Refine
Year of publication
Document Type
- Doctoral Thesis (26)
- Diploma Thesis (2)
- diplomthesis (1)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- Heliumatom (3)
- Dimere (2)
- Helium (2)
- Photoabsorption (2)
- Photoionisation (2)
- Rückstoßimpulsspektroskopie (2)
- Absorptionsspektroskopie (1)
- Atom (1)
- Atomic Physics (1)
- Atomphysik (1)
Institute
- Physik (29)
In dieser Arbeit wird die Elektronenemission aus langsamen He 2 HeStößen, d.h. bei Stoßenergien unterhalb von 25 keV/u, experimentell untersucht. Dabei wird auf den Vergleich der Einfachionisation (He 2 He ! He 2 He e \Gamma ) mit der Transferionisation (He 2 He ! He He 2 e \Gamma ) besonderes Gewicht gelegt. Die hier verwendete Meßtechnik ist von verschiedenen Arbeitsgruppen in den letzten Jahren entwickelt worden und unter dem Schlagwort COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) [1, 2, 3] in der Literatur zu finden. Bei COLTRIMS werden die bei einer Reaktion in einem kalten Gastarget gebildeten Ionen in einem schwachen elektrischen Feld abgesaugt. Durch den ortsaufgelösten Nachweis und die Messung der Flugzeit von der Targetzone bis zum Detektor kann die Anfangsbedingung der Bewegung im Feld, d.h. der Vektor des auf das Targetatom übertragenen Impulses, berechnet werden. Diese Methode kommt ohne Blenden aus, so daß im relevanten Teil des Phasenraumes 4ß Raumwinkel erreicht werden. Der Nachweis des Elektrons erfolgt nach demselben Prinzip, jedoch stößt man dabei an die Grenzen der Flugzeitauflösung. Deshalb wurden in allen früheren Experimenten zu ähnlichen Reaktionen [4, 5, 6, 7, 8, 9] nur zwei der drei Impulskomponenten des Elektrons bestimmt. Die Konzipierung eines Spektrometers, welches in der Lage ist, den relevanten Phasenraum lückenlos zu erfassen und dabei alle drei Impulskomponenten der Elektronen zu bestimmen, war der wesentliche Teil der apparativen Entwicklung. Das durchgeführte Experiment ist nicht nur kinematisch vollständig, sondern erlaubt durch Anwendung des Energieerhaltungssatzes auch die Bestimmung der Schale, in der das Elektron im Endzustand gebunden ist. Die beiden oben genannten Reaktionen können somit getrennt nach Ereignissen mit und ohne Anregung untersucht werden, d.h., es wurden gleichzeitig vier verschiedene Ionisationskanäle vermessen. Für den Ionisationsmechanismus bei Stößen mit einer Projektilgeschwindigkeit unterhalb der klassischen Bahngeschwindigkeit der Elektronen hat sich in den letzten Jahren der Begriff ''Sattelpunkt''Prozeß durchgesetzt [10]. Quantenmechanische Beschreibungen für Einelektronensysteme, wie das Stoßsystem p H, wurden u.a. mit der semiklassischen GekoppelteKanäleMethode [11] in einem speziellen Basissatz [12, 13] und der ''HiddenCrossings''Theorie [14, 15] gegeben. Beide Modelle beschreiben das System aus Projektil und Target als Quasimolekül. Si sind lediglich in der Lage, die groben Strukturen in den Spektren zu erklären. Das gewählte Stoßsystem He 2 He, welches zwei Elektronen besitzt, erlaubt die Untersuchung von Korrelationseffekten. Die Messungen haben ergeben, daß die Impulsverteilung des emittierten Elektrons stark davon abhängt, wo und in welchem Bindungszustand das zweite Elektron nachgewiesen wird. Die gleiche Kernladung von Projektil und Target bedingt, da alle Eigenzustände des gebildeten Quasimoleküls die Symmetrie des Hamiltonoperators gegenüber Raumspiegelung besitzen, und durch diese Spiegeloperation gehen die Endzustände der Transferionisation und der Einfachionisation ineinander über. Durch die gleichzeitige Messung der differentiellen Wirkungsquerschnitte der verschiedenen Reaktionskanäle und deren Vergleich erhält man Einblick in die zugrundeliegenden Prozesse.
Ziel dieser Arbeit war die Entwicklung eines Mess-Systems zur energie- und winkelaufgelösten Spektroskopie von koinzidenten Elektronenpaaren, die in Reaktionen an einer Oberfläche emittiert wurden. Das Hauptinteresse galt hierbei dem Zwei-Elektronen-Photoemissionsprozess an Oberflächen. Das Prinzip des Spektrometers stellt eine Erweiterung der existierenden COLTRIMS-Spektrometer (COld Target Recoil Ion Momentum Spectroscopy) für Gasphasen-Experimente auf den Themenkreis der Oberflächenphysik dar. Anders als bei den in der Photoelektronen-Spektroskopie häufig eingesetzten elektrostatischen Analysatoren, wird hier eine Flugzeittechnik verwendet. Die Elektronen, die in der Reaktion erzeugt wurden, werden h ierzu mit einem schwachen homogenen elektrostatischen Feld vom Target abgesaugt und in Richtung eines orts- und zeitauflösenden Detektors beschleunigt. Zusätzlich wird ein homogenes Magnetfeld überlagert, das einen Einschluss der Elektronen bis zu einem maximalen Transversal-Impuls gewährleistet. Durch Messung der Flugzeiten und Auftrefforte auf dem Detektor können - unter Kenntnis d er elektrischen und magnetischen Feldstärken - die Startimpulse der Elektronen rekonstruiert werden. Auf diese Weise konnten Elektronen von 0 eV bis zu 50 eV mit einem Raumwinkel von nahezu 2p gleichzeitig abgebildet werden. Durch diesen sehr großen Aktzeptanzbereich, konnte eine wesentliche Erhöhung der Koinzidenzeffizienz der Anordnung gegenüber anderen Systemen erreicht werden (> 10 hoch 2 - 10 hoch 6 je nach Mess-System). Wesentlich hierfür ist des weiteren die Fähigkeit des Detektors mehrere Treffer mit verschwindender Totzeit zu verarbeiten. Mit dem beschriebenen System wurde die Zwei-Elektronen-Photoemission an Oberflächen untersucht. Die Experimente hierzu wurden im wesentlichen am Hamburger Synchrotron Strahlungslabor (HASYLAB) durchgeführt. Als Target wurde die (111)-Oberfläche eines einkristallines Kupfer-Targets verwendet. Mehrere Messreihen mit Photonenenergien im Bereich h? = 40 eV bis h? = 100 eV wurden aufgezeichnet. Durch die vollständige Vermessung des gesamten Impulsraumes der beiden Elektronen, stellt dies die erste kinematisch vollständige Untersuchung (bis auf die Spin-Freiheitsgrade) der Zwei-Elektronen-Photoemission an Oberflächen dar. Im Anschluss an vorangegangene Experimente [HER98], konnte auch hier in den Zwei-Elektronen-Energieverteilungen (innerhalb der experimentellen Auflösung) als Maximal-Energie des Paares der Wert E1 + E2 = h? - 2W0 festgestellt werden, der auf eine Selbst-Faltung der Bänder für die Zwei-Elektronen-Photoemission hindeutet. Die Form der Spektren wird wesentlich durch das Transmissionsverhalten der Elektronen beim Durchgang durch die Oberfläche bestimmt. Die auftretende energieabhängige Brechung der Trajektorie führt dabei zu einer starken Unterdrückung