Refine
Document Type
- Doctoral Thesis (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Cytologie (1)
- Histologie (1)
Institute
- Medizin (4)
- Biowissenschaften (3)
- Biochemie und Chemie (1)
- Pharmazie (1)
Hypertension is a primary risk factor for cardiovascular diseases including myocardial infarction and stroke. Major determinants of blood pressure are vasodilatory factors such as nitric oxide (NO) released from the endothelium under the influence of fluid shear stress exerted by the flowing blood. Defects in flow-induced NO formation go along with endothelial dysfunction, initiation and progression of atherosclerosis as well as with arterial hypertension. Previous work has identified several mechanotransducing signaling processes involved in fluid shear stress-induced endothelial effects. But how fluid shear stress initiates the response is poorly understood. Here, I show in human and bovine endothelial cells that the G-protein Gq/G11 and the purinergic receptor P2Y2 mediate fluid shear stress-induced endothelial responses such as Ca2+ release, nitric oxide (NO) formation and the phosphorylation of platelet-endothelial-cell-adhesion-molecule-1 (PECAM-1), vascular endothelial growth factor-2 (VEGFR-2) and Akt kinase as well as activation of the endothelial NO synthase (eNOS). P2Y2 receptor is activated by adenosine triphosphate (ATP) which is released from endothelial cells under the influence of fluid shear stress. Arteries with P2Y2 or Gαq/Gα11 deficiency have impaired flow-induced dilatation. Mice with induced endothelium-specific deficiency of P2Y2 or Gαq/Gα11 develop hypertension which is accompanied by reduced eNOS activation. My data identify P2Y2 and Gq/G11 as a critical endothelial mechano-signaling pathway located upstream of mechanotransducing processes described so far. Moreover, I demonstrate that P2Y2 and Gq/G11 are required for basal endothelial NO formation, vascular tone and blood pressure.
The role of the Ca2+-dependent protease calpain in the diabetes-associated platelet hyperreactivity
(2012)
Platelets from diabetic patients are characterised by hyperreactivity resulting in exaggerated adhesion, aggregation and thrombus formation which contribute to the development of cardiovascular complications known to be one of the main causes of diabetes-related mortality. One of the mechanisms suggested to be involved in the diabetes-related platelet hyperactivation is the increased [Ca2+]i which leads to the overactivation of Ca2+-dependent proteases, the calpains. Among the calpain isoforms expressed in platelets the two ubquitiously expressed μ- and m-calpain are thought to play an important role in physiological and pathophysiological processes. Particularly μ-calpain is known to be involved in many steps of physiological platelet activation such as aggregation, adhesion, secretion, and signalling. However, we could show that diabetes was associated with an enhanced activation of both μ- and m-calpain in platelets
In the first part of the study we focussed on the characterization of the molecular mechanism regulating calpain activity. Indeed, although Ca2+ is considered to be the main regulator of the proteolytic activity of the conventional calpains, other mechanisms such as the presence of phospholipids and phosphorylation have been reported to affect their activity. Since most studies reported the phosphorylation of m-calpain we were interested to see whether μ-calpain activity might be also affected by phosphorylation. We could show that the activity of μ-calpain was enhanced by the PKC activator PMA suggesting its possible regulation by phosphorylation. However, whether PKC directly targeted μ-calpain remains unclear. Given that substrate recognition is important for a protease to process its substrate and since no common consensus could be attributed to calpain substrates, our next interest was to understand the mechanism regulating the recognition of its substrates by calpain. Since phosphorylation has been reported to protect different proteins from calpain degradation we investigated whether the calpain substrate CD31 could be phosphorylated in platelets and whether this could affect its recognition by calpain. Although we could show that the tyrosine phosphorylation of CD31 was increased after activation of platelets by thrombin and that this effect was attenuated in platelets from diabetic patients, tyrosine phosphorylation of CD31 seemed to have no effect on its sensitivity to calpain-mediated proteolysis.
After the analysis of the mechanism regulating calpain activity as well as its interaction with its substrates, our next interest was the identification of new calpain substrates in platelets. Since a previous study from our group showed that PPARγ agonists could indirectly reverse the diabetes-associated calpain activation we performed DIGE analysis of platelet samples from diabetic patients before and after PPARγ agonist treatment. Using this approach we could identify four novel calpain substrates in platelets: Integrin-linked kinase (ILK), α parvin, CLP36 and septin-5. Next, we assessed the effect of calpain-mediated cleavage on the function of these newly identified proteins. We could show that μ-calpain was essential for the dissociation of ILK from the IPP complex and its activation while m-calpain-mediated cleavage led to its cleavage and inactivation. Functionally, we also showed that μ-calpain was involved in platelet adhesion while m-calpain was important for spreading.
