Refine
Year of publication
Document Type
- Doctoral Thesis (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Krebs (Medizin) (1)
- Onkologie (1)
Institute
- Biowissenschaften (12)
Die paravertebralen Grenzstränge entwickeln sich aus Neuralleistenzellen des Rumpf- und Lendenbereichs. Diese sammeln sich im Hühnerembryo an Embryonaltag 2,5-3 an der dorsalen Aorta und formen die primären sympathischen Ganglien. Die dorsale Aorta sezerniert Morphogene, welche einen Teil der Vorläuferzellen zur Differenzierung zu Neuroblasten anregt. Die sympathischen Neuroblasten sind, obgleich sie bereits neurale und noradrenerge Marker exprimieren, zur Zellteilung fähig. Sie unterscheiden sich darin von anderen Neuralleistenderivaten wie beispielsweise den Neuronen der parasympathischen Ziliarganglien und der sensorischen Hinterwurzelganglien. Schließlich wandern die primären sympathischen Ganglien weiter und bilden lateral zum Notochord die paravertebralen Grenzstränge (Rohrer, 2011).
Der Homöodomänen-Transkriptionsfaktor PROX1 wird im Laufe der Entwicklung höherer Vertebraten in vielen Geweben exprimiert. Welche Wirkung PROX1 dabei auf Überleben, Migration, Proliferation und Differenzierung hat, hängt davon ab, in welchem Zelltyp er aktiv ist (Dyer et al., 2003; Lavado et al., 2010). Im peripheren Nervensystem konnte PROX1 embryonal in den Hinterwurzelganglien und den sympathischen Ganglien nachgewiesen werden (Becker et al., 2009; Diplomarbeit Julia Holzmann, 2010). Zielsetzung dieser Dissertation war es, die Expression und die Funktion von PROX1 in sympathischen Ganglien von Hühnerembryonen zu analysieren.
Die Expressionsanalyse von PROX1 zeigte, dass der Anteil der PROX1-positiven Neurone an Embryonaltag 5 (E5) ein Maximum erreicht und danach im Laufe der Entwicklung stetig abnimmt. Dies gilt ebenso für die Population der proliferierenden Neuroblasten, welche ebenfalls im Laufe der Hühnerentwicklung erstmals detailliert untersucht wurde. Diese Korrelation führte zu der Vermutung, dass PROX1 hauptsächlich in proliferierenden Zellen exprimiert wird, welche anschließend experimentell bestätigt werden konnte. Die Population der PROX1-positiven und die der p27-negativen Neuroblasten haben in allen untersuchten Hamburger Hamilton-Stadien (HH-St 21-37) eine vergleichbare Größe. Dennoch ist PROX1 durchgehend in einem kleinen Teil der p27-positiven Neurone enthalten. Diese Population verändert sich im Laufe der Entwicklung kaum und das Fluoreszenzsignal eines oder beider Proteine ist bei doppelpositiven Zellen deutlich schwächer. Diese und andere Daten dieser Arbeit weisen darauf hin, dass es sich um Neuroblasten handelt, welche gerade aus dem Zellzyklus austreten. In postmitotischen Neuronen geht PROX1 verloren. Obwohl PROX1 in allen untersuchten HH-Stadien stark in der Population proliferierender Neurone exprimiert wird, zeichnet sich ab E7 eine kleinere Population von Neuroblasten in S-Phase ab, welche kein PROX1 enthalten.
Die Vorläuferzellen von Ziliarganglien werden, ähnlich wie die der sympathischen Ganglien, durch BMP-Proteine zur Differenzierung angeregt (Müller und Rohrer, 2002). Aufgrund der Ähnlichkeiten in der Entwicklung beider Neuralleistenderivate wurde die Expression von PROX1 in dieser Dissertation auch in Ziliarganglien untersucht: Der Transkriptionsfaktor wird dort nur an E4 und E5 vereinzelt in Neuronen exprimiert und nahezu gar nicht in Vorläuferzellen. In späteren HH-Stadien ist PROX1 in Ziliarganglien nicht mehr nachweisbar.
Ebenfalls konnte hier gezeigt werden, dass PROX1 in primären sympathischen Ganglien an E3 (HH-St 21) in Vorläuferzellen exprimiert wird, welche bereits begonnen haben, sich zu Neuroblasten zu differenzieren. Noch bevor die Differenzierung dieser Zellen jedoch abgeschlossen ist, wird PROX1 transient herunterreguliert. Die entstehenden Neuroblasten treten in dieser Phase kurzzeitig aus dem Zellzyklus aus. Da sich die Größe der p27-negativen und der PROX1-positiven Population auch an E3 stark ähnelt, kann man schließen, dass die Zellteilung in den Neuroblasten erst bei erneuter PROX1-Expression wieder aufgenommen wird. Ab E5 ist PROX1 fast ausschließlich in Neuroblasten nachweisbar.
Eine Funktionsanalyse von PROX1 unter Kulturbedingungen und im Hühnerembryo sollte durch Knockdown und Überexpression zeigen, welchen Einfluss der Transkriptionsfaktor auf die Proliferation der Neuroblasten nimmt. Die Manipulation der PROX1-Expression hatte in vitro einen proproliferativen Effekt. In vivo unterschieden sich Knockdown und Überexpression aber nicht von der Kontrolle.