niederenergetischer Elektronen. In der Betrachtung der Kinematik der Emission konnten deutliche Analogien des Effektes zum analogen Prozess der Doppel-Photoionisation an freien Atomen bzw. Molekülen gefunden werden. Die Bewegung des Schwerpunktsimpulses des Paares ist daher durch die Richtung des Polarisationsvektor des Lichtes bestimmt. Im Gegensatz zur Emission am freien System, tritt hier allerdings - je nach Orientierung des Polarisationsvektors - ein Symmetriebruch auf, da Elektronen entweder auf die Oberfläche zu oder von ihr weg emittiert werden. Ein Bruchteil der in den Festkörper emittierten Intensität kann schließlich wieder am Gitter reflektiert werden und die Oberflächenbarriere noch überwinden. Die Energie- und Winkelverteilungen der Elektronen zeigen, dass, je nach Energieaufteilung des Paares, zwischen den Beiträgen durch einen "shake-off"-Mechanismus und einem "knock-out"-Mechanismus unterschieden werden kann. Auch hierin zeigt sich eine Ähnlichkeit des Zwei-Elektronen-Photoemissionsprozesses an Oberflächen mit der Doppel-Ionisation von Helium-Atomen. Während bei der Doppel-Ionisation von Helium diese Unterscheidung allerdings erst bei höheren Photonenenergien (> 100 eV) möglich ist, kann hier schon bei ca. 60 eV zwischen beiden Prozessen getrennt werden. Der Grund hierfür liegt sehr wahrscheinlich in der Abschirmung der Elektronen im Festkörper begründet, die die direkte Coulomb-Wechselwirkung der Elektronen im Endzustand reduziert. Insbesondere der starke Beitrag des "shake-off"-artigen Prozesses ist ein deutlicher Hinweis darauf, dass die gegenwärtigen theoretischen Modelle zur Beschreibung der Zwei-Elektronen-Photoemission nicht ausreichend sein können, da nur die Wechselwirkung im End-Zustand berücksichtigt wird. Vielmehr ist die Einbeziehung von Grundzustandswellenfunktionen jenseits des Bildes unabhängiger Teilchen nötig.
In summary, the cooled heavy-ion beams of the ESR storage ring offer excellent experimental conditions for a precise study of the effects of QED in the groundstate of high-Z one- and two-electron ions. This has been demonstrated within the series of experiments conducted at the electron cooler device as well as at the gasjet target. In this work we have used a recently developed experimental approach to obtain the first direct measurement of the two-electron contributions to the ground state binding energy of helium-like uranium. By employing our method, all one-electron contributions to the binding energy such as finite-nuclear size corrections and the one-electron self energy cancel out completely. Note, this is a distinctive feature of this particular kind of QED test and is in contrast to all other tests of bound state QED for high-Z ions such as 1s Lamb shift (in one-electron systems), g-factor of bound electrons, or hyperfine splitting. Compared to former investigations conducted at the superEBIT in Livermore we could already substantially improve the statistical accuracy and extend studies to the higher-Z regime. Moreover, our result has reached a sensitivity on specific two-electron QED contributions. Our value agrees with the theoretical predictions within the experimental uncertainty. Similar to the superEBIT experiment possible sources of systematic errors are essentially eliminated and the final result is limited only by counting statistics. For the case of the 1s Lamb shift in hydrogen-like uranium, the achieved accuracy of +- 4.2 eV is a substantial improvement by a factor of 3 compared to the most precise value up to now [44] (see Fig. 5.6). Our result already provides a test of the first-order QED contributions at the 1.5% level and only a slight improvement is required in order to achieve a sensitivity to QED contributions beyond first-order SE and VP.
Rückblick Die Motivation für diese Arbeit ergibt sich aus den immer neuen Fragestellungen der modernen Wissenschaft. Deren Beantwortung hängt wesentlich von den geeigneten Messapparaturen ab, die Einblicke in physikalische Prozesse erlauben. Durch effektivere und höher auflösende Detektoren werden präzisere, schnellere und schonendere Messungen möglich. Die Zielsetzung dieser Arbeit über den Hochdruck-Gas-Szintillations-Proportionalzähler ist es, einen Detektor zu entwickeln, mit dem hochenergetische Photonen praktisch vollständig vermessen werden können. Dazu gehören: - die Photonenenergie im Bereich von 5 bis 500 keV, - die Richtung der einfallenden Strahlung (bzw. der Auftreffort auf dem Detektor), - der Absorptionszeitpunkt und - die Diskriminierung von Gamma-induziertem Untergrund. Potenzielle Einsatzgebiete des Detektors sind im wesentlichen medizinische, atom- und astrophysikalische Anwendungen. Die vielversprechenden Eigenschaften dieses Detektorkonzeptes, gegenüber herkömmlichen Gasdetektoren, ergeben sich aus den Mechanismen der primären und der sekundären Gasszintillation. Daraus folgen der überlegene Verstärkungsprozess und das schnelle Zeitsignal. Als Grundlage für die in dieser Arbeit diskutierten Ergebnisse dienen die zuvor von Dangendorf und Bräuning entwickelten Konzepte und die von ihnen gebauten Prototypen. Sie sind geeignet für kleine und mittlere Photonenenergien und liefern eine gute Energie- und Zeitauflösung. Die Tests der Ortsauslese mit abbildenden, optischen Systemen zeigten erste Resultate. Ausgehend von diesen bestehenden Entwicklungen war die Motivation der Arbeit, den Aufbau an die gewünschten Anforderungen anzupassen. Für die höheren Photonenenergien werden ein dichterer Absorber, also ein höherer Gasdruck und damit verbunden neue Auslesekonzepte benötigt. Problem Ein zentrales Problem, das aufgrund dieser neuen Anforderungen auftritt, ist der Druckunterschied zwischen dem Hochdruck-Szintillator und der bei Niederdruck oder im Vakuum betriebenen UV-Auslese. Die dadurch bedingten Kräfte machen entweder besondere Stützstrukturen oder stabile - und dadurch dicke - Fenster erforderlich. In beiden Fällen geht ein Teil des Signals verloren und die Detektorauflösung nimmt ab. Es handelt sich dabei jedoch nicht um prinzipielle Probleme. Die Schwierigkeiten sind rein technischer Natur. Deshalb wurde intensiv weiter nach neuen Konzepten und Lösungsansätzen gesucht, die die Vorteile dieser überlegenen physikalischen Prozesse ausnutzen können. Lösungsansatz Das konkrete Ziel - bzw. die Aufgabenstellung - dieser Arbeit war, mit neuen Technologien, und dabei vor allem mit einem neuen Mikrostruktur-Elektroden-System, bislang bestehende technische Hürden zu überwinden (Kapitel 3). Durch die