The next protein we analysed was septin-5, a small GTPase known to regulate platelet degranulation by association with other septins and syntaxin-4. We found that the interaction between septin-5 and syntaxin-4 was inhibitory for platelet degranulation. We could demonstrate that the μ-calpain-mediated cleavage dissociated septin-5 from syntaxin 4 and led to increased secretion of platelet α-granules. Next, we investigated the in vivo role of calpain in the diabetes-associated platelet hyperreactivity. We induced diabetes in mice and could reproduce calpain activation in platelets such as that found in human. Indeed, calpain activation in murine platelets also led to the cleavage of several calpain substrates including ILK and septin-5. Moreover, platelets from diabetic mice demonstrated an increased aggregation and thrombus formation in vivo. Treatment of the animals with the calpain inhibitor A-705253 (30 mg/kg/day for 10 days) significantly restored platelet function and substrate cleavage. In conclusion, in this part of the study, we could show that the increased calpain-dependent α-granule secretion and platelet adhesion may account for the enhanced vascular proliferation and thrombus formation in diabetes and calpain inhibition represents a promising way to prevent atherothrombosis development.
In the last part of the study we analysed another enzyme known to play a crucial role in diabetes, the AMPK which is an energy-sensing kinase known to be impaired in diabetes. We could show that the two catalytic subunits AMPK α1 and α2 are expressed in platelets. The AMPKα2 seemed to be the subunit involved in platelet activation since AMPKα2-deficient mice demonstrated a defect in clot retraction and the stabilization of the thrombus while the animals showed a normal bleeding time. Mechanistically, we showed in platelets that the upstream kinase of AMPKα2 is LKB1 which was activated by thrombin stimulation via a PI-3K-dependent pathway. AMPKα2 then phosphorylated the Src-family kinase Fyn, which is responsible for the phosphorylation of its substrate β3 integrin on Tyr747. These data indicate that AMPKα2, by affecting Fyn phosphorylation and activity, plays a key role in platelet αIIbβ3 integrin signalling, leading to clot retraction and thrombus stability. Although the effect of diabetes in the AMPK-dependent pathway could not be investigated we assume that the dysregulation of this pathway may account for the thrombus destabilization and enhanced embolization encountered in diabetes.
Since its recognition as an endothelium-derived relaxing factor, the control and consequences of nitric oxide (NO) production have been investigated intensely. We know now that NO is not simply a vasodilator or regulator of smooth muscle tone but is a potent anti-platelet agent, neuromodulator and regulator of gene expression. NO is synthesized from the amino acid Larginine by a family of enzymes termed NO synthases (NOS). The ‘endothelial’ (eNOS or NOS III) and ‘neuronal’ (nNOS, NOS I or bNOS) NOS isoforms, which were named after the tissues in which they were first identified, are expressed constitutively and are generally regulated by Ca2+/calmodulin (CaM). Endothelium-derived NO is thought to be responsible for maintaining the vasculature in an anti-atherosclerotic state and a decrease in the bioavailability of NO (a state generally referred to as endothelial dysfunction) results in “proatherosclerotic” alterations in vascular gene expression. Recently it has become clear that the activity of eNOS is largely determined by its association with regulatory proteins as well as by the phosphorylation of the enzyme on serine, threonine and possibly tyrosine residues. Moreover, the enzyme can be “uncoupled” i.e. transformed from a NO generating to a superoxide (O2-)-generating enzyme, which would be expected to attenuate vasodilator responses and enhance vascular inflammation. The aim of this thesis was to study the consequences of phosphorylation on specific serine, threonine and tyrosine residues on the activity and intracellular localisation of eNOS and in particular to determine whether a phospho-switch for eNOS uncoupling exists. eNOS is phosphorylated under basal conditions and its serine phosphorylation can be enhanced following cell stimulation with hemodynamic stimuli such as cyclic stretch and fluid shear stress as well as by hormonal stimuli such as histamine and bradykinin. Our group has previously demonstrated the importance of Ser1177 in the activation of eNOS and here I set out to determine the relative importance of phosphorylation on Ser633 and Ser114. By generating