Zusammenfassend wurde in dieser Doktorarbeit die Expression von PROX1 in sympathischen Ganglien von Hühnerembryonen im Detail analysiert. Der Transkriptionsfaktor ist sowohl in Vorläuferzellen als auch in Neuroblasten nur transient vorhanden. Zwar konnte eine klare Korrelation zwischen der Expression von PROX1 und der Proliferation der sympathischen Neuroblasten festgestellt werden, allerdings konnte eine Wirkung von PROX1 auf die Proliferation durch Funktionsanalysen nur teilweise bestätigt werden. Zusammen weisen die Daten darauf hin, dass PROX1 eine Rolle in der Feinregulation der Proliferation spielt.
Stem cells are often referred to as potential candidates for the treatment of different pathologies. Their ability to differentiate into various tissue specific cell types offers the possibility to engineer cell systems or organs for replacement. One of the main questions in stem cell biology is how stemness properties are regulated and to what extend this regulation is intrinsic or conveyed by the direct microenvironment (‘niche’). In order to elucidate such regulatory processes, it is informative to analyze processes or molecules that are shared between different stem cell populations.
One such molecule that is expressed on a wide range of different embryonic and adult as well as tumor stem cells is the ABC transporter Abcg2. ABC transporters in general are transmembrane proteins that actively extrude endo- and exotoxins as well as xenobiotics, thereby protecting cells and organs. Additionally, ABC transporters are responsible for drug resistance in many cancers. A well-described characteristic of stem cells expressing Abcg2 is the formation of the ‘side population’ (SP) phenotype: An active Abcg2 transporter mediates the efflux of a particular fluorescent dye that is taken up by all cells, thus leading to a less brightly stained population. This phenomenon is widely used to characterize and isolate the most primitive stem cell subpopulation from embryonic and adult tissues, including tumors. Besides its role as toxin transporter little is known about the function of Abcg2 in stem cells. This is mainly due to the fact that its physiological substrate in stem cells remains unknown. The identification of such substrates is therefore of high interest because it would directly link the activity of ABC transporters to regulatory mechanisms in stem cell biology.
In the present study we wanted to test the hypothesis that the sphingolipid ceramide is a physiological substrate of the ABC transporter Abcg2. Sphingolipids are potent second messengers and are known to have regulatory functions in stem cells. In particular, the sphingolipid ceramide is described as a mediator of controlled cell death and inducer of differentiation. It is suggested that stem cells need to keep their intracellular ceramide content at low levels in order to prevent apoptosis or differentiation. We propose that Abcg2 and ceramide interact and that this interaction leads to changes in the absolute or relative amounts of ceramide. This in turn influences basic stem cell functions such as self renewal and differentiation.
We show that Abcg2 prevents cells from accumulating fluorescence labeled ceramide. Furthermore, exogenously applied ceramides inhibit the transport activity of Abcg2, measured by a decrease of the side population phenotype. This inhibitory effect is consistent with a competitive inhibition mechanism. Additionally, we show that active Abcg2 can increase the ceramide concentration in cell culture supernatant. Finally we demonstrate that Abcg2 protects from ceramide induced cytotoxicity in human cell lines. In summary, these in vitro results strongly suggest that Abcg2 has the ability to regulate ceramide levels.
Murine hematopoietic stem cells (HSCs) are the best characterized adult stem cell system so far. By using 7-colour fluorescence-activated cell sorting (FACS) we established the purification of the most primitive HSCs, reflected by their high engraftment capability when transplanted to lethally irradiated mice. By using this sorted cell populations it was in addition possible to establish a system to reproducibly manipulate HSCs ex vivo. This experimental system will serve in further elucidating the physiological consequences of Abcg2 mediated changes in ceramide levels on stem cells in vivo.
Taken together, this study shows that Abcg2 has the ability to regulate ceramide levels in cells. This in turn can lead to cellular protection from ceramide induced apoptosis. Additionally, the experimental techniques to further analyze the role of Abcg2 and ceramide in the most primitive hematopoietic stem cells were successfully established, enabling more detailed analysis in the future.