Möglichkeit, einen in das Hochdruckvolumen integrierten Photonendetektor zu bauen, werden viele der Stabilitätsprobleme gelöst. Mit der großflächigen Auslese des Szintillationslichts direkt dort, wo es entsteht, werden die Transmissionsverluste in Fenstern vermieden. Es gibt damit nur kleine raumwinkelabhängige Effekte und es wird nur ein Gasvolumen und damit kein zusätzliches System zum Evakuieren, Zirkulieren und Reinigen benötigt. Durch die Trennung der Energie- und der Ortsinformation und deren separate Auslese wird zwar die Komplexität des Detektors erhöht, die Teilsysteme können jedoch unabhängig für die jeweiligen Anforderungen optimiert werden. Grundlagen Im Rahmen dieser Arbeit wurden bereits existierende Erfahrungen aufgegriffen und in deren logischer Fortsetzung, ein, in das Szintillatorvolumen integrierter, UV-Photonendetektor entwickelt. Zunächst musste mit einer umfangreichen Recherche ermittelt werden, welche Anforderungen an einen integrierten Photonendetektor bestehen und wie ein solches System in den Aufbau eingebunden werden kann. Mit dem GEM, der sich schon in diversen anderen Gasdetektoranwendungen als universell einsetzbarer Verstärker bewährt hatte, war ein potenzielles Mikrostuktur-Elektroden-System für unsere Anwendung gefunden. Um die Einsatztauglichkeit dieser Mikrostrukturen für die neuen Applikationen zu analysieren, wurden sie im Standard-Design, unter vielen verschiedenen Betriebsparametern getestet. Dabei wurden wertvolle Erfahrungen im Umgang mit den Mikrostrukturen gesammelt. Die GEMs wurden in den typischen Detektorgasen, bei verschieden Drücken, elektrischen Spannungen und Feld-stärken studiert. Dabei wurden die Chancen, aber auch - vor allem aufgrund elektrischer Überschläge und Instabilitäten - die Grenzen des damit Erreichbaren, aufgezeigt. Mit der Herstellung der speziell für diese Anwendung entwickelten GEMs wurde die Grundlage für den stabilen Betrieb des Detektors geschaffen. Simulationsrechnungen In Kooperation mit einer italienischen Gruppe vom INFN in Cagliari haben wir, mit dem Detektor-Simulations-Programm Garfield, Berechnungen durchgeführt (Kapitel 4). Damit konnte schon vor der technischen Realisierung ein Überblick über die Betriebsbedingungen eines mehrstufigen und komplexen Systems gewonnen werden. Dazu zählen die messtechnisch erfassbaren Größen, wie z.B. die mittlere Gasverstärkung und Diffusion. Daneben konnten aber auch die Prozesse im Kleinen studiert werden. Von besonderem Interesse für die Funktion des Detektors ist dabei der Verlauf der Feldstärke in den Poren der Mikrostrukturen und den umliegenden Regionen. Dessen räumlicher Verlauf in Kombination mit den jeweiligen Gasdaten bestimmen die Elektronentransportparameter, die Gasverstärkung, die Diffusion und die Effizienz. In den Xenon-Szintillator integrierter UV-Photonen-Detektor Der UV-Photonendetektor konnte in zwei Varianten erfolgreich in ein Volumen mit dem Xenon-Gas-Szintillator integriert werden. Die Verbindung der CsI-Photokathode mit dem Elektronenverstärker wurde dabei zum einen als semitransparente dünne Schicht auf einer Quarzglasplatte vor der GEM-Folie und zum anderen als opake Variante auf der Frontseite des GEM realisiert. Bei der Auslese des Xenon-Szintillationslichts mit einer in reinem Xenon und bei hohem Druck betriebenen CsI-Photokathode, wurde Neuland betreten. Es wurde erfolgreich gezeigt, dass der integrierte Photonendetektor auf GEM Basis für die hier diskutierten Einsatzbereiche und Anforderungen funktioniert. Die Ankopplung der Photokathode an die Verstärkerstruktur und dabei vor allem der Elektronentransport von der CsI-Schicht in die Verstärkungszone, wurden im Detail untersucht. Dass die Gasverstärkung in reinem Xenon bei den beschriebe-nen Betriebsparameter überhaupt funktioniert, liegt zum einen daran, dass die optische Rückkopplung mit diesem neuen Design effektiv unterdrückt werden kann. Zum anderen konnten die Einflussparameter auf die Gasverstärkung, für den mehrstufigen GEM-Verstärkungsprozess in reinem Xenon, im Detail untersucht werden. Die gekoppelten Gas-Verstärker-Elemente wurden mit einer eigens für diese Anwendung entwickelten Versorgungsspannungsquelle betrieben, die die Folgen von elektrischen Überschlägen minimiert (Kapitel 5.1.3). Gegenüber den herkömmlichen Gasdetektoren ist es mit diesem neuartigen Aufbau möglich, den UV-Photonen-Detektor bei diesen Betriebsparametern stabil zu betreiben. Abbildende Optiken - optische und mechanische Eigenschaften Parallel zur Entwicklung dieses großflächigen Detektors zur Messung des Energiesignals und der Registrierung des primären Lichts, wurde das Konzept zur Ortsauslese via abbildender Optik weiterverfolgt. Die optischen Abbildungseigenschaften der Linsen wurde im Wellenlängenbereich des Xenon-Szintillationslichtes untersucht. In ersten Tests konnte bei kleinen Gasdrücken und somit geringen mechanischen Beanspruchungen die Ebene der Sekundär-lichterzeugung auf einen gekapselten Mikro-Kanal-Platten-Detektor abgebildet werden. Die Festigkeit der Quarzglaslinse für die Druckbeanspruchungen im hier diskutierten Detektor konnte in Zusammenarbeit mit der Fachhochschule Heilbronn - mittels Finite-Elemente-Berechnung - als ausreichend verifiziert werden. Ausblick Die beiden getrennten Systeme für Orts- und Energiemessung funktionieren unabhängig voneinander. Die Vorraussetzungen für die Kombination der Komponenten in einem gemeinsamen Aufbau sind damit geschaffen. Damit ist der Weg für die folgenden Schritte in diesem Projekt aufgezeigt. Als logische Fortsetzung dieser Arbeiten ist geplant, den integrierten Photonendetektor mit der Photokathode auf der GEM-Frontseite, zusammen mit der Ortsauslese gemeinsam aufzubauen. Von dieser Kombination profitiert das Auflösungsvermögen beider Messungen. Die Korrektur der ortsabhängigen Schwankungen in der Effizienz der Photokathode verbessert die Energieauflösung signifikant. Auf der anderen Seite kann durch das geschickte Setzen von geeigneten Bedingungen auf das Energiesignal die Ortsmessung optimiert werden. Als weiterer naheliegender Schritt auf dem Weg zum effizienten Nachweis der hochenergetischen Photonen, bietet sich der Einbau einer zusätzlichen Verstärkungsstufe zum Aufbau eines dreifach-GEM-Detektors an. Damit kann bei höheren Gasdrücken, trotz kleiner werdender maximaler Verstärkung pro GEM, eine ausreichende Gesamtverstärkung erreicht werden. Der Einsatz des Detektors in einem größeren Experiment, in Kombination mit anderen Messapparaturen, rückt somit in greifbare Nähe.