point mutants in which serine was replaced by either alanine (nonphosphorylatable mutants) or aspartate (phosphomimetic mutants) it was observed that the activity of the S633D and S114A eNOS mutants exhibited an 2-fold increase over the activity of the wild-type enzyme or either of the S633/634A or S114D eNOS mutants as determined by monitoring the conversion of L-arginine to L-citrulline. eNOS is basally phosphorylated on Thr495 and stimulation of endothelial cells with Ca2+-elevating agonists generally results in the transient dephosphorylation of this residue. The latter is essential to allow the binding of calmodulin to the enzyme and is the actually initiating step in the generation of NO. Correspondingly, the T495A eNOS mutant can be activated at lower Ca2+ and calmodulin concentrations than the T495D mutant. However, some eNOS mutants (T494A/S1177D and T495A) showed an enhanced ability to generate O2- in a NOS inhibitor-sensitive manner suggesting that the phosphorylation of the enzyme may also play a role in the uncoupling process. To determine the physiological relevance of eNOS dephosphorylation on Thr495 we assessed the consequences of treating cells with oxidised low-density lipoprotein (ox-LDL) on eNOS phosphorylation as well as on the eNOS-dependent generation of NO and O2-. Oxidised LDL concentration- and time-dependently decreased phosphorylation of eNOS on Thr495 and led to a concomitant decrease in cellular levels of cyclic GMP and an enhanced production of O2 - compared to cells treated with native LDL. Alterations in the activity of protein kinase C (PKC) were related to the change in eNOS Thr495 phosphorylation. There was not only the basal activity of PKCα inhibited by ox-LDL but the PKC activator phorbol-12-myristate-13-acetate also failed to elicit the phosphorylation of Thr495 in ox-LDL-treated endothelial cells. The dephosphorylation of eNOS on Thr495 in response to the addition of ox-LDL was not associated with an increase in the binding of calmodulin to eNOS, an association usually necessary for the activation of eNOS. Moreover, following treatment with ox-LDL for 24 hours eNOS was no longer detected at the plasma membrane but was redistributed to the cytosol indicating that ox-LDL may disrupt the eNOS signalling complex or signalosome. To date the role played by the tyrosine phosphorylation of eNOS in the regulation of its activity or intracellular association is controversial. However, during the preparation of this thesis we have been able to demonstrate a link between the tyrosine phosphorylation of eNO and the activation of the tyrosine kinases Src and PYK2. The application of fluid shear stress to endothelial cells resulted in the activation of Src and PYK2 as well as in the association of PYK2 with eNOS. Co-expression of eNOS and PYK2 led to the putative identification of Tyr657 as a potential modulatory site. Mutating eNOS at Tyr657 to Asp or Glu resulted in the localisation of the mutant eNOS predominantly in the cytoskeleton and also in a complete inactivation of the enzyme. The Y657F mutants, on the other hand, did not demonstrate any marked alteration in the activity when compared with the wild-type eNOS. However, the In conclusion, the results describe in this thesis indicate that eNOS is regulated by phosphorylation at multiple sites. Depending on the phosphorylation site involved phosphorylation can inhibit or activate NO production or even uncouple the enzyme so that it generates O2-. While the phosphor-status of eNOS on Ser114 and Ser633 influenced NO release they did not contribute to O2 - production and the dephosphorylation of Thr495 seems sufficient to uncouple eNOS. Cell treatment with ox-LDL, which is known to increase eNOS-derived O2- output was correlated with a dephosphorylation of Thr495 as well as a decrease in the activity of the kinase that phosphorylates this site i.e., PKCα. The phosphorylation status of all the eNOS serine and threonine residues studied however did not influence the ability of the enzyme to dimerise, indicating that contrary to previously published reports the eNOS dimer is highly stable in endothelial cells. The tyrosine phosphorylation of eNOS was not initially expected to play a determinant role in the regulation but rather to facilitate the docking of associated regulatory proteins. However, Tyr657 seems to play a critical role in the generation of NO as its mutation resulted in the generation of a completely inactive enzyme as well as in an apparent intracellular mislocalisation of the protein. The physiological relevance of these findings remain to be further elucidated.