Die verschiedenen Typen von Nervenzellen sind durch die differentielle Expression terminaler Differenzierungsgene charakterisiert. Dies sind z.B. Gene, deren Produkte die Synthese und den Transport der verwendeten Neurotransmitter gewährleisten. Die Expression dieser Gene wird während der Entwicklung durch spezifisch exprimierte Transkriptionsfaktoren reguliert. In der Entwicklung sympathischer Nervenzellen sind Mitglieder aus der Familie der basic Helix-Loop-Helix-(bHLH)-Transkriptionsfaktoren und der paired-Homöodomänen-Faktoren identifiziert worden, deren Expression in Vorläuferzellen aus der Neuralleiste durch das Signalmolekül BMP4 induziert wird und die an der Regulation des sympathischen Phänotyps beteiligt sind. Nullmutanten des bHLH-Faktors Mash1 und des Homöodomänen-Faktors Phox2b zeigen eine stark gestörte Entwicklung der sympathischer Nervenzellen. Weitere bHLH-Faktoren, dHand und eHand, vermögen in vitro die Expression noradrenerger Differenzierungsgene in Neuralleistenzell-kulturen zu induzieren. Ob diese Faktoren in vivo eine Rolle in der entwicklungsabhängigen sympathischen Differenzierung spielen, kann im Mausmodell nicht untersucht werden, da die Nullmutanten noch vor der Sympathogenese sterben. Das Huhnembryo bietet das ideale Modellsystem, die Rolle von Transkriptionsfaktoren in vivo zu untersuchen und durch Kopplung embryologisch-experimenteller und molekularer Verfahren die Faktoren gezielt in bestimmten Geweben zu exprimieren. In dieser Arbeit werden Experimente dargestellt, welche die Rolle dieser Transkriptionsfaktoren genauer definieren. Durch die viral induzierte Expression von Phox2a und Phox2b im Huhnembryo wird gezeigt, dass die Expression dieser Faktoren ausreicht, in multipotenten Vorläuferzellen des Brachialnervs und des Hinterwurzelganglions die Differenzierung sympathischer Nervenzellen zu induzieren. Dieser Phänotyp umfasst neben der Expression typisch noradrenerger und panneuronaler Gene ebenfalls die Expression der Transkriptionsfaktoren Phox2a und -b, dHand und Cash1. Es wird gezeigt, dass dHand im Laufe der sympathischen Entwicklung noch vor den noradrenergen und panneuronalen Differenzierungsgenen exprimiert wird. Auch dHand ist in der Lage, nach viraler Misexpression in multipotenten Vorläuferzellen des Embryos Differenzierung zu sympathischen Nervenzellen auszulösen. Weiter wird gezeigt, dass die Überexpression von BMP4 im Huhnembryo dazu führt, dass undifferenzierte Vorläuferzellen im Brachialnerv zu sympathischen Nervenzellen differenzieren. Mash1 vermag nach Überexpression die Expression neuronaler Gene im Brachialnerv und umliegenden Mesoderm zu induzieren. Die Bildung sympathischer Nervenzellen im Bereich des Brachialnervs wird ebenfalls induziert. Diese exprimieren wiederum neben den noradrenergen und panneuronalen Genen auch die Transkriptionsfaktoren Phox2a/b und dHand. Die Ergebnisse zeigen überzeugend das Vermögen der Transkriptionsfaktoren Phox2a/b, dHand und Mash1 den komplexen sympathischen Phänotyp in multipotenten Vorläuferzellen aus der Neuralleiste zu induzieren. Besonders wichtig sind hierbei die Ergebnisse nach dHand-Überexpression. Hiermit wird erstmals gezeigt, dass dieser bHLH-Transkriptionsfaktor in vivo eine hervorragende Rolle innerhalb der Regulation noradrenerger und neuronaler Gene einnimmt. Die Ergebnisse der verschiedenen Untersuchungen zeigen darüber hinaus, dass während der Normalentwicklung in Vorläuferzellen des peripheren Nervensystems die Expression einer Gruppe von Transkriptionsfaktoren induziert wird. Deren Mitglieder werden in einer festgelegten zeitlichen und epistatischen Reihung exprimiert. Jeder Einzelne dieser Transkiptionsfaktoren ist ausreichend, in Vorläuferzellen die Entstehung sympathischer Nervenzellen auszulösen. Dabei wird die Expression der anderen Mitglieder dieser Gruppe induziert. Es handelt sich also nicht um eine lineare Kaskade von Transkriptionsfaktoren, sondern um ein Netzwerk von Faktoren, die ihre Expression gegenseitig regulieren und vermutlich gemeinsam die Expression terminaler Differenzierungsgene steuern.
Die noradrenergen Neurone der sympathischen Ganglien und die cholinergen Neurone der parasympathischen Ziliarganglien gehen aus den NLZ hervor. BMP-Signale induzieren die Differenzierung beider Neuronentypen, die mit der Expression von Ascl1 und Phox2a/b beginnt. Im Fall der sympathischen Ganglien werden dann Hand2 und GATA2/3 exprimiert, was wiederum zur Expression der noradrenergen Marker TH und DBH führt, die auch in differenzierten Neuronen weiterhin vorhanden sind. Im Gegensatz dazu werden während der Entwicklung der parasympathischen Ziliarneurone sowohl Hand2 als auch TH/DBH nur transient exprimiert, die differenzierten Neurone besitzen zum Großteil einen cholinergen Phänotyp (Goridis und Rohrer, 2002; Müller und Rohrer, 2002).
Thema dieser Arbeit war die Untersuchung der Rolle der Hox-Gene bei der Differenzierung des PNS. 14 der analysierten Hox-Gene werden in den sympathischen Ganglien exprimiert, wobei wir uns bei der näheren Analyse auf das HoxB-Cluster beschränkt haben. HoxB5, HoxB6, HoxB7, HoxB8 und HoxB9 werden zwischen E4 und E7 in den sympathischen und sensorischen Ganglien exprimiert, wobei nur HoxB8 und HoxB9 eine deutliche Expression in den sympathischen Ganglien zeigen. Die HoxB-Gene könnten dem Expressionsmuster nach also eine Rolle bei der frühen Entwicklung und auch bei der Aufrechterhaltung des noradrenergen Phänotyps der sympathischen Ganglien spielen.