Mikroentladungen bei hohem Druck und mit Gasfluss stellen eine vielseitig nutzbare Quelle für Ionen und kalte metastabile Atome dar. In dieser Arbeit werden grundlegende Untersuchungen an dieser neuen Hochdruckentladung zur Erzeugung von metastabilen Atomen und einfachgeladenen Ionen vorgestellt. Der innovative Ansatz ist die Nutzung mikrostrukturierter Elektroden (MSE) zur Erzeugung von nichtthermischen Entladungen mit Gleichspannung. Die spezielle porenförmige Geometrie erlaubt die Erzeugung von Entladungen bei einem Druck > 1000 hPa. Die Mikroentladung produziert metastabile Atome und Ionen in einem lokalisierten Volumen durch Stöße mit energiereichen Elektronen, wobei das Neutralgas in der Entladung im Vergleich zu den Elektronen kalt ist. Außerdem kann die Entladung mit erzwungenem Gasfluss durch die Pore betrieben werden, so dass die Plasmabestandteile (neutrale/angeregte Atome, Radikale, Ionen, etc.) extrahiert werden. Mit dieser neuen Methode kann bei der adiabatischen Expansion des Gases ins Vakuum ein gerichteter Gasstrahl, mit geringer interner Temperatur, im Bereich von einigen K erzeugt werden. Die Verweildauer des Gases in der Mikropore ist < 0,1 µs, so dass auch Zustände mit kurzer Lebensdauer extrahiert werden können. Die MSE lässt sich aufgrund der kleinen Abstände im µm Bereich als Mehrschichtsystem, aus zwei metallischen Elektroden, die durch einen Isolator getrennt sind, realisieren. Dieses Grundmaterial wird mit einzelnen oder einer Vielzahl von Poren mit typischerweise 100 µm Durchmesser versehen. Mit Hilfe dieser Mikrostrukturen lassen sich stabile, nicht filamentre, homogene Entladungen mit Gleichspannung in allen Gasen als auch Gasgemischen in einem weiten Druckbereich von 600 hPa bis 4000 hPa erzeugen. Die Druckverhältnisse in der Pore lassen sich durch den Gasfluss zwischen einigen ml/min bis l/min variieren. Die Verweildauer des Gases in der Pore kann durch den Gasfluss gesteuert werden. Zur Diagnose werden die Bestandteile des Plasmas mit dem Gasstrom extrahiert und expandieren adiabatisch ins Vakuum. Der Einfluss von Vordruck, Gasfluss, Entladestrom und Gaszusammensetzung auf die Eigenschaften des Plasma-Jets konnte auf diese Weise bestimmt werden. Durch die Kühlung der Mikroentladung konnte die interne Temperatur des Targets nochmals gesenkt und die Geschwindigkeit gezielt reduziert werden. Die Messung des Geschwindigkeitsprofils, die Zusammensetzung, etc. geben einen indirekten Einblick in die komplexen Prozesse der Mikroentladung, die mit konventionellen Analysemethoden nur schwer zugnglich sind. Die gemessenen Eigenschaften der MSE- unterstützten Hochdruckentladung sind vergleichbar mit klassischen Glimmentladungen, jedoch ist die Anregungs- und Ionisationswahrscheinlichkeit aufgrund der Geometrie größer. Unter definierten Rahmenbedingungen erlaubt diese neue Technik die Erzeugung eines gerichteten Plasma-Jets bestehend aus kalten metastabilen Atomen, Ionen, etc. Basierend auf diesem Prinzip wurde eine Quelle für metastabile Heliumatome aufgebaut und mit verschiedenen Methoden analysiert. Der 23S1- Zustand wird aufgrund seiner atomaren Struktur effektiv durch die energiereichen Elektronen in der Entladung angeregt. Die Gasströmung bestimmt den Druck und die Verweildauer im aktiven Volumen. Die Untersuchungen haben gezeigt, dass mit diesem Aufbau kalte, metastabile Atomstrahlen mit einer Intensität von 6 mal 10 hoch 13 (s mal sr) hoch minus 1 und Geschwindigkeiten von 900-1800 m/s erzeugt werden können. Bei den gemessenen Dichten in der Pore von 6 mal 10 hoch 12 (cm) hoch minus 3 ist die Ausbeute durch das Quenching der metastabilen Atome beschränkt. Die Eigenschaften dieses exotischen Atomstrahls sind hinsichtlich der absoluten Geschwindigkeit und der Geschwindigkeitsverteilung identisch mit einem konventionellen Überschall-Gasstrahl. Die Qualität des Strahls, aufgrund seiner geringen internen Temperatur von einigen K, erlaubt die Trennung und Fokussierung des gewünschten Zustandes. In Kombination mit der Separationseinheit wurde die Mikroplasmaquelle zur Erzeugung eines metastabilen 2 3 S 1-Heliumtargets mit polarisiertem Elektronenspin verwendet. Bei der Separation wird durch den außermittigen Einschuss in den permanentmagnetischen Hexapol eine hervorragende räumliche Trennung der verschiedenen Zustände erreicht und die Ausdehnung des Targets im Fokus auf 1 mm hoch 2 reduziert. Die erreichte Targetdichte für den spinpolarisierten 2 3 S 1-Zustand liegt im Fokus bei 10 hoch 6 cm hoch -2. Die Charakterisierung des Strahlverlaufs als auch die Time-of-Flight-Messungen zeigen, dass es sich bei der MSE unterstützten Hochdruckentladung um eine nichtthermische Entladung mit vergleichbaren Eigenschaften wie Niederdruckglimmentladung handelt, d.h. neutrale/angeregte Atome und Elektronen sind nicht im Temperaturgleichgewicht. Die Gastemperatur wird somit in der Mikroentladung nicht erhöht. Die Messungen mit Düsentemperatur von 80 K haben dies ausnahmslos bestätigt. Mit dieser Quelle lassen sich auch feine Ionenstrahlen bei hohem Druck erzeugen. Bei erzwungener Gasströmung durch die Entladung werden die Ionen aus dem Bereich der Entladung extrahiert und können zur Diagnose der Hochdruckentladung ins Vakuum überführt werden. Die Ionenausbeute wurde für verschiedene Gase und Gasgemische in Abhängigkeit von Gasfluss, Entladestrom, Extraktionsspannung untersucht. Die Elektronenenergie reicht ausschließlich zur Produktion von einfachgeladenen Ionen bzw. Molekülen aus. Der Anteil an Metallionen zeigt deutlich, dass die Geometrie die Erzeugung von Sekundärelektronen an der Kathode unterstützt. Die Wechselwirkung der Ionen mit dem Überschall-Gasstrahl im Bereich zwischen Düse und Skimmer führt zu einer starken Energieverbreiterung. Dies kann jedoch durch eine modifizierte Extraktionsgeometrie reduziert werden, hierbei ist insbesondere auf die Raumladung im Bereich zwischen Düse und Skimmer zu achten. Die vorgestellten Messungen haben exemplarisch für Helium gezeigt, dass gerichtete, kalte, metastabile Atomstrahlen mit ausreichender Intensität für atomphysikalische Experimente erzeugt werden können. Auf Basis der grundlegenden Erkenntnisse lässt sich das spinpolarisierte Target im nächsten Schritt hinsichtlich der erreichten Ausbeute optimieren. Dazu ist es notwendig, die Bedingungen in der Expansionskammer zu verbessern, so dass die Plasmaquelle mit höherem Vordruck betrieben werden kann. In diesem Zusammenhang sollte auch der Abstand Düse Skimmer verringert und die Separationseinheit auf diese modifizierten Rahmenbedingungen angepasst werden. Durch diese Modifikation kann die Targetdichte für spinpolarisiertes, metastabiles Helium nochmals gesteigert werden. Mit der erreichten Targetdichte sind die grundlegenden Voraussetzungen für atomphysikalische Messungen an einem spinpolarisierten Target geschaffen. Durch Anpassung der Separationseinheit ist es prinzipiell auch möglich, andere exotische metastabile Targets mit polarisiertem Elektronenspin zu erzeugen.