Seit den ersten Berichten über renale CYP-Enzyme, die den arteriellen Tonus beeinflussen können, steht die entscheidende Rolle der CYP-Epoxygenasen in der Modulation der vaskulären Homöostase außer Frage. Die Verbindung zwischen CYP-Expression und kardiovaskulären Erkrankungen ist jedoch noch mit Vorbehalt zu betrachten. Dennoch kann ihre Bedeutung in der Pathogenese der Hypertonie und Atherosklerose nicht länger ignoriert werden. Ziel der vorliegenden Arbeit war der Nachweis, inwieweit endogen-gebildete EET an der Regulation des Agonisteninduzierten Kalziumeinstroms in nicht-erregbaren Endothelzellen beteiligt sind. Da es in kultivierten Endothelzellen im Gegensatz zu nativen Endothelzellen zu einer rapiden Reduktion der CYP 2C-Expression kommt, wurde die Expression von CYP 2C zu einem durch die Verwendung eines adenoviral-vermittelten Überexpressionssystems und zum anderen durch Nifedipin induziert. Zunächst führte die Stimulation mit Bradykinin in kultivierten Endothelzellen, die infolge der Kultivierung das CYP 2C-Protein nicht mehr exprimieren, zu einem Kalziumeinstrom. Dieser Effekt wurde weder von Sulfaphenazol, einem spezifischen CYP 2C9-Hemmer, noch von ACU, einem Hemmer der sEH, beeinflusst. Dahingegen führte die Hemmung der sEH durch ACU in CYP 2C-exprimierenden Endothelzellen zu einem signifikanten Anstieg der Plateauphase des Bradykinininduzierten Kalziumeinstroms. Dieser Effekt konnte sowohl durch Sulfaphenazol als auch durch 14,15-EEZE, einen EET-Antagonisten, aufgehoben werden. Die Kontrollzellen wurden weder von den Substanzen alleine noch in Kombination mit ACU beeinflusst. Die Verwendung von DCU, einem weiteren spezifischen Hemmer der sEH, führte ebenfalls zu einem signifikanten Anstieg der Plateauphase des Bradykinin-induzierten Kalziumeinstroms in CYP 2C-exprimierenden Endothelzellen im Vergleich zu den Kontrollzellen. Die Hypothese der sEH-Hemmer als potente Modulatoren des EET-vermittelten Kalziumeinstroms wurde weiterhin durch den Befund belegt, dass die Inkubation mit dem mEH-Hemmer Elaidamid keinen Einfluss auf die Höhe des Bradykinin-induzierten Kalziumplateaus hatte. Durch die Untersuchungen in An- und Abwesenheit von extrazellulärem Kalzium konnte gezeigt werden, dass endogen-gebildete EET die [Ca2+]i durch Verstärkung des kapazitiven Kalziumeinstroms beeinflussen. Die Aufhebung der Effekte durch den PKA-Hemmer Rp-cAMPs lässt auf eine Rolle der PKA schließen, der Signaltransduktionsweg bleibt zu klären. Die Reproduzierbarkeit der Ergebnisse in isolierten endothelintakten Umbilikalvenen belegt die physiologische Relevanz. In der vorliegenden Studie konnte die Bedeutung der EET in der Regulation des kapazitiven Kalziumeinstroms und der sEH-Hemmer als potente Modulatoren der biologischen Aktivität von EET demonstriert werden. Die Eingliederung in den Kontext der vaskulären Homöostase und der Pathogenese von kardiovaskulären Erkrankungen bleibt hochinteressant und zukunftsweisend.
Molecular mechanism of intracellular signal transduction by the angiotensin-converting enzyme
(2007)
The angiotensin converting enzyme (ACE) is an important component of the renin-angiotensin system (RAS) and is crucially involved in the homeostasis of fluid and electrolyte balance and thus in the regulation of blood pressure. The zinc metallopeptidase is involved in the generation of angiotensin II, a potent vasoconstrictor and in the degradation of bradykinin, a potent vasodilator. It is worth noting that ACE more readily hydrolyzes bradykinin than it does angiotensin I thus culminating in the net physiological effect of the production of a vasoconstrictor and the decrease in the availability of a vasodilator. ACE inhibitors have become one of the most successful therapeutic approaches as a first line of therapy in hypertension, and are also widely used in treating heart failure, myocardial infarction, stroke, coronary artery disease and impaired left ventricular function. However, one unexpected clinically relevant finding related to ACE inhibitors is their ability to delay the onset of type II diabetes that was revealed by various large clinical trials. However, the mechanisms underlying these beneficial effects of ACE inhibitor therapy are currently unclear and cannot be explained by the prevention of angiotensin II formation or the attenuated degradation of bradykinin. Thus the potential beneficial effects attributed to ACE inhibitors may occur independent of reductions in blood pressure paving way for new and/or unknown mechanism. Our group has recently redefined ACE as a signal transduction molecule which upon binding to ACE inhibitor turns on a signalling cascade leading to phosphorylation of Ser1270 by CK2, activation of JNK and changes in gene expression in endothelial cells. However the mechanism by which ACE inhibitor initiates the signalling cascade was not clear. It was hypothesized that ACE, which is anchored to the membrane with a single transmembrane domain should dimerize prior to initiating further downstream signalling events in endothelial cells. Therefore, we sought to explore whether or not ACE forms dimers in endothelial cells and whether ACE dimerization is essential for the initiation of ACE signalling in endothelial cells. Using native gel electrophoresis, we found that ACE forms dimers in endothelial cells and that there is an increase in the dimer formation upon treatment of endothelial cells with ACE inhibitors. ACE homodimerization was also demonstrated using the split-ubiquitin system and chemical