Die differenzielle Expression der HoxB-Gene in den sympathischen Neuronen und den Ziliarneuronen und ihre mögliche Beteiligung bei der Aufrechterhaltung des noradrenergen Charakters waren Ausgangspunkt für die ektopische Expression eines Vertreters des HoxB-Clusters, HoxB8, in den Ziliarganglien. In der Normalentwicklung wird die Expression von Hand2, TH und DBH nach E4 in den Ziliarneuronen stark reduziert (Abb. 22A). Wird HoxB8 in den Vorläuferzellen der Ziliarneurone in vivo überexprimiert, wird die Hand2-, TH- und DBH-Expression weit über E4 hinaus, bis mindestens E8 auf einem signifikant höheren Niveau gehalten (Abb. 22B). HoxB8 kann diesen Effekt allerdings nur ausüben, wenn es in den noch undifferenzierten Vorläuferzellen exprimiert wird. Die HoxB8-Überexpression in Primärkulturen von Ziliarneuronen an E5 oder E8 führt nur noch zu einem Anstieg der Hand2-Expression, hat aber keinen Einfluss mehr auf die noradrenerge Genexpression (Abb. 22B).
HoxB8 zeigt zusätzlich im Vergleich mit den anderen analysierten Hox-Genen einen spezifischen Effekt auf die Hand2-, TH- und DBH-Expression, denn sowohl das paraloge Hox-Gen HoxC8 als auch das anterior-exprimierte HoxB-Gen HoxB1 erreichen nur an E5 eine signifikante Expression der drei Gene. Weder HoxC8 noch HoxB1 können die Expression von Hand2 und TH/DBH über E5 hinaus aufrechterhalten (Abb. 22C), während HoxB8 deren Expression auch noch an E8 auf einem hohen Niveau halten kann.
Die HoxB8-vermittelte Aufrechterhaltung der TH- und DBH-Expression in den Ziliarneuronen konnte allerdings nicht in einen direkten Zusammenhang mit der erhöhten Hand2-Expression gebracht werden, da die Überexpression von Hand2 nicht zu einer Aufrechterhaltung von TH und DBH an E5 und E6 führt (Abb. 22C).
Die Effekte von HoxB8 auf die Entwicklung der Ziliarneurone, die durch HoxB8 z.T. noradrenerge, sympathische Eigenschaften annehmen, unterstützen die Vorstellung, dass HoxB8 bei der Differenzierung und Ausbildung des noradrenergen Phänotyps in sympathischen Ganglien eine Rolle spielt. Es konnte also erstmals einem Vertreter der Hox-Gen-Familie eine mögliche Funktion bei der Differenzierung autonomer Neurone zugeordnet werden.
The neural crest gives rise to the neurons and glial cells of the peripheral nervous system (PNS) (Bronner-Fraser and Fraser, 1989; Frank and Sanes, 1991). Self-renewing neural crest-derived stem cells (NCSCs) are present in migratory neural crest and various postmigratory locations, including peripheral ganglia (Duff et al., 1992; Morrison et al., 1999; Kruger er al., 2002). It is demonstrated that NCSCs from embryonic mouse dorsal root ganglia (DRG) are reprogrammed in neurosphere (NS) cultures in the presence of EGF and FGF. Reprogrammed NCSCs (rNCSCs) generate exclusively central nervous system (CNS) progeny, both in vitro and upon transplantation into the mouse brain (Binder et al., 2011). In this study the timing and mechanisms underlying the reprogramming were addressed. Most of the cells acquire CNS characteristics at passage 2, reaching a stable proportion of >90% of Olig2-positive cells at passage 3, which is maintained at least up to passage 10. The PNS marker p75 is completely lacking from passage 3 onwards. Furthermore, it was shown that the reprogramming does not involve a transient pluripotency state. This suggests a direct reprogramming of NCSCs to cells with CNS identity. The reprogramming leads to a stable CNS identity as shown by delayed BMP4 application. This result is in agreement with the previous observation that rNCSCs only generate CNS progeny, in particular mature myelinating oligodendrocytes, upon transplantation into embryonic, postnatal and lesioned adult mouse brains (Binder et al., 2011). Genome wide gene expression profiles of rNCSC NS demonstrates already in culture a complete switch to a (spinal cord stem cell) SCSC CNS identity. These results demonstrate a complete reprogramming of PNS progenitors to CNS identity without genetic modification and imply PNS cells as a source for stem cell-based CNS therapy.
The reprogramming of NCSCs is completely blocked in the presence of BMP4 in NS cultures, as shown by the expression of neural crest markers p75 and Sox10. In addition, BMP4 NCSCs generate PNS neurons (Tuj1/Phox2b- and Peripherin/Tuj1-coexpressing cells) and Schwann cells (O4/p75-coexpressing cells). Genome wide gene expression profiles of BMP NCSCs demonstrate that BMP NCSCs express genes at high levels which are characteristic for neural crest/neural crest derivatives, mesenchymal derivatives of neural crest and perivascular pericytes/MSCs. On the other hand CNS marker genes are restricted to rNCSCs and are only expressed at background or undetectable levels in BMP NCSCs. These findings imply that the CNS versus PNS identity is controlled by antagonistic functions of FGF and BMP4.