In dieser Arbeit werden mit Hilfe von Röntgenstreuung Polymere untersucht, die auf molekularer Ebene eine lamellenartige Schichtstruktur aufweisen. Diese Ordnung wird bei hohen Temperaturen zerstört, das Polymer wandelt sich in eine homogene Schmelze um. Ziel dieser Arbeit ist es, die Ursachen dieser Phasenumwandlung, d.h. ihre treibenden Kräfte zu erforschen. Hierzu werden mehrere Polymere verschiedener Zusammensetzung untersucht und der Einfluss von mechanischem "Stress" auf die Phasenumwandlung überprüft. Die untersuchte Polymerklasse ist ein sogenanntes Diblockcopolymer , d.h. die Polymermoleküle bestehen aus jeweils zwei linearen Polymerkettenstücken verschiedener Polymersorten (hier: {\em Polystyrol} und {\em Polybutadien}), die "Kopf an Kopf" miteinander verbunden sind. Durch diese molekulare Verbindung ist eine Auftrennung auf makroskopischem Massstab, etwa vergleichbar der Entmischung von "Ol und Wasser, nicht möglich. Mikroskopisch kann das Polymer durch eine günstige Ausrichtung der Moleküle zueinander die Kontakte zwischen den Polystyrol- und Polybutadien-Teilketten minimieren. Diese Abnahme der Gesamt-Wechselwirkungsenergie führt zum Aufbau einer lamellaren Struktur und bedeutet gleichzeitig eine Absenkung der Entropie. Bei Erhöhung der Temperatur kann der entropische Beitrag zur freien Energie dominant werden, d.h. die Ordnung wird zerstört. Die Experimente wurden am Max-Planck-Institut für Polymerforschung in Mainz unter Betreuung von Herrn Prof. Dr. Manfred Stamm (inzwischen an der Universität Dresden) durchgeführt. Dort wurden die Polymere synthetisiert und eine vorhandene Röntgenkleinwinkelstreuanlage für die hier vorgestellten Messungen genutzt. Weiterhin wurde eine Scherapparatur so umgebaut, dass die gleichzeitige Messung von Scherung und Röntgenkleinwinkelstreuung im Time-Slicing-Verfahren möglich war. Im Rahmen dieser Arbeit wurde ein Röntgendetektor entwickelt, der die korrelierte Datenerfassung von Scherung und Röntgenstreuung im Zeitmassstab deutlich unter einer Sekunde ermöglicht. Die hier vorgestellten Experimente gliedern sich zum einen in statische Röntgenmessungen an verschiedenen Polymersystemen, welche die Temperaturabhängigkeit der inneren, molekularen Struktur untersucht, bei der Umwandlung von der lamellenartigen Schichtstruktur zur homogenen Schmelze und umgekehrt. Hierbei zeigen sich keine Hystereseeffekte und eine gute Übereinstimmung mit {\em MC-CMA}-Simulationen. Die einzelne Polymerkette wird beim Phasenübergang leicht gestreckt. Die beobachteten Phänomene werden durch feldtheoretische Modelle nicht vollständig wiedergegeben. Zum anderen wird der Einfluss von mechanischem "Stress" in Form einer oszillatorischen Verscherung auf diese Umwandlung und bei Temperaturen nahe dieser Umwandlung untersucht. Der anisotrope Aufbau der lamellenartigen Schichtstruktur bewirkt ein stark nichtlineares mechanisches Verhalten des Polymers, das mit dem Aufbau einer Vorzugsorientierung der Lamellen zur Richtung der Verscherung einher geht. Die Kinetik dieser Orientierungsphänomene wurde mit Hilfe der Röntgenkleinwinkelstreuung während der mechanischen Beanspruchung gemessen. Es ergibt sich innerhalb der Messungenauigkeit von 1-2\,K keine Erhöhung der Umwandlungstemperatur. Abhängig von den Scherparametern zeigen sich knapp unterhalb der Umwandlungstemperatur unterschiedliche Vorzugsorientierungen, deren zeitliche Abfolge irreversibel ist. Für das Auftreten der verschiedenen Vorzugsorientierungen zum Scherfeld werden verschiedene Parameter auf unterschiedlichen Größenskalen verantwortlich gemacht. Das komplexe Zusammenwirken dieser strukturellen Details kann durch die mechanische Beanspruchung "getestet" werden. Der Aufbau einer langreichweitigen Ordnung wird durch die externen Kräfte beschleunigt.