cross-linking experiments. ACE dimers are also formed in endothelial cells overexpressing the non-phosphorylatable ACE, wherein ACE signalling was abolished indicating that dimerization process is not influenced by the phosphorylation of the serine residue residing in the cytoplasmic tail. Monosaccharides like glucose, galactose and mannitol did not have any influence on ACE-inhibitor induced dimerization. Making use of different monoclonal antibodies directed to the epitopes of N-domain which harbours carbohydrate recognizing domain, also did not affect dimerization. However, inactivation of the C-domain active site by introducing mutation of the key histidine residues in HEMGH consensus sequences, which complexes the zinc ions, abolished enzyme dimerization both in the basal state and in response to ramiprilat. Mutation of the C-domain also resulted in the loss of ACE inhibitor-induced ACE signalling, that is we failed to observe ramiprilat-induced increase in the phosphorylation of the Ser1270 and the subsequent JNK activation. ACE-inhibitor induced dimerization precedes the phosphorylation of Ser1270 and activation of JNK. Thus the ACE-inhibitor induced dimerization via the C-domain of ACE represents the initial step in the ACE signalling pathway which involves the activation of JNK/c-Jun pathway and leading to the changes in the gene expression in endothelial cells. Our group previously identified ACE itself as well as cyclooxygenase-2 (COX-2) as two “ACE signalling-regulated” genes. To screen for additional genes regulated in a similar manner we used DNA microarray technology, to assess ramiprilat-induced changes in the endothelial cell gene expression. 21 genes were identified to be differentially regulated of which, 7 were upregulated and 14 were downregulated by ramiprilat. However, when screened at the protein level, we found no significant differences between the untreated control cells and those treated with ramiprilat. As several other cells and tissues possess a fully functional RAS we screened plasma samples from healthy volunteers as well as from patients with coronary artery disease for the proteins identified in the microarray. We observed that the cellular retinal binding protein-1 (CRBP-1) was detectable at low levels in plasma from patients and that ramipril markedly increased serum levels of this protein. Endothelial cells overexpressing CRBP-1 demonstrated increased RXRE and PPRE activity when stimulated with 9-cis retinoic acid and rosiglitazone respectively suggesting that CRBP-1 might affect gene expression via heterodimerization of PPAR elements with RXR elements by virtue of its function as a transport protein of retinoic acid. Studies aimed at determining the consequences of elevated CRBP-1 expression on endothelial cell homeostasis are ongoing. Although the RAS has been described in many other tissues apart from endothelial cells, ACE signalling has not yet been addressed in tissues such as monocytes/macrophages, which have an increased ACE expression in an atherosclerotic setting. We observed that upon stimulation of cultured ACE expressing monocytes with ramiprilat, JNK is activated suggesting the occurrence of ACE signalling in human monocytes. It is worth noting that ACE inhibitors delay the onset of type II diabetes in spite of moderate decrease in blood pressure. To further elucidate the mechanism underlying this effect, we found that ACE inhibitors increase the PPARgamma levels in the nuclear extracts of ACE expressing monocytes which were also reproduced in human endothelial cells overexpressing human somatic ACE. However, ramiprilat did not have any direct effect on the activity of a luciferase-coupled promoter containing several copies of the PPRE in human endothelial cells. These results contrasted with the actions of the PPARgamma agonist suggesting that ramiprilat enhances PPARgamma levels through an indirect mechanism. We next hypothesized that ramiprilat might increase the levels of 15-deoxy-D12,14-prostaglandin J2 (15dPGJ2) which is a natural ligand for PPARgamma via COX enzymes in monocytes. We observed that ramiprilat was able to decrease the diminution of COX-2 levels upto 48 hours of treatment but the levels of 15dPGJ2 were too low to be detected by ELISA. However ramiprilat enhanced the plasma levels of adiponectin, a downstream target of PPARgamma, which is a anti-atherogenic and anti-inflammatory adipokine, in patients with coronary artery disease. Though adiponectin is a PPARgamma-regulated gene, the observed increase in adiponectin might be attributed to the increase in RXR rather than via PPARgamma. Taken together, the results of this investigation have revealed that ACE inhibitors initiate ACE signalling by eliciting the dimerization of the enzyme, more specifically via its C-domain active centers. The ACE signalling cascade when activated leads to the enhanced expression of ACE, COX-2 and CRBP-1 which in turn favours the heterodimerization of PPARgamma with RXR and thus results in the increased expression of “PPARgamma regulated” genes such as adiponectin. The latter results provide a molecular basis for the observation that ACE inhibitors can delay the onset of type 2 diabetes in as much as it was possible to link ramipril with CRBP-1, RXR activity and the expression of adiponectin, an adipokine associated with improved insulin sensitivity. Further work is however required to elucidate the consequences of ACE inhibitors in monocytes and adipocytes as well as in intact animals.