The use of rNCSCs for cell therapies requires an accessible source of these cells in the adult organism. Since the DRG is not an easily approachable tissue source, the adult mouse palate, containing NCSCs, was chosen. These results suggest that pNCSCs arise from Sox10-positive neural crest-derived stem cells, that downregulate PNS marker gene expression, such as Sox10 and p75, in NS culture. Contrary to rNCSCs, CNS marker upregulation was not observed. Notably, genome wide gene expression profiles of pNCSCs demonstrate an enrichment of genes expressed by mesenchymal derivatives and perivascular pericytes/mesenchymal stem cells. Since the cranial crest gives rise, besides PNS neural progeny and melanocytes, to mesenchymal derivatives, the results demonstrate that pNCSCs have a restricted developmental potential in comparison to rNCSCs and acquire mostly normal fates of the cranial neural crest.
Taken together, the results demonstrate that rNCSCs acquire a SCSC identity in the presence of EGF and FGF and that the reprogramming can be efficiently blocked by BMP4. On the other hand, NCSCs derived from adult palate rather acquire mesenchymal fates and do not acquire a CNS identity under the conditions used.
Glioblastoma is the most common and most aggressive type of brain tumor in adults. In contrast to epithelial cancers, glioblastomas do not metastasize. While the major treatment challenge in epithelial cancers is not the primary tumor but metastasis, glioblastoma patients die of the primary tumor.
However, there is a common theme which underlies the malignant properties of progressed epithelial cancers and glioblastoma: invasion from the primary tumor into the surrounding tissue. In the case of epithelial cancers this is the first and necessary step to metastasis, whereas invasion leads inevitably to tumor recurrence after resection in the case of glioblastoma, causing it to be incurable.
A cellular program which has been described in detail to promote the invasive phenotype in epithelial tumors, is the epithelial-mesenchymal-transition (EMT). Differentiated neural cells are not epithelial, thus, strictly speaking, EMT does not occur in glioblastoma. However, the traits acquired in the process of EMT, especially invasiveness and stemness, are highly relevant to glioblastoma. One of the key transcription factors known to induce EMT in epithelial cancers is ZEB1, which has been described only marginally in the central nervous system so far. Here, I investigate the expression and function of ZEB1 in glioblastoma and during human fetal neural development.
ZEB1 mRNA was significantly upregulated in all histological types of glioma, including glioblastoma, when compared to normal brain. There was no correlation between ZEB1 mRNA levels and tumor grade. Immunohistochemical staining of glioma samples demonstrated that ZEB1 was highly expressed in the great majority of tumor cells. In the developing human brain, intense staining for ZEB1 could be observed in the ventricular and subventricular zone, where stem- and progenitor cells reside. ZEB1 positive cells included cells stained with stem- and progenitor markers like PAX6, GFAP and Nestin. In contrast, ZEB1 was never found in early neuronal cells as identified by TUBB3 staining.
To gain insight into ZEB1 function I generated a human fetal neural stem cell line and a glioblastoma cell line with ZEB1 knockdown, which were compared with their respective control cell lines. First, I found that ZEB1 does not regulate the micro RNA 200 family in either cell line, which has been described as an essential ZEB1 target in epithelial cancers. Second, regulated target genes were identified with a genome wide microarray. The third approach was to directly identify genomic binding sites of ZEB1 by chromatin immunoprecipitation sequencing (ChIP-seq). All three approaches showed that the ZEB1 transcriptional program is surprisingly similar in the neural stem cell line and the glioblastoma cell line. In contrast, it bears only little resemblance to the program described in epithelial cancers.
The most interesting, previously unrecognized ZEB1 target gene identified in this study is integrin b1. It was regulated after ZEB1 knockdown detected by microarray analysis, and has a ZEB1 binding site in its promoter region detected by ChIP-seq. Finally, I addressed the question whether ZEB1 influences tumor growth and invasiveness in a glioblastoma model. After intracranial xenotransplantation in mice, ZEB1 knockdown glioblastoma cells formed significantly smaller and less invasive tumors than control glioblastoma cells.
This study demonstrates that ZEB1 is widely expressed in glioma and relevant for glioblastoma growth and invasion. In contrast to what is known about ZEB1 function in epithelial cancers, ZEB1 is not associated with glioma progression, but instead seems to be an early and necessary event in tumorigenesis. Also with regard to ZEB1 target genes, ZEB1 functions differently in glioblastoma than in epithelial cancers. The two most important ZEB1 targets in epithelial cancers are E-cadherin and the miR-200 family members. Both are not relevant to ZEB1 function in glioblastoma. Interestingly, while the ZEB1 transcriptional program is different from the one described in epithelial cancers, it is highly similar in glioblastoma cells and fetal neural stem cells. This suggests that an embryonic pathway restricted to stem- and progenitor cells during development is reactivated in glioblastoma.
Previously known ZEB1 target genes were tissue specific and therefore seemed unlikely to mediate ZEB1 function in the central nervous system. However, the newly identified ZEB1 target gene integrin b1 is well known to play pivotal roles in both glioblastoma tumorigenesis and invasion as well as in neural stem cells. Additionally, integrin b1 is widely expressed and seems a likely ZEB1 target in other organs than the brain.
Taken together, I demonstrate that ZEB1 is a new regulator of glioblastoma growth and invasion. The transcriptional program of ZEB1 differs from the one in epithelial cancers but is strikingly similar to the one in neural stem cells. The newly identified ZEB1 target gene integrin b1 is likely to mediate crucial ZEB1 functios. Thus, this study identifies ZEB1 as a yet unrecognized player in glioblastoma and neural development. Furthermore, it sets the stage for more research which will help to deepen our understanding of ZEB1 function in the central nervous system and beyond.