Im Rahmen dieser Promotionsarbeit wurden fünf verschiedene Experimente mit der Schwerionen-Mikrosonde der GSI durchgeführt. Vier dieser Experimente waren erfolgreich, bei einem Experiment wurden nicht die erhofften Ergebnisse erzielt. Alle Experimente haben Ziele und Fragestellungen verfolgt, die vornehmlich mit einer Ionen-Mikrosonde bearbeitet werden können. Es wurde gezeigt, dass durch die Anwendung fein fokussierter Ionenstrahlen physikalische und technische Probleme im Mikrometerbereich sehr effizient und erfolgreich aufgeklärt werden können. Die hohe örtliche Auflösung der Mikrosonde in Verbindung mit den bekannten auf Ionenstrahlen basierenden Analysemethoden ermöglicht den Zugriff auf Informationen, die auf anderem Wege gar nicht oder nur schwer zugänglich sind. Das erste der fünf Experimente an der Mikrosonde untersuchte die Eigenschaften von polykristallinem CVD Diamant, bei der Verwendung dieses Materials als Detektor für Schwerionen. Der große Nachteil dieses Detektormaterials ist die geringe Fähigkeit, im Detektor erzeugte Ladungsträger verlustfrei zu den Elektroden zu transportieren, um sie dort zu sammeln. Häufig werden bei diesem Transportprozess vom Entstehungsor t der Ladungsträger zu den Elektroden über 90 % der ursprünglich vorhandenen Ladungsträger von Ladungsträgerfallen im Diamantmaterial eingefangen. Es bestand der starke Verdacht, dass diese Fallen vorwiegend in den Korngrenzen zwischen den Diamanteinkrista llen lokalisiert sind. Aus diesem Verdacht begründete sich die Hoffnung, dass die Einkristalle im CVD Diamant ein wesentlich besseres Ladungssammlungsverhalten zeigen würden. Da die Ionenmikrosonde einen Ionenmikrostrahl mit einem lateralen Fokusdurchmesser von ca. 0,5 µm über eine Targetfläche von 1 x 1 mm² rastern kann und dabei Punkt für Punkt die Reaktion des Targetmaterials nachweisen kann, ist sie das geeignete Werkzeug zur Untersuchung von Ladungssammlungsprozessen im Bereich der Einkristalle und der Korngrenzen. Bei der Auswertung der Ergebnisse des Experiments ist aufgefallen, dass man für das CVD Diamantmaterial innerhalb der Ionenbestrahlung zwei verschiedene Zustände unterscheiden muss. Ein unbestrahlter CVD Diamant verhält sich in Bezug auf die Ladungssammlungs- eigenschaften wesentlich anders als ein bestrahlter CVD Diamant, der schon eine gewisse Ionendosis akkumuliert hat. Beim unbestrahlten Diamant ist zu beobachten, dass sowohl in den Einkristallen als auch in den Korngrenzen sehr effektive Ladungsträge rfallen existieren. Die generelle Aussage, dass Diamanteinkristalle eine bessere Ladungssammlung zeigen, kann hier nicht bestätigt werden. Es konnte aber gezeigt werden, dass es, im etwa 300 x 350 µm großen Scannfeld, Bereiche mit sehr guten Ladungssammlungseigenschaften (Effizienz über 90 % im Maximum der Verteilung) gibt und in unmittelbarer Nähe Bereiche mit geringster Ladungssammlungs- effizienz (etwa 8 % im Maximum der Verteilung) existieren. Es konnte nicht geklärt werden, ob diese Bereiche aus Einkristallen bestehen oder sich über Korngrenzen ausdehnen. Die beobachtete 90%ige Ladungssammlungseffizienz ist jedoch ein eindeutiger Nachweis der Möglichkeit, die Detektoreigenschaften dieses Materials wesentlich verbessern zu können, wenn es gelingt, die Besonderheiten dieses hocheffizienten Bereichs aufzuklären. CVD Diamantdetektoren, die schon eine gewisse Ionendosis akkumuliert haben, werden auch als gepumpte Detektoren bezeichnet. Das Pumpen des Detektors kann dabei auch durch andere Formen der Energiezufuhr, beispielsweise mit Hilfe eines Lasers erfolgen, wichtig ist nur, dass eine große Zahl der Ladungsträgerfallen mit Ladungsträgern gefüllt sind. Da diese Fallen im CDV Diamant relativ tief sind, werden gefüllte Fallen nicht schnell entleert und sie stören, so lange sie gefüllt sind, die Ladungssammlung nicht mehr. Die Ladungs- sammlungseffizienz gepumpter Diamantdetektoren verbessert sich sehr stark im Vergleich zum ungepumpten Material. Das Maximum der Verteilung des Ladungssammlungsspektrums verschob sich von etwa 15 % Effizienz beim ungepumpten Detektor zu mehr als 50 % Effizienz beim gepumpten Detektor gemittelt über das gesamte Scannfeld. Bei der Betrachtung des Einflusses der Korngrenzen im gepumpten Material konnte festgestellt werden, dass die Einkristalle nun tatsächlich wesentlich weniger zum Verlust der Ladungsträger beitragen als die Korngrenzen. Die Korngrenzen zeichneten sich beim gepumpten CVD Diamant deutlich als dominante Bereiche des Ladungsträgerverlustes ab. Somit haben wir die bestehende Vermutung über den dominierenden Ladungsträgereinfang in den Korngrenzen für den gepumpten CVD Diamanten bestätigen können, beim ungepumpten Material hingegen verwerfen müssen. Eine weitere Aufklärung der Unterschiede zwischen den beiden Zuständen wür de hier zu einem besseren Verständnis der Vorgänge führen. Zudem wurde am CVD Diamant eine Hochdosisbestrahlung vorgenommen, bei der bestimmt werden sollte ab, welcher Ionendosis das Material soweit geschädigt ist, dass eine Trennung der Detektorsignale von den Rauschsignalen nicht mehr möglich ist. Für einen 8,3 MeV/u 12C-Strahl war diese Trennung ab einer Dosis von 8,0 x 1013 Ionen/cm² nicht mehr möglich, was bedeutet, dass der Detektor hier seine Verwendbarkeit verliert. Eine weitere Gruppe von drei Experimenten befasste sich mit der Wirkung von schnellen, schweren Ionen auf Halbleiterbauelemente. Diese anwendungsorientierten Experimente sollten Ursachen für das Fehlverhalten mikroelektronischer Bauelemente bei Ionentreffern an bestimmten Orten und zu bestimmten Zeitpunkten untersuchen, beziehungsweise Grundlagen für die theoretische Betrachtung der Vorgänge liefern. Beim ersten der drei Experimente wurde das Auftreten von Single Event Upsets in Verbindung mit Single Event Latchups in SRAM Bausteinen untersucht. Die Latchups werden bei den üblichen Testverfahren durch einen Spannungsabfall an einem externen Widerstand in der Versorgungsleitung erkannt. Mit Hilfe der Mikrosonde wurde nachgewiesen, dass diese Methode der Latchupdetektion unzureichend sein kann. Da die internen Versorgungsleitungen in der Halbleiterstruktur selber Widerstände bilden, kann der Latchup am äußeren Widerstand unter bestimmten Bedingungen nicht erkannt werden. Hier spielt die Länge der integrierten Versorgungsleitung eine wesentliche Rolle. Die bild- gebenden Verfahren der Mikrosonde bei der simultanen Messung von Latchups und Upsets können hier Latchups entdecken, die im üblichen Testverfahren nicht erkennbar waren. Das zweite dieser drei Experimente hatte das Ziel, die Upsetempfindlichkeit einer getakteten CMOS- Struktur im Bereich der Schaltflanken zu bestimmen. Hierzu wurden die Schaltzeit- punkte des ICs mit dem vom UNILAC gelieferten Ionenstrahl synchronisiert. Einzelne Ionen trafen den Schaltkreis nur innerhalb eines Zeitfensters von 2 nsec um die Schaltflanke. Da der getaktete integrierte Schaltkreis im Bereich der Schaltflanken besonders empfindlich auf die vom Ion erzeugten zusätzlichen Ladungsträger reagiert, sollten die Upsetwahrscheinlichkeiten innerhalb des Schaltprozesses mit möglichst hoher zeitlicher Auflösung vermessen werden. Die Bestimmung der Trefferzeitpunkte mit einer zeitlichen Genauigkeit von 1 ns oder besser brachte jedoch eine Vielzahl von Problemen mit sich, die letztlich dazu führten, dass dieses Experiment