Hypoxic pulmonary vasoconstriction (HPV) redistributes pulmonary blood flow from areas of low oxygen partial pressure to areas of normal or relativity high oxygen availability, thus optimising the matching of perfusion to ventilation and preventing arterial hypoxemia. Generalised alveolar hypoxia results in a sustained increase in pulmonary artery pressure which in turn leads to structural changes in the walls of the pulmonary vasculature (pulmonary vascular remodelling). Recent findings have indicated a role for cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) in hypoxia-induced pulmonary vasoconstriction. Given that the intracellular concentration of EETs is determined by the soluble epoxide hydrolase (sEH), which metabolises EETs to their less active dihydroxyeicosatrienoic acids (DHETs), we assessed the influence of the sEH and EETs on pulmonary artery pressure, acute and chronic HPV, and pulmonary vascular remodelling in the mouse lung. In isolated lungs from wild-type mice, acute HPV was significantly increased by sEH inhibition, an effect abolished by pre-treatment with CYP epoxygenase inhibitors and the EET antagonist 14,15-EEZE. The acute hypoxia-induced vasoconstriction and EET production were greater in lungs from sEH-/- mice than from wild-type mice and sEH inhibition had no further effect on HPV in lungs from the former animals, while MSPPOH (CYP epoxygenase inhibitor) and 14,15-EEZE decreased the response. Exogenous application of 11,12-EET increased pulmonary artery pressure in a concentration-dependent manner and enhanced acute HPV in wild-type lungs, while 14,15-EET and 11,12-DHET were without significant effect on pulmonary artery pressure. 5-HT2A receptor antagonism or Rho kinase inhibition shifted the EET concentration-response curve to the right and abrogated the EET- and sEH inhibition-induced potentiation of acute hypoxic vasoconstriction. In lungs from wild-type and sEH-/- mice, hypoxic preconditioning (hypoxic ventilation for 10 minutes) enhanced the 5-HT response. 1-Adamantyl-3-cyclohexylurea (ACU), a sEH inhibitor, further amplified the hypoxia-induced 5-HT-hypersensitivity in wild-type mice. However, after hypoxic preconditioning, the sEH-/- lungs displayed a striking leftward shift in the 5-HT response. 11,12-EET can activate TRPC6 channels in endothelial cells by eliciting its translocation to the plasma membrane, more specifically to membrane domains enriched with the caveolae marker caveolin-1. This effect was also observed in rat pulmonary artery smooth muscle cells overexpressing the channel. Exposure of the latter cells to acute hypoxia also stimulated the intracellular translocation of TRPC6 to caveolae, an effect that was sensitive to the EET antagonist. The EET-induced translocation of TRPC6 channels was prevented by a 5-HT2A receptor antagonist but not by a Rho kinase inhibitor. Moreover, while acute hypoxia and 11,12-EET increased pulmonary pressure in lungs from TRPC6+/- mice, lungs from TRPC6-/- mice did not respond to either stimuli. These results indicate that the sEH and CYP-derived EETs are involved in acute HPV and that EET-induced pulmonary contraction under normoxic and hypoxic conditions involves a TRPC6 channel, a 5-HT2A receptor-dependent pathway and Rho kinase activation. In the second part of the study the role of the sEH in the development of pulmonary hypertension and vascular remodelling induced in mice by exposure to hypoxia (10% O2) for 21 days was analysed. In wild-type mice, chronic hypoxia decreased the pulmonary expression/activity of the sEH, induced right heart hypertrophy and erythropoiesis, and increased the number of partially and fully muscularised pulmonary resistance arteries (by 3-fold). Moreover, in HEK 293 cells, hypoxia (1% O2 up to 24 h) decreased sEH promoter activity by 50%. In