BMPs control postnatal dendrite growth and complexity in sympathetic neurons / von Afsaneh Majdazari
(2012)
The vertebrate nervous system is a complex network of billions of neurons connected by dendrites and axons, integrated to functional circuits and areas/organs in the central and peripheral nervous system. The cells of the nervous system origin from common progenitors, which take on different cell fates based on intrinsic and extrinsic factors. These factors determine general neuronal traits, but also the morphology and the type of connections made to other cells. Mechanisms underlying axonal and dendritic growth are well described in contrast to the initiation of neurite growth, which remains to be fully elucidated, especially concerning dendrite formation. Recently BMPs have been identified as candidate dendrite inducing factors in sympathetic, cortical and hippocampal neurons. Here we focus on the in vivo role of BMPs on dendrite growth in sympathetic neurons as their development and differentiation processes have been analyzed in detail.
Im Mittelpunkt der vorliegenden Arbeit stand die Untersuchung von Faktoren, die eine physiologische Funktion bei der VIP-Induktion cholinerger sympathischer Neuronen des Huhns besitzen. Die essentielle Bedeutung von neuropoietischen Zytokinen bei diesem Differenzierungsprozess wurde bereits durch Geissen et al. (1998) gezeigt. Eine weitere Eingrenzung der in vivo beteiligten Mitglieder dieser Zytokinfamilie sollte nun durch Klärung des beteiligten Rezeptorkomplexes vorgenommen werden. Hierzu wurde zunächst die Klonierung des 5'-Bereiches der Huhn-LIFRb-cDNA unter Verwendung der 5'-RACE-Technik abgeschlossen. Anschließend wurde ein antisense Ansatz etabliert, der es ermöglicht, in vivo die Signaltransduktion über die Rezeptoruntereinheit LIFRb zu blockieren. Unter Verwendung eines retroviralen Expressionsvektors RCAS(B) wurde LIFRb antisense RNA im sich entwickelnden Hühnerembryo exprimiert. Dies bewirkte eine spezifische Reduzierung der endogenen LIFRb-Expression in den infizierten Geweben, die über In situ-Hybridisierung und Immunfärbungen nachweisbar war. Die Reduktion der LIFRb hatte keinen Einfluß auf die allgemeine Entwicklung des sympathischen Ganglions. Sie führte jedoch zu einer selektiven Reduktion der VIP-Expression, wohingegen die frühe cholinerge (ChAT), noradrenerge (TH) und panneuronale (SCG10) Genexpression unbeeinflußt bleibt. Damit ist eindeutig gezeigt, daß neuropoietische Zytokine, die über LIFRb wirken, essentiell sind für bestimmte Aspekte der terminalen Differenzierung (VIP-Expression) cholinerger sympathischer Neuronen. In Anlehnung an die vorangegangene Studie sollten unbekannte Zytokine, die an den Komplex aus LIFRb- und gp130-Rezeptoruntereinheiten binden, über eine Expressionsklonierung identifiziert werden. Hierzu konnten funktionelle LIFRb-Fc/gp130-Fc Rezeptorfusionsproteine hergestellt werden, die in der Lage sind, VIP-induzierende Faktoren in HCM, RCM und AMG zu blockieren. Über Kontrollexperimente wurde ein Expressionsklonierungsprotokoll erarbeitet, das geeignet ist auf Einzelzellebene Zytokin-exprimierende Zellen zu detektieren und aus diesen die Plasmid-Information zu ermitteln. Somit wird das Verfahren als prinzipiell durchführbar erachtet. In der bisher durchgeführten Suchrunde in einer HCM-Bank gelang es jedoch nicht, neuropoietische Zytokine zu identifizieren.
Das Neuroblastom ist ein Tumor, der sich von sympathoadrenergen Vorläuferzellen ableitet und die häufigste solide Krebsform im Kindesalter darstellt. Das breite klinische Spektrum dieses Tumors, das von spontaner Regression zu fataler Progression reicht, spiegelt die außerordentliche biologische und genetische Heterogenität dieses Tumors wider. Polyploidie und Genexpressionsanalysen werden auf klinischer Seite zur Risiko- und Therapieeinschätzung eingesetzt. Genomweite Screeninganalysen identifizierten den Transkriptionsfaktor Phox2b als erstes Prädispositionsgen für NB. Frühere Arbeiten haben gezeigt, dass Phox2b absolut essentiell für die Entstehung aller Ganglien des autonomen NS aus Neuralleistenzellen ist. Ziel der Untersuchungen dieser Arbeit war es, die Auswirkungen der NB-assoziierten Phox2b-Mutationen