nicht erfolgreich abgeschlossen werden konnte. Auf Grund seiner hohen technischen Bedeutung wurde es in dieser Arbeit aber beschrieben und sollte nach der Verbesserung der Treffererkennung erneut durchgeführt werden. Es wäre das erste Experiment, in dem die Empfindlichkeit einer CMOS- Struktur gegen Ionenstrahlen mit hoher örtlicher und zeitlicher Auflösung gemessen wird. Das dritte Experiment dieser Serie befasste sich mit der für theoretische Vorhersagen wichtigen Größe des elektronischen Durchmessers der Ionenspur. Aus der vom Schwerion erzeugten Spur breitet sich eine elektronische Stoßkaskade aus. Diese freien Ladungsträger können ungewollte Schaltvorgänge in integrierten Schalkreisen auslösen. Da die Integrationsdichte in modernen Baugruppen immer höher wird, kann die vom Ion erzeugte Spur aus freien Ladungsträgern mehrere Transistoren beeinflussen. Die Ausdehnung dieser Spur kann nicht mehr als vernachlässigbare Größe eingestuft werden. Um den Durchmesser der Spur zu bestimmen, wurde ein fein fokussierter 5,9 MeV/u Nickel-Strahl über eine Probe aus Mikrostreifen gerastert, und die in den Streifen gesammelten Ladungssignale wurden gemessen. Trotz einiger Probleme mit der kapazitiven Kopplung von Signalen zwischen den Streifen und dem Substrat und de n Streifen untereinander konnte der Durchmesser der elektronischen Spur bei diesem Test zu etwa 1,2 µm bestimmt werden. Es sollte der Versuch unternommen werden, diesen ersten experimentellen Wert durch weitere verfeinerte Messungen zu bestätigen und vor allem sollte versucht werden, das Dichteprofil der Elektronen in der Ionenspur mit dieser Technik zu bestimmen. Diese Informationen wären von großem Wert für theoretische Modelle zur Empfindlichkeit von integrierten Elektroniken gegen die Effekte einzelner Ionen. Im fünften und letzten Experiment dieser Arbeit wurde die Ionen-Mikrosonde als Werkzeug zur Strukturierung eines Hochtemperatur Dünnfilm Supraleiters eingesetzt. In der sogenannten Shubnikov-Phase können magnetische Flussquanten in den Supraleiter eindringen, obwohl der Zustand der Supraleitung noch vorhanden ist. Diese Flussquanten können durch säulenartige korrelierte Defekte im Supraleiter gebunden werden. Die Spuren schwerer Ionen bilden solche kolumnaren Defekte, die mit Hilfe der Mikrosonde aufgeprägt werden können. Da bei dieser Strukturierung eine hohe Defektdichte erforderlich war, konnte aus Zeitgründen eine Strukturierung mit dem schreibenden Ionenstrahl nicht realisiert werden. Stattdessen wurde eine Schlitzmaske verwendet, die mit Hilfe der Mikrosonde verkleinert auf der Oberfläche des Supraleiters abgebildet wurde. Auf diese Weise wur de dem Supraleiter eine Defektstruktur aus Stegen, die in einem bestimmten Winkel orientiert waren, aufgeprägt. An dem so erzeugten Supraleiter wurden dann an der Universität Mainz die elektrischen Transporteigenschaften des Materials unter dem Einfluss eines gepinnten magnetischen Feldes gemessen. Da die erwarteten Effekte aus dem Pinning der magnetischen Flussquanten erst dann eine messbare Größe annehmen, wenn dem Supraleiter Defektstrukturen in der Größenordnung von einigen µm aufgeprägt werden, ist auch hier die Ionen-Mirkrosonde das einzige verfügbare Instrument für diese Aufgabe. Mit dieser Arbeit wurde deutlich gemacht, dass eine Ionen-Mikrosonde ein vielseitig einsetzbares Instrument ist, das vor allem aufgrund der hohen Bedeutung von miniaturisierten Systemen in der modernen Forschung und Technik ein hohes Verwendungspotential besitzt. Alle hier vorgestellten Experimente wären ohne den Einsatz der Mikrosonde nicht durchführbar gewesen. Neben diesen Experimenten werden an der GSI noch eine Reihe weiterer Experimenten zum Beispiel im Bereich der Biophysik bearbeitet, die ihrerseits von der einzigartigen Möglichkeit der µm-genauen Platzierung schwerer Ionen profitieren.
Untersuchungen zum technischen und teilchenoptischen Design kompakter Speicherringe für Ionen
(2002)
Die vorliegende Arbeit befasst sich mit der Berechnung und dem Bau von elektrostatischen Speicherringen. Eine solche Maschine kann als eine Kreuzung zwischen elektrostatischen Fallen und "klassischen" magnetischen Ringen angesehen werden. Kompakte Bauform, gute Zugänglichkeit der Elemente und vergleichsweise niedrigen Kosten werden mit hoher Flexibilität in Bezug auf mögliche Experimente kombiniert. Im 1. Kapitel werden zunächst die Unterschiede der Bewegung von Ionen in elektrostatischen und magnetischen Speicherringen untersucht. Die Massenunabhängigkeit der Teilchenbewegung bei gegebener Energie und Ladung in rein elektrostatischen Feldern erlaubt es, unterschiedlichste Ionen im Prinzip in direkter Folge in einen elektrostatischen Ring einzuschießen, ohne dass die Felder der optischen Elemente verändern werden müssen. Die Felder in den für einen Speicherring notwendigen Strahlführungskomponenten werden berechnet, die zugehörigen Bewegungsgleichungen aufgestellt und in linearer Näherung gelöst. Dabei werden zunächst die Bahnen einzelner Teilchen untersucht und dann das Strahlverhalten insgesamt durch Übergang auf einen Matrizenformalismus beschrieben. Die aus dieser Darstellung resultierenden Trajektorien stellen eine starke Vereinfachung dar. Die Untersuchung der realen Teilchenbewegung mit Einfluss von Randfeldern, Positionierungsfehlern und die Berechnung der dreidimensionalen Feldverteilung ist Gegenstand des 2. Kapitels. Ein kritischer Punkt bei der Bewegung von Teilchen in Ringbeschleunigern sind durch Feldfehler induzierten Resonanzerscheinungen. Zur Diskussion der verschiedenen möglichen Resonanzen werden im 3. Kapitel die Effekte durch zusätzliche Dipol- und Quadrupolfelder analysiert, dargestellt und schließlich anhand eines Resonanzdiagramms erläutert. In den geplanten Speicherring werden Ionen in einem einzigen Bunch, mit einer Ausdehnung von rund dem halben Ringumfang, injiziert. Ihre Lebensdauer hängt wesentlich von dem erzielbaren Vakuumenddruck ab. Die vorgesehenen Getterpumpen weisen eine sehr hohe Pumpleistung für die meisten Gase auf. Ihre Wirkungsweise wird im 4. Kapitel beschrieben und praktische Aspekte ihrer Handhabung diskutiert. Für den Betrieb eines Speicherrings ist es notwendig, die Parameter des umlaufenden Strahls zu jeder Zeit zu kennen und gegebenenfalls modifizieren zu können. Zentrales Element des Kontroll- und Diagnosesystems sind Strahlpositionsmonitore. In elektrostatischen Pickup-Elektroden induziert der Strahl beim Durchgang Spannungen über die eine Positionsbestimmung möglich ist. Die Wirkungsweise dieser Sonden wird in der zweiten Hälfte des 4. Kapitels diskutiert und Methoden zur Signalaufbereitung und -analyse beschrieben. Die allgemeinen Ergebnisse der Überlegungen zu elektrostatischen Speicherringen aus den ersten Kapiteln werden schließlich auf spezielle Fälle übertragen. Im Rahmen dieser Arbeit wurden verschiedene Entwürfe für einen elektrostatischen Speicherring angefertigt und ein Viertelringsegment zu Testzwecken entworfen und aufgebaut. Die Ergebnisse sind Inhalt des abschließenden 5. Kapitels. Mit den in dieser Arbeit vorgestellten Methoden ist es möglich, elektrostatische Speicherringe detailliert zu berechnen und an die experimentellen Rahmenbedingungen anzupassen. Sämtliche Rechnungen wurden im Hinblick auf den geplanten Bau eines Rings für Teilchen mit Energien bis 50 keV durchgeführt.