isolated lungs, pre-exposure to chronic hypoxia significantly increased baseline perfusion pressures and potentiated the acute HPV. While an sEH inhibitor, ACU, potentiated acute HPV in lungs from mice maintained in normoxic conditions, it had no effect on HPV in lungs from mice exposed to hypoxia. The EET antagonist, 14,15-EEZE, abolished the sEH inhibitor-dependent increase in acute HPV in normoxic lungs and decreased HPV in chronic hypoxic lungs. Hypoxia-induced right heart hypertrophy and erythropoiesis were more pronounced in sEH-/- than in wild-type mice. Under normoxic and hypoxic conditions the muscularisation of resistance pulmonary arteries was greater in lungs from sEH-/- mice than in lungs from wild-type mice. sEH-/- mice also displayed an enhanced acute HPV, compared to that observed in wild-type mice and chronic exposure to hypoxia did not further potentiate acute HPV. However, in the presence of 14,15-EEZE responses returned to levels observed in normoxic lungs from wild-type animals. Furthermore, immunohistochemistry demonstrated an extensive expression of the sEH in the medial wall of pulmonary arteries from human donor lungs. Whereas sEH expression was not detectable in samples from pulmonary hypertension patients, indicating that the sEH is involved in hypoxia-induced pulmonary vascular remodelling and hypoxic pulmonary vasoconstriction. Taken together, the results presented in this thesis indicate that the expression/activity of the sEH is an important determinant of the magnitude of acute and chronic hypoxia-induced pulmonary vasoconstriction and pulmonary vascular remodelling by inactivating vasoconstrictor CYP-derived EETs. As sEH inhibitors are currently being developed for the treatment of human systemic hypertension, it should be noted that these compounds may even promote the development of pulmonary hypertension.
Cytochrome P450 (CYP) enzymes oxidize, peroxidize and/or reduce cholesterol, vitamins, steroids, xenobiotics and numerous pharmacological substances in an oxygen- and NADPHdependent manner. Since many CYP isozymes are also capable of metabolizing arachidonic acid to biologically active products, CYP enzymes are often described as the third pathway of arachidonic acid metabolism i.e., in addition to cyclooxygenases and lipoxygenases. CYP enzymes are predominantly expressed in the liver while others, such as members of the CYP 2J, CYP 2C and CYP 4A subfamilies, can be detected in extrahepatic tissues, particularly in the cardiovascular system. Recent data suggest that a CYP 2C enzyme(s) expressed in coronary artery endothelial cells generate epoxyeicosatrienoic acids (5,6-; 8,9-; 11,12- and 14,15-EET) which contribute to the acute control of vascular tone and the longterm regulation of vascular homeostasis.
The expression of CYP 2C in coronary artery endothelial cells is regulated by a number of stimuli, such as cyclic stretch and fluid shear stress as well as by the corticosteroid cortisol and a number of CYP substrates (nifedipine, cerivastatin and -naphthoflavone). However, the signalling pathways and the transcription factors involved in regulating the expression of the gene are unknown.
Since most of the CYP 2C enzymes are transcriptionally regulated, we were interested in identifying the CYP 2C isoform(s) expressed in porcine coronary artery endothelial cells (PCAEC) as well as determining its/their promoter sequence(s). The overall goal was to study the involvement of different transcription factor binding elements in the regulation of the CYP 2C gene(s). Porcine coronary arteries were used given the possibility of analysing the results obtained at the cellular level with alterations in vascular function. Comparison of the porcine CYP 2C and the human CYP 2C8 and 2C9 promoters was also a major goal of this study.