auf Proliferations- und Differenzierungsverhalten sympathoadrenerger Vorläuferzellen zu untersuchen. Hierzu wurden paravertebrale, sympathische Grenzstränge aus Huhnembryonen des Embryonaltags 7 präpariert, dissoziiert und mit Expressionsplasmiden für Phox2bwt und NB-Phox2b-Mutationen transfiziert. Nach zwei Tagen in Kultur wurden mit molekularbiologische Methoden Veränderungen des Proliferations-und Differenzierungsverhalten untersucht. Die Analyse des Proliferationsverhaltens transfizierter Neurone mit BrdU-Proliferationsassays und Phospho-Histon-3-Antikörpern offenbarte einen stark antiproliferativen Effekt des Phox2bwt-Proteins, den die untersuchten NB-Phox2b-Mutationen nicht aufwiesen. NB-Phox2b-Patienten sind heterozygot, d.h. Träger eines gesunden und eines mutierten Phox2b-Allels. Um die genetische Situation im NB-Patienten nachzuahmen, wurde mit spezifischen siRNAs das endogene Phox2b-Protein-Niveau herunter reguliert. NB-Phox2b-Mutationen mit mis- oder nonsense Mutation in der Homöodomäne zeigten unter Phox2b-Knockdown-Bedingungen einen proliferationsstimulierenden Effekt. Diese Experimente warfen die Frage auf, über welche Mechanismen Phox2b und NB-Phox2b-Mutationen Einfluss auf die Zellzykluskontrolle nehmen. Die quantitative Analyse der Expression bekannter Zellzyklusregulatoren wie Zyklin D1, D2 und D3 und der Zyklin-abhängigen Kinase-Inhibitoren p18, p21 und p57kip2 verlief ergebnislos. Die Überexpression des Zyklin-abhängigen Kinase-Inhibitors p27kip1 wirkte antiproliferativ auf Kulturen sympathoadrenerger Vorläuferzellen und das p27kip1-Epxressionsniveau korrelierte mit dem Phox2b-Proteinniveau. P27kip1 scheidet jedoch als alleiniger Vermittler des antiproliferativen Effekts von Phox2b aus, da die ebenfalls antiproliferativ wirkende Phox2-Homöodomäne keinen Einfluss auf das p27kip1-Expressionsniveau besitzt. Vielmehr wurde der bHLH-Transkriptionsfaktor Hand2 als Mediator der Proliferationseffekte von Phox2b identifiziert. Die Proliferation sympathoadrenerger Vorläuferzellen ist abhängig von der Hand2-Proteinmenge, und Hand2-Überexpression ist ausreichend, den antiproliferativen Effekt von Phox2b aufzuheben. Damit im Einklang geht der proliferationsstimulierende Effekt der Phox2bHDmut bei siRNA-vermitteltem Hand2-Knockdown verloren. Weiterhin führt Phox2b-Überexpression zu verringertem Hand2-Expressionsniveau und Phox2b-Knockdown zu vermehrter Hand2-Transkription. In Protein-Protein-Interaktionsexperimenten konnte eine direkte Bindung von Hand2 an Phox2bwt und die untersuchten NB-Phox2b-Mutanten nachgewiesen werden. Diese Ergebnisse zeigen, dass Hand2 in der Vermittlung der Phox2b-Proliferationseffekte auf transkriptioneller und posttranskriptioneller Ebene involviert ist. Der Wirkungsmechanismus dieser Phox2b-Varianten / Hand2-Komplexe konnte nicht endgültig geklärt werden und wird in Form verschiedener Modelle diskutiert. In NB-Patienten korreliert ein hohes Expressionsniveau von Differenzierungsmarkern mit mildem Krankheitsverlauf. Die Rolle von Phox2b als Schlüsselgen in der Entstehung und Differenzierung autonomer Neurone und die genetische Heterogenität des NB legen eine Funktion von NB-Phox2b-Mutationen auf den Differenzierungsstatus sympathoadrenerger Vorläuferzellen nahe. In quantitativen Analysen wurde die Expression von Phox2b-Zielgenen und in NB-Diagnostik involvierten Genen untersucht. Phox2bK155X, eine C-terminal trunkierte NB-Phox2b-Mutation, wirkte dominant-negativ auf die Expression der noradrenergen Markergene Th und Dbh, Tlx3 und die Neurotrophinrezeptoren trkA und p75, deren reduzierte Expression mit schlechter Prognose und damit aggressiven NB-Formen korreliert ist. Zusammenfassend konnte in dieser Arbeit gezeigt werden, das NB-Phox2b-Mutationen in sympathoadrenergen Vorläuferzellen, den potentiellen Tumorentstehungszellen des NB, proliferationsstimulierend wirken und zumindest die C-terminal trunkierte Phox2bK155X-Mutation zur Dedifferenzierung dieser Zellen führt. Hereditäre Mutationen in Phox2b könnten im Patienten nicht nur die terminale Differenzierung sympathischer Neurone stören, sondern auch durch eine verlängerte Phase der Neurogenese die Empfänglichkeit für weitere Tumor-initiierende Mutation erhöhen.
