory effects. Here, the biological interpretation of the molecular stress response profiles in L. minor due to the lack of functional annotation of the reference genome was particularly challenging. Therefore, an annotation workflow was developed based on protein sequence homology predicted from the genomic reference sequences.
With this PhD work, it was shown how transcriptomic, proteomic and computational systems biology approaches can be coupled with aquatic toxicological tests, to gain important mechanistic insights into adverse effects at the molecular level. In general, for the different investigated adverse effects for the different organisms, biomarker candidates were identified, which describe a potential functional link between impaired gene expressions and previously reported apical effects. For the assessed chemicals in the zebrafish embryo model, biomarker candidates for thyroid disruption as well as developmental toxicity targeting the heart and central nervous system were described. The biomarkers derived from nerve- and muscletargeting insecticides were associated with three major affected processes: (1) cardiac muscle cell development and functioning, (2) oxygen transport and hypoxic stress and (3) neuronal development and plasticity. To our knowledge, this is the first study linking neurotoxic insecticide exposure and affected expression of important regulatory genes for heart muscle (tcap, actc2) and forebrain (npas4a) development in a vertebrate model. The proposed immunosuppression assay found CP to affect innate immune induction by attenuating the response of genes involved in antigen processing, TLR signalling, NF-КB signalling, and complement activation ...
Chemical pollution is one of the main contributors to the degradation of lotic ecosystems and their biodiversity. Among chemicals driving lotic biodiversity decline are anthropogenic organic micropollutants (AOM), which affect the survival and functioning of freshwater organisms. Continuous exposure of freshwater organisms to AOM leads to adverse effects that sometimes cannot be traced with standard toxicity methods such as standard toxicity testing or biodiversity indices. Among these effects of AOM are selective or mutagenic effects that cause impaired species genetic diversity. Thus, the correlation between different levels of AOM and genetic diversity of species is still poorly understood. However, it can be explored by applying population genetics screening.
In Chapter 1 of this thesis, background information on environmental pollution, genetic screening, and the detection of evolutionary-relevant AOM effects in freshwater organisms are described and the thesis goals are identified. The main goal of the thesis is to study whether AOM exposure occurring in European rivers causes a significant evolutionary footprint in freshwater species and leads to a selection of more tolerant geno-and phenotypes. Therefore, population genetics indices together with high-resolution chemical exposure screening of a widespread indicator invertebrate species, Gammarus pulex (Linnaeus, 1758), living in polluted and pristine European rivers were investigated.
In Chapter 2, the development of a genetic screening method for G. pulex (microsatellites) is described. Due to genetic differentiation and the presence of morphologically cryptic lineages, the available sets of target loci do not enable a reliable population genetic characterization of G. pulex from central Germany. Thus, a novel set of microsatellite loci for a high-precision assessment of population genetic diversity was here applied. Eleven loci were first identified and thereafter amplified in G. pulex from three rivers. The new loci reliably amplified and indicated polymorphisms in the studied amphipods. The amplification resulted in the successful identification of genetically distinct populations of G. pulex from the analyzed rivers. Moreover, the microsatellite loci were amplified in other genetic lineages of G. pulex and another Gammarus species, G. fossarum, promising a broader applicability of the loci in related amphipod species.
In Chapter 3, the effects of AOM on species genetic differentiation and sensitivity to toxic chemicals in a typical central European river with pristine and AOM-polluted sections was investigated. The river’s site-specific concentrations of AOM were assessed by chemical analysis of G. pulex tissue and water samples. To test, whether different levels of AOM in the river select for pollution-dependent genotypes, the genetic structure of G. pulex from the river was analyzed. Finally, the toxicokinetics of and sensitivity to the commonly used insecticide imidacloprid were determined for amphipods sampled at pristine and polluted sections to assess whether various levels of AOM in the river influence sensitivity of G. pulex to imidacloprid. The results indicated that different levels of AOM did not drive genetic divergence of G. pulex within the river but led to an increased sensitivity of exposed amphipods to imidacloprid. The amphipods living in polluted river sections were more sensitive to the insecticide due to chronic exposure to toxic levels of AOM.
In Chapter 4, the relationship between site-specific pollution levels of AOM and genetic diversity parameters of G. pulex was analyzed at the regional scale within six rivers in central Germany. The genetic structure of G. pulex in the studied area was tested for relatedness to the waterway distance between sites. Gammarus pulex genetic diversity parameters, including allelic richness and inbreeding rate, were tested against environmental pollution parameters using linear mixed-effect- and structural-equation models. According to the results, G. pulex genetic diversity parameters were significantly associated with the detected AOM levels. At sites with high concentrations of AOM and toxicity potential G. pulex showed reduced genetic diversity and increased rates of inbreeding. These results suggest that AOM play a major role in shaping the genetic diversity of G. pulex in rivers.
According to the findings presented here, the applied microsatellites can be used to successfully detect changes in genetic patterns in freshwater amphipods facing increased levels of AOM. The findings indicate that levels of AOM representative for European rivers do not lead to the separation of genotypes among G. pulex as the connectivity between sites majorly contributes to species’ genetic structure. However, the chronic exposure to increased levels of toxic AOM leads to a reduction of species genetic diversity and increases the sensitivity of G. pulex to the toxic chemical effects.