Die vorliegende Arbeit bietet zunächst einen weiteren Beweis für die Existenz des neutralen Heliumdimers. Darüber hinaus konnten zwei verschiedene Prozesse identifiziert werden, über die die Absorbtion eines Photons zur Ionisation beider Atome des Dimers über sehr große Abstände führen kann. Oberhalb einer Photonenenergie von 65,4 eV konnte ein ICD Prozess beobachtet werden, der über Photoionisation mit gleichzeitiger Anregung von einem der beiden Atome realisiert wird. Bei 77,86 eV konnte ICD über elektronisch angeregte Zustände bis n=6 nachgewiesen werden. In der KER-Verteilung konnten zudem Strukturen gefunden werden, die auf Vibrationsanregungen im Zwischenzustand des Dimer-Ions schließen lassen. Eine vollständig quantenmechanische Rechnung von Sisourat et al. konnte dies schließlich hervorragend bestätigen. Es konnte also ein direkter Blick auf die Vibrationswellenfunktionen des Systems erlangt werden. In anderen Systemen ist dies in der Regel nicht möglich, da sich alle Zustände üblicherweise zu einer strukturlosen Verteilung überlagern. Weiterhin konnte gezeigt werden, dass sich die Winkelverteilungen von ICD- und Photoelektronen in verschiedenen Bereichen des KER mitunter stark voneinander unterscheiden. Dies konnte auf die unterschiedliche Besetzung von verschiedenen Potentialkurven zurückgeführt werden. Unterhalb der Photonenenergieschwelle zur Anregung und Ionisation eines Heliumatoms konnte ein weiterer, zweistufiger Ionisationsmechanismus gefunden werden. Hier wird zunächst durch Photoionisation ein Elektron aus einem der beiden Atome im Dimer freigesetzt. Dieses Photoelektron kann nun am neutralen Atom gestreut werden und dabei ausreichend viel Energie übertragen, um dieses ebenfalls zu ionisieren. Es konnte gezeigt werden, dass der Prozess einer Abhängigkeit von der Polarisation der Synchrotronstrahlung unterliegt, die man für Photoionisation erwarten würde. Die Energie- und Winkelverteilungen der Elektronen konnten daher mit vorangegangenen Elektronenstoß-Experimenten verglichen werden. Die gute Übereinstimmung mit diesen Daten rechtfertigt eine anschauliche Sichtweise des Prozesses als Analogon zum klassischen Billiard-Stoß. Der Two-Step-Prozess wurde bisher zwar schon in vielen Systemen als theoretisches Modell zur Doppelionisation beschrieben, allerdings konnten die einzelnen Unterprozesse bisher nicht gesondert gemessen werden. Die großen Abstände im Heliumdimer ermöglichen erstmals eine deutliche Trennung in Photoionisation an einem Atom und Elektronenstoß (e,2e) am Nachbaratom. Der Two-Step-Prozess konnte außerdem dazu verwendet werden, die ungewöhnliche Grundzustandswellenfunktion des Heliumdimers zu experimentell zu bestätigen. Eine Analyse des gemessenen KER konnte dabei deutliche Abweichungen zu einer klassischen Theorie aufzeigen. Erst eine vollständig quantenmechanische Rechnung des Übergangs von Sisourat et al. konnte die Messdaten beschreiben.
In dieser Arbeit konnten erstmals differentielle Ionisationswirkungsquerschnitte für Antimaterie-Materie-Stöße gemessen werden. Mit Hilfe der COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) wurden die Stoßsysteme p± + He ® p± + He+1 + ebei einer Einschußenergie von etwa 1 MeV untersucht. Die experimentellen Ergebnisse für die Einfachionisation von Helium durch Antiprotonenstöße werden mit denen für Protonenstöße verglichen. Dies erlaubt den Stoßmechanismus in Abhängigkeit von der Richtung der störenden Kraft zu studieren. Als Ergebniss konnte die Post-Collision-Interaction (PCI) in der longitudinalen Richtung des Stoßes (Projektilrichtung) quantitativ bestimmt werden. Trotz der großen experimentellen Schwierigkeiten (hochenergetischer Antiprotonenstrahl, geringer Antiprotonenstrom, große Strahldivergenz und Strahlungsuntergrund durch Antiprotonenzerfall) konnten absolute die Wirkungsquerschnitte in Abhängigkeit vom Longitudinalimpuls gemessen werden. Innerhalb der experimentellen Fehler zeigen die Longitudinalimpulsverteilungen keine Abhängigkeit vom Projektilvorzeichen. Die folgende Tabelle faßt die mittleren Impulse des Elektrons und des Rückstoßions für Antiprotonen- und Protonenstöße zusammen Rückstoßion Elektron Antiproton 0.07±0.045 a.u. 0.087±0.039 a.u. Proton 0.075±0.025 a.u. 0.075±0.007 a.u. Die Tabelle zeigt, daß nach dem Stoß die Elektronen in beiden Stoßsystemen etwas nach vorne emittiert werden. Das steht im Widerspruch zu den theoretischen Vorhersagen, wonach erwartet wird, daß die Elektronen im Protonenstoß etwas nach „vorne“ und im Antiprotonenstoß etwas nach „hinten“ emittiert werden. Das Rückstoßion agiert in beiden Systemen als Beobachter. Dies widerspricht ebenfalls den Vorhersagen, wonach erwartet wird, daß das Rückstoßion im Protonenstoß etwas nach hinten und im Antiprotonenstoß etwas nach vorne emittiert wird. Die experimentellen Ergebnisse zeigen eine bessere Übereinstimmung mit den Continuum-Distorted-Wave (CDW) Rechnungen als mit den Classical- Trajectory-Monte-Carlo (CTMC) Rechnungen. Im Vergleich zur Stößen mit schnellen hochgeladenen Ionen zeigen die Daten dieser Arbeit, daß die Elektronen die Impulsverluste des Projektils kompensieren, während in hochgeladenen Ion-Atom-Stöße die Rückstoßionen den Impuls der Elektronen kompensieren.