NP25 wurde im Jahre 1994 als ein in allen Bereichen des zentralen Nervensystems Neuron-spezifisch exprimiertes Gen in der adulten Ratte identifiziert (Ren et al., 1994). Durch eigene Vorarbeiten konnte diese selektive neuronale Expression im Huhnembryo bestätigt werden, wobei die Expression von NP25 im Neuralrohr, den sympathischen paravertebralen Ganglien und sensorischen Hinterwurzelganglien vor der terminalen Differenzierung und Scg10-Expresison beginnt (M.Pape, Diplomarbeit, 2003). In dieser Arbeit konnte nun gezeigt werden, dass NP25 in diesen Geweben nach den proneuralen Faktoren Ascl1 und Ngn2 exprimiert wird, zu einem Zeitpunkt an dem die Vorläuferzellen mit der Differenzierung beginnen. Im Neuralrohr beginnt die Expression von NP25 zeitgleich mit der Expression von NeuroM, einem der frühesten Marker für junge, postmitotische differenzierende Neurone (Roztocil et al., 1997). NP25 stellt somit einen der frühesten panneuronalen Marker für differenzierende Neurone dar. Das NP25-Protein ist in den Zellkörpern und Fortsätzen der Neurone im Neuralrohr und den untersuchten peripheren Ganglien lokalisiert, wobei die Fasern der Motoneurone, im Gegensatz zu deren Zellkörpern, NP25-negativ sind. Mit voranschreitender Differenzierung nimmt die NP25- Proteinkonzentration ähnlich wie die Expression auf mRNA-Ebene ab, wobei in den peripheren Ganglien NP25 über einen längeren Zeitraum hinweg auf hohem Niveau exprimiert wird. Kultivierte Neurone aus sensorischen Hinterwurzelganglien und sympathische Neurone der paravertebralen Ganglien zeigen eine Lokalisation des NP25-Proteins im Zytoplasma der Zellkörper und Fortsätze, wobei NP25 in den sympathischen Neuronen wesentlich stärker exprimiert wird. Dieser Befund konnte durch die Analyse der Proteinkonzentration mit Hilfe der Western Blot Methode bestätigt werden. Die Überexpression von NP25 in verschiedenen Zelltypen führte zu verstärktem oder reduzierten Neuritenauswachsen, wobei die Effekte mit dem NP25-Niveau korrelieren. Zellen mit einem geringen endogenen NP25-Expressionsniveau, wie sensorische Neurone aus fünf Tage alten Huhnembryonen und PC12-Zellen, reagieren auf die Erhöhung des NP25-Gehalts mit verstärktem Längenwachstum der Neuriten, während sympathische Neurone aus sieben Tage alten Huhnembryonen, die ein hohes endogenes Expressionsniveau aufweisen, reduziertes Längenwachstum und reduzierte Verzweigungskapazität zeigen. Diese Ergebnisse sprechen dafür, dass maximales Neuritenwachstum eine optimale NP25-Konzentration erfordert, wobei im Falle der Überexpression von NP25 in den sympathischen Neuronen das Optimum überschritten wird und dadurch Neuritenauswachsen und Verzweigung inhibiert werden. Die Effekte auf das Längenwachstum der Neuriten in den primären Neuronen konnten durch RNAi Experimente bestätigt werden. Neben dem Längenwachstum war auch das initiale Auswachsen von Fortsätzen durch die Veränderung des NP25-Expressionsniveaus betroffen. Im Falle der PC12-Zellen induzierte die NP25-Überexpression nicht nur Längenwachstum der Neuriten, sondern auch die Zahl der Fortsätze pro Zelle wurde erhöht. In den sympathischen Neuronen, in denen durch NP25- Überexpression das Längenwachstum und die Verzweigungskapazität negativ reguliert werden, nimmt die Anzahl der Neuriten pro Zellen nach Erniedrigung des NP25-Expressionsniveaus ebenfalls ab. Dies kann dadurch erklärt werden, dass Längenwachstum und initiales Auswachsen von Neuriten durch unterschiedliche Mechanismen reguliert werden (Glebova and Ginty, 2005; Luo, 2002), was hier möglicherweise dazu führt, dass Längenwachstum negativ und initiales Auswachsen positiv durch NP25 beeinflusst wird. In den sensorischen Neurone führte weder die Erhöhung noch die Erniedrigung des NP25-Expressionsniveaus zu einer Veränderung des initialen Auswachsens, was eine differentielle Regulation der Prozesse bestätigt. Da viele Mitglieder der CaP-Proteinfamilie mit F-Aktin interagieren (Gimona et al., 2002) wurde untersucht, ob NP25 und F-Aktin in kultivierten sympathischen und sensorischen Neuronen und in PC12-Zellen kolokalisieren. In den primären Neuronen wurde im Gegensatz zu der Situation in den PC12-Zellen keine Kolokalisation beobachtet, wobei NP25 und F-Aktin in den PC12-Zellen nur in kleinen Bereichen an den distalen Enden filopodienartiger Fortsätze kolokalisieren. Auch eine Interaktion von NP25 und G-Aktin konnte in den PC-Zellen ausgeschlossen werden. Durch die Identifikation zweier RhoGAP-Proteine (NIRGAP1 und 2) als potentielle Interaktionpartner (M.Geissen, nicht publiziert) könnte NP25 Neuritenauswachsen durch indirekte Beeinflussung des Aktinzytoskeletts über Rho-Signalwege regulieren. Die identifizierten RhoGAPs konnten durch in situ Hybridisierung im Rückenmark, in den Hinterwurzelganglien und den sympathischen paravertebralen Ganglien im Rattenembryo nachgewiesen werden. Sie gehören zu keiner bekannten Familie und unterscheiden sich auch strukturell von den meisten bisher beschriebenen RhoGAPs, da sie mehr als eine (drei) GAP-Domänen enthalten. Durch diesen Befund ergeben sich neue Ansätze für die weiteren Untersuchungen zur Regulation des Neuritenwachstums durch NP25. Da im adulten Nervensystem für NP25 eine Funktion in der Dynamik der Dendriten angenommen wird, sind Untersuchungen der Dendritenausbildung in vitro ebenfalls nahe liegend.