To identify the relevant porcine CYP 2C isoform nested RT-PCR was performed using total RNA from porcine coronary artery endothelial cells. Comparison of the sequence of the product of this reaction with the NCBI database suggested that the CYP 2C expressed in PCAEC was approximately 85% homologous with the human CYP 2C9 enzyme. To obtain the full length CYP 2C isoform 5´ rapid amplification of cDNA end (5´ RACE) was performed using a downstream reverse gene specific primer which is conserved in all of the porcine CYP 2C isoforms. The intention behind using such a primer was to amplify all the possible CYP cDNAs expressed in PCAEC. With the 5´ RACE technology it was possible not only to identify the exact isoform (CYP 2C34) expressed in PCAEC, but it was also possible to amplify 550 bp of the 5´ upstream region. This result was authenticated by comparing the protein/nucleotide sequence with other human CYP 2C genes such as CYP 2C8 and CYP 2C9 as well as different porcine CYP 2C genes (CYP 2C34, CYP 2C49). Multiple protein/nucleotide sequence alignment revealed approximately 85-90% sequence identity. An exon1-2 specific radio-labelled probe of the CYP 2C34 gene was then used to screen a porcine genomic library for positive genomic clones containing the promoter region of the CYP 2C34 gene.
For the isolation of 5´ flanking region of CYP 2C34 gene a PCR-based directional genome walking strategy was used in which the positive porcine genomic BAC clones were taken as a DNA template. Four arbitrarily designed universal walking primers and a gene-specific primer derived from the CYP 2C34 gene sequence were employed and led to the identification and isolation of 1.4 kb of the 5´ flanking region.
The 1.4 kb 5´ flanking region of CYP 2C34 gene contains multiple transcription factor binding sites including glucocorticoid-responsive element (GRE), hypoxia-responsive element (HRE), CAAT-enhancer binding protein (C/EBP), stress responsive element (STRE) consensus sequences. CYP 2C34 promoter constructs were generated and reporter gene activity (luciferase) activity was compared with that of a promoterless vector (pGL3-Basic) at first in HEK cells and then in PCAEC. After using cortisol as a positive control to demonstrate that the promoter constructs generated were functional we determined the effects of physiologically relevant stimuli i.e., hypoxia and cyclic stretch. Additional experiments with zinc sulphate were performed in a preliminary analysis of the role of Zn2+ inducible transcription factors and might be cooperative heterodimerization formation with these transcription factor with C/EBP in the regulation of CYP 2C34 expression. With all these stimuli, reporter gene activity of CYP 2C34 promoter was significantly (3-8 fold) increased over values obtained in unstimulated cells.
Analysis of the regions that are essential for the induction of promoter activity in response to the different stimuli of interest have to be performed in combination with gel shift assays, siRNA experiments as well as site-directed mutagenesis experiments. Comparison of the regulation of the CYP 2C34 gene and correlation with changes in vascular function (in isolated porcine coronary arteries) should deliver information relevant to the regulation of the CYP 2C enzyme expressed in human coronary artery endothelial cells. The recent demonstration of a clinically relevant role for CYP 2C9 in coronary heart disease underlines the importance of such a study.
Polyunsaturated fatty acids (PUFAs) play essential roles in mediating inflammation and its resolution. PUFA metabolites generated by the cytochrome P450 (CYP) - soluble epoxide hydrolase (sEH) axis are known to regulate macrophage activation/polarization but little is known about their role in the resolution of inflammation. Monocytes were isolated from murine bone marrow or human peripheral blood and differentiated to naïve macrophages (M0). Thereafter cells were polarized using LPS and IFNγ (M1), IL-4 (M2a), or TGFβ1 (M2c). Gene expression was analyzed by RNA sequencing, RT-qPCR and Western blotting. Phagocytosis of zymosan and oxo-LDL were also assessed in vitro. Zymosan-induced peritonitis combined with immune cell profiling was used to evaluate the resolution of inflammation in vivo. The expression of sEH was comparable in M0, M1 and M2a macrophages but markedly elevated in M2c polarized cells. The increase in sEH expression elicited by TGFβ relied on the TGFβ receptor ALK5 and the phosphorylation of SMAD2, which was able to bind to the sEH promoter. In macrophages lacking sEH, M2c polarization was incomplete and characterized by lower levels of pro-resolving phagocytosis associated receptors (Tlr2 and Mrc1), as well as higher levels of the pro-inflammatory markers; Nlrp3, IL-1β and TNFα. Fitting with the failure to upregulate phagocytosis associated receptors, the uptake of zymosan and ox-LDL was less efficient in M2c macrophages from sEH-/- mice. The latter animals also demonstrated a retarded resolution of inflammation (zymosan-induced peritonitis) in vivo with fewer resident macrophages and recruited macrophages. PUFA profile analysis indicated decreased sEH substrates e.g., 11, 12-EET, as well as increased sEH products e.g., 11, 12-DHET, indicating an increased sEH activity in M2c macrophages. Taken together, our data indicates that sEH expression is required for the effective M2c polarization of macrophages and thus the